INSTRUKCJA DO ĆWICZENIA

Podobne dokumenty
POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

POMIARY OSCYLOSKOPOWE

Ćwiczenie: "Mierniki cyfrowe"

INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WYDZIAŁ ELEKTRONIKI WAT. Warsztaty inżynierskie elektrotechniczne

SKŁADANIE DRGAŃ WZAJEMNIE PROSTOPADŁYCH I.

Bierne układy różniczkujące i całkujące typu RC

Badanie wzmacniacza niskiej częstotliwości

Własności dynamiczne przetworników pierwszego rzędu

I Zastosowanie oscyloskopu do pomiarów kąta przesunięcia fazowego.

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Zapoznanie z przyrządami stanowiska laboratoryjnego. 1. Zapoznanie się z oscyloskopem HAMEG-303.

Pomiar podstawowych parametrów liniowych układów scalonych

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Instrukcja do ćwiczenia laboratoryjnego nr 11

Sprzęt i architektura komputerów

Państwowa Wyższa Szkoła Zawodowa

Politechnika Białostocka

Państwowa Wyższa Szkoła Zawodowa

Badanie właściwości multipleksera analogowego

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h)

Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek

LABORATORIUM OBWODÓW I SYGNAŁÓW

Przetwarzanie A/C i C/A

Przetwarzanie AC i CA

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego

Wyznaczanie prędkości dźwięku w powietrzu

Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.

Podstawowe zastosowania wzmacniaczy operacyjnych

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

Ćw. III. Dioda Zenera

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Uśrednianie napięć zakłóconych

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:

Zastosowania liniowe wzmacniaczy operacyjnych

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych

Wzmacniacze operacyjne

ELEMENTY ELEKTRONICZNE TS1C

Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Podstawy obsługi oscyloskopu

Zastosowania pomiarowe oscyloskopu analogowego

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h)

Przetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 12 Metody sterowania falowników

Ćwiczenie nr 28. Badanie oscyloskopu analogowego

Politechnika Warszawska

Lekcja 20. Temat: Elementy regulacyjne i gniazda oscyloskopu.

PRACOWNIA ELEKTRONIKI

Drgania wymuszone - wahadło Pohla

BADANIE ELEMENTÓW RLC

INSTRUKCJA DO ĆWICZENIA

Filtry aktywne filtr środkowoprzepustowy

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

POMIARY OSCYLOSKOPOWE II

Ćwiczenie nr 65. Badanie wzmacniacza mocy

ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH

PRACOWNIA ELEKTRONIKI

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru

Podstawy Elektroniki dla Informatyki. Pętla fazowa

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ OPERACYJNY

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:

TRANZYSTORY BIPOLARNE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

1 Badanie aplikacji timera 555

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

Algorytm uruchomienia oscyloskopu

Instrukcja do ćwiczenia laboratoryjnego nr 6b

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

U 2 B 1 C 1 =10nF. C 2 =10nF

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE

TRANZYSTOROWY UKŁAD RÓŻNICOWY (DN 031A)

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Instrukcja do ćwiczenia laboratoryjnego nr 7

Katedra Elektrotechniki Teoretycznej i Informatyki

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Pomiary napięć i prądów zmiennych

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

Oscyloskop. Dzielnik napięcia. Linia długa

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Przyjazna instrukcja obsługi generatora funkcyjnego Agilent 33220A

Transkrypt:

