PROJEKTOWANIE ZDJĘĆ LOTNICZYCH DLA CELÓW POMIAROWYCH 33

Podobne dokumenty
Mariusz Rojek Projektowanie zdjęć lotniczych dla celów pomiarowych. Acta Scientifica Academiae Ostroviensis nr 34, 49-56

Temat Schemat ogólny projektowania zdjęć lotniczych 2. Uwarunkowania prac fotolotniczych 3. Plan nalotu

Projektowanie nalotu fotogrametrycznego

Spis treści CZĘŚĆ I POZYSKIWANIE ZDJĘĆ, OBRAZÓW I INNYCH DANYCH POCZĄTKOWYCH... 37

Proste pomiary na pojedynczym zdjęciu lotniczym

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10

Temat Zasady projektowania naziemnego pomiaru fotogrametrycznego. 2. Terenowy rozmiar piksela. 3. Plan pomiaru fotogrametrycznego

Temat ćwiczenia: Plan nalotów, parametry zdjęć lotniczych

FOTOGRAMETRIA I TELEDETEKCJA

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD IX

Fotogrametria - Z. Kurczyński kod produktu: 3679 kategoria: Kategorie > WYDAWNICTWA > KSIĄŻKI > FOTOGRAMETRIA

Projektowanie naziemnego pomiaru fotogrametrycznego. Dokładność - specyfikacja techniczna projektu

Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru i Fotogrametrii

WYTYCZNE TECHNICZNE K-1.1 METRYKA MAPY ZASADNICZEJ. Arkusz... Skala...

1 : m z = c k : W. c k. r A. r B. R B B 0 B p. Rys.1. Skala zdjęcia lotniczego.

FOTOGRAMETRIA ANALITYCZNA I CYFROWA

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli

Temat 2. 1.Rzut środkowy 2.Wyznaczenie elementów orientacji wewnętrznej 3.Kamera naziemna 4.Kamera lotnicza

WPŁYW DENIWELACJI TERENU NA NIEJEDNORODNOŚĆ SKALI ZDJĘCIA LOTNICZEGO (KARTOMETRYCZNOŚĆ ZDJĘCIA)

Wykład 5. Pomiary sytuacyjne. Wykład 5 1

Wysokościowy numeryczny model terenu (NMT) w badaniu osuwisk

Data sporządzenia materiałów źródłowych: zdjęcia:..., NMT:... Rodzaj zdjęć: analogowe/cyfrowe

Metryki i metadane ortofotomapa, numeryczny model terenu

Podstawy fotogrametrii i teledetekcji

NUMERYCZNY MODEL TERENU

6. Co stanowi treść opisu mapy do celów projektowych? Jak długo jest aktualna mapa do celów projektowych? Uzasadnij odpowiedź.

Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS. blok Bochnia

Kamery naziemne. Wykonanie fotogrametrycznych zdjęć naziemnych.

Temat ćwiczenia: Zasady stereoskopowego widzenia.

Trendy nauki światowej (1)

Orientacja zewnętrzna pojedynczego zdjęcia

Rzeźba terenu. Rysunek map Elżbieta Lewandowicz 2007 r.

a) Aerotiangulacja do końca semestru (8 zajęć) plik chańcza_blok folder fotopunkty - Fotopunkty do projektu: 1, 2a, 212, 301, 504 folder camera

PODZIAŁY NIERUCHOMOŚCI wg standardów

Aerotiangulacja plik chańcza_blok folder fotopunkty - folder camera

OPIS PRZEDMIOTU ZAMÓWIENIA

ROZPORZĄDZENIE MINISTRA GOSPODARKI PRZESTRZENNEJ I BUDOWNICTWA

q Inne materiały 12 :

Temat 2. 1.Rzut środkowy 2.Wyznaczenie elementów orientacji wewnętrznej 3.Kamera naziemna 4.Kamera lotnicza

A. Wpływ deniwelacji terenu na zróŝnicowanie skali zdjęcia lotniczego (Badanie kartometryczności zdjęcia lotniczego)

q 1,1 6. Adresat wniosku - nazwa i