INSTRUKCJA DO ĆWICZENIA Temat: Pomiary oscyloskopowe. Przesunięcie fazowe 1. Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie analogowych i cyfrowych metod pomiaru przedziałów czasu, częstotliwości i kąta przesunięcia fazowego. Celem uzupełniającym jest utrwalenie umiejętności posługiwania się oscyloskopem oraz zbadanie właściwości metrologicznych cyfrowego miernika czasu i częstotliwości. Pomiędzy dwoma przebiegami okresowymi o tej samej częstotliwości można pomierzyć kąt przesunięcia fazowego. W tym przypadku potrzebny jest oscyloskop dwukanałowy. Podając przebiegi badane na wejścia obu kanałów oscyloskopu, na jego ekranie otrzymuje się obraz pokazany na rys. 1a. Rys. 1. Obrazy na ekranie oscyloskopu wykorzystywane do graficznego pomiaru kąta przesunięcia fazowego: a) metodą bezpośrednią, b) metodą figur Lissajous Mierząc długość okresu x T oraz długość odcinka między przejściami przez zero w tych samych fazach obu przebiegów xτ, wartość przesunięcia fazowego oblicza się ze wzoru: Alternatywną metodą pomiaru przesunięcia fazowego oscyloskopem jednokanałowym jest metoda figur Lissajous. Podając przebiegi badane odpowiednio na kanał X i kanał Y oscyloskopu, otrzymuje się na ekranie obraz elipsy, pokazany na rys. 1b. Z kształtu elipsy można obliczyć kąt przesunięcia fazowego, posługując się wzorem:

Dokładność graficznych metod pomiaru częstotliwości i fazy nie jest duża i często są one wykorzystywane do wstępnych pomiarów o charakterze szacunkowym. Bardzo dużą dokładność pomiaru częstotliwości zapewniają metody porównania z wzorcem, których błąd zależy głównie od dokładności generatora wzorcowego. Oscyloskop w takich metodach pełni rolę wskaźnika porównania. 2. Metody porównawcze Najłatwiejszą w realizacji, a tym samym najczęściej stosowaną, jest metoda figur Lissajous. Do wejść Y i X oscyloskopu pracującego w trybie XY (z wyłączoną podstawą czasu) dołącza się odpowiednio przebieg badany i przebieg z generatora wzorcowego. Jeżeli stosunek obu częstotliwości jest równy liczbie całkowitej lub stosunkowi dwu liczb całkowitych, to na ekranie otrzymuje się nieruchomy obraz figury Lissajous. Drobna różnica częstotliwości powoduje obrót obrazu z szybkością proporcjonalną do odchyłki aktualnych częstotliwości od częstotliwości, dla których spełniony jest powyższy warunek. Na rysunku 2 pokazane są przykłady figur Lissajous. Stosunek obu częstotliwości oblicza się metodą siecznych lub stycznych. W metodzie siecznych stosunek ten wyznacza się dzieląc liczbę przecięć prostej poziomej (siecznej poziomej) z obrazem figury do liczby takich przecięć prostej (siecznej) pionowej. Obie proste powinny być tak poprowadzone, aby nie przechodziły przez punkty węzłowe figury (rys. 2a). W metodzie stycznych stosunek częstotliwości oblicza się dzieląc liczbę punktów styczności z figurą Lissajous odpowiednio prostej poziomej i prostej pionowej, poprowadzonych stycznie do figury. Rys. 2. Przykłady figur Lissajous: a) sposób obliczania stosunku częstotliwości metodą siecznych, b) fy/fx = 2 : 5, c) jak na rysunku b, lecz inna wartość faz początkowych obu sygnałów Do obliczania stosunku częstotliwości służy wzór: gdzie: n x liczba przecięć figury Lissajous z prostą poziomą, n y liczba przecięć z prostą pionową, m x liczba punktów styczności z prostą poziomą, m y liczba punktów styczności z prostą pionową. Obraz figury Lissajous zależy nie tylko od stosunku częstotliwości przebiegów mierzonego i wzorcowego, lecz również od różnicy faz początkowych między obu przebiegami. Ilustruje to przykładowo rys. 2b i c, na którym pokazano figury Lissajous dla stosunków częstotliwości fy/fx = 2 : 5 dla dwóch różnych wartości faz początkowych.

Przy dużych stosunkach porównywanych częstotliwości trudno jest uzyskać na ekranie obraz nieruchomy. Niewielka zmiana częstotliwości jednego ze źródeł powoduje, że obraz na ekranie zmienia kształt i jednocześnie się obraca, co jest wadą tej metody. Metoda krzywych cykloidalnych nie ma tej wady, obrót figury nie jest w niej połączony ze zmianą kształtu. W metodzie tej przebiegi badany i wzorcowy podłącza się do oscyloskopu pracującego w trybie XY za pomocą układu pokazanego w formie uproszczonej na rys. 3. Rys. 3. Uproszczony układ pomiarowy, w którym uzyskuje się krzywe cykloidalne Ruch plamki opisywany tymi wzorami łatwo jest przedstawić graficznie jako ruch wierzchołka jednego z dwóch wektorów, z których jeden opisany zależnościami X = D x U R1 sin ω1t, Y = D y U C1 sin (ω 1 t π/2), zawieszony w początku układu, obraca się z prędkością kątową ω 1 = 2πf 1, a drugi wektor X = D x U R2 sin ω 2 t, Y = D y U C2 sin (ω 2 t-π/2), zawieszony na wierzchołku pierwszego, obraca się wokół tego wierzchołka z prędkością ω 2 = 2πf 2. Jeżeli kierunki ruchu obu wektorów są ze sobą zgodne, otrzymuje się na ekranie figurę nazywaną epicykloidą (rys. 4). Jeżeli zaś kierunki ruchu wektorów są przeciwne, otrzymuje się figurę zwaną hipocykloidą. Niewielka zmiana częstotliwości jednego ze źródeł powoduje obrót obrazu cykloidy bez zmiany jej kształtu, co jest zaletą metody. Zaletą jest też łatwość policzenia liczby pętli, co jest potrzebne do wyznaczenia stosunku obu częstotliwości. Dla epicykloidy stosunek częstotliwości oblicza się ze wzoru: a dla hipocykloidy: gdzie: n liczba pętli Rys. 4. Widok epicykloidy oraz hipocykloidy dla f1/f2 = 1/2 i f1/f2 = 1/3

Zależnie od stosunku amplitud obu przebiegów otrzymuje się różne kształty obrazu na ekranie, mimo nie zmienionego stosunku częstotliwości. Widać to na rys. 5a. Aby uzyskać regularne kształty krzywych, zbliżone do koła, częstotliwość f 1 wybiera się jako częstotliwość wzorcową (f 1 = f w ) oraz dobiera się elementy R, C tak, aby spełniona była zależność: Dla spełnienia warunku rezystor R2 jest regulowany. Rys. 5. Obrazy krzywych cykloidalnych dla stosunku częstotliwości 6:1 w zależności od amplitud przebiegów składowych: a) epicykloidy, b) hipocykloidy Rys. 6. Aplikacyjny układ pomiarowy realizacji metody cykloidalnej z użyciem oscyloskopu z niesymetrycznymi wejściami kanałów X i Y Zmianę kierunku ruchu jednego z wektorów uzyskuje się przez przestawienie pozycji elementów R i C w odpowiedniej gałęzi. Uproszczony układ pomiarowy pokazany na rys. 3 wymaga zastosowania oscyloskopu z symetrycznymi wejściami X i Y, który w praktyce spotyka się rzadko. Aby zrealizować metodę

z użyciem oscyloskopów z niesymetrycznymi wejściami X i Y (jeden przewód połączony z masą), należy zastosować układ aplikacyjny pokazany na rys. 6. Separacja źródeł przebiegu mierzonego i wzorcowego została osiągnięta w tym układzie przez zastosowanie transformatorów separujących. Dodatkowe rezystory 100kΩ tworzą dzielniki symetryzujące układ. Ze względu na potrzebę dodatkowego układu metoda nie jest często stosowana w praktyce. Włączono ją do ćwiczenia z tego względu, iż stanowi dobry przykład użycia oscyloskopu do modelowania i obserwacji złożonych zjawisk elektrycznych. 3. Zadania pomiarowe 3.1. Oscyloskopowe pomiary częstotliwości i fazy Oscyloskop może służyć do pomiaru częstotliwości i fazy. Należy jednak zdawać sobie sprawę z dużych błędów popełnianych podczas tych pomiarów. W zadaniach pomiarowych przedstawione zostaną dwie najczęściej wykorzystywane metody pomiaru częstotliwości oraz dwie metody pomiaru kąta przesunięcia fazowego. 3.1.1. Pomiar częstotliwości metodą pomiaru okresu Rys. 7. Pomiar częstotliwości oscyloskopem Połączyć układ pomiarowy przedstawiony na rys. 7. Przed rozpoczęciem pomiarów należy przygotować oscyloskop do pracy: 1 wybrać kanał CH1 przełączniki CHI/II, DUAL i ADD wyciśnięte, 2 wybrać automatyczną podstawę czasu przełącznik AT/NM wyciśnięty, 3 sprawdzić czy płynna regulacja podstawy czasu znajduje się w pozycji kalibrowana skrajna prawa pozycja, 4 sprawdzić, czy jest wyłączone dodatkowe wzmocnienie w kanale X i Y przełączniki X-MAG. x 10 i Y-MAG. x 5 wyciśnięte, 5 sprawdzić, czy jest wyłączony tryb testowania elementów przycisk COMP. TESTER ON/OFF wyciśnięty. Ustawić częstotliwość generatora HM 8131-2 równą 2kHz, napięcie wyjściowe 7Vpp, rodzaj przebiegu sinusoidalny. W celu ustawienia częstotliwości nacisnąć klawisz FREQ. wprowadzić z klawiatury liczbę 2000 a następnie nacisnąć klawisz Hz/mV. Aby ustawić napięcie wyjściowe nacisnąć klawisz AMPL. wprowadzić z klawiatury liczbę 7 i nacisnąć klawisz khz/v. Ustawić optymalną wartość współczynnika podstawy czasu oscyloskopu tak, by na ekranie zmieścił się jeden okres sinusoidy uzyskanej z generatora. Zmierzyć okres obserwowanego przebiegu, zapisując w tablicy 1 wynik pomiaru X T w centymetrach oraz wartość wybranego współczynnika podstawy czasu D tx.

3.1.2. Pomiar częstotliwości metodą figur Lissajous Zmontować układ pomiarowy pokazany na rys. 8. Ustawić tryb pracy XY oscyloskopu (wciśnięty klawisz XY). Ustawić na generatorze Agilent 33210A przebieg sinusoidalny o częstotliwości 200Hz i amplitudzie 4Vpp a następnie uaktywnić wyjście wciskając przycisk Output. Ustawić na generatorze Hameg HM 8131-2 częstotliwość 400Hz i napięcie wyjściowe 7Vpp. Rys. 16. Pomiar częstotliwości metodą krzywych Lissajous Zaobserwować krzywe Lissajous dla częstotliwości generatora Agilent 33210A: 200Hz, 300Hz, 400Hz, 600Hz, 800Hz. W celu uzyskania nieruchomego obrazu zmieniać w małych granicach częstotliwość generatora HM 8131-2. Niewielkie zmiany częstotliwości generatora uzyskujemy po naciśnięciu klawisza FREQ. a następnie ustawieniu kursora na wyświetlaczu generatora za pomocą klawiszy 3cur4na pozycji 0.01 lub 0.001Hz i regulację częstotliwości pokrętłem. Odrysować 2 figury dla częstotliwości 200Hz i 800Hz. 3.1.3. Obserwacja przebiegów cykloidalnych. Połączyć układ jak na rysunku 9. Rys. 9. Schemat podłączenia układu do wizualizacji krzywych cykloidalnych

Ustawić na generatorze Agilent 33210A częstotliwość 600Hz i napięcie wyjściowe 5Vpp, a na HM 8131-2 - 1200 Hz i 7Vpp. Przełącznik w układzie laboratoryjnym ustawić na obserwację epicykloid. Zaobserwować oscylogramy epicykloid dla częstotliwości generatora HM 8131-2 od 600Hz do 3000Hz. Zwrócić uwagę na figury o małej ilości pętli (częstotliwości 1200, 1800, 2400, 3000 Hz). Sprawdzić wpływ napięcia wyjściowego na kształt figur. Odrysować jedną dowolnie wybraną figurę, zanotować wartości częstotliwości wskazywane przez generator HM 8131-2. Następnie przełączyć układ na obserwację hipocykloid. Powtórzyć obserwacje dla tego samego zakresu częstotliwości. Również odrysować jedną figurę i zanotować częstotliwość generatora HM 8131-2. 3.1.4. Pomiar przesunięcia fazowego oscyloskopem dwukanałowym Rys. 10. Pomiar kąta przesunięcia fazowego oscyloskopem dwukanałowym Pomiaru dokonać w układzie pomiarowym pokazanym na rys. 10. Przed rozpoczęciem pomiarów należy: 1 ustawić częstotliwość generatora HM 8131-2 na 1kHz, 2 wyłączyć pracę XY i ustawić pracę dwukanałową oscyloskopu w trybie siekanym CHOP. Tryb ten włącza się wciskając jednocześnie klawisze DUAL i ADD, 3 ustawić linie zerowe w kanałach CH1 i CH2 w pozycji y = 0 cm, 4 ustawić optymalną wartość współczynnika podstawy czasu oscyloskopu tak, by na ekranie zmieścił się jeden okres sinusoidy uzyskanej z generatora, 5 regulując współczynnik wzmocnienia kanału CH1 regulacją płynną i skokową doprowadzić do jednakowej amplitudy przebiegów z obu kanałów, 6 zwiększyć napięcie z generatora tak, by uzyskać wysokość obrazu na ekranie ok. 8cm. W tablicy 2 zanotować: x T okres sinusoidy kreślonej na ekranie i x τ odcinek proporcjonalny do kąta przesunięcia fazowego. 3.1.5. Pomiar przesunięcia fazowego metodą figur Lissajous W układzie jak na rys. 10 ustawić tryb pracy XY oscyloskopu. Regulując napięcie wyjściowe generatora HM 8131-2 ustalić wysokość figury na około 8cm. Zmieniając w sposób płynny wzmocnienie kanału CH1, który w trybie pracy XY połączony jest w z torem X, ustalić szerokość figury na około 8 cm. Zmierzyć kąt przesunięcia fazowego notując wartości 2x m i 2x 0 w tablicy 3. Po zakończeniu pomiaru ustawić pokrętło płynnej regulacji wzmocnienia w pozycji CAL.

3.1.6. Obliczenie teoretycznego przesunięcia fazowego Zanotować wartości R =... i C =... zastosowanego układu całkującego w poprzednich punktach pomiarowych. Dla częstotliwości generatora f = 1kHz obliczyć wartość teoretyczną kąta przesunięcia fazowego ϕ, w sprawozdaniu, wiedząc że: tg(ϕ) = ωrc, ω=2πf ϕ teor =... Włączenie zasilania badanych obwodów oraz urządzeń służących do przeprowadzenia badań może zostać wykonane tylko za wyraźną zgodą prowadzącego zajęcia. Zgoda taka musi zostać uzyskana przed każdym włączeniem zasilania. W celu wykonania ćwiczenia przeprowadzić wszystkie czynności opisane w punkcie 3 Polecenia. Zaliczenie ćwiczenia dokonywane jest na podstawie oceny przebiegu prac w trakcie zajęć (na koniec zajęć należy przedstawić prowadzącemu zajęcia wyniki pracy) oraz sporządzonego sprawozdania (każdy uczeń oddaje swoje sprawozdanie w zeszycie format A4) zawierającego informacje opisane we Wskazówkach do wykonania sprawozdania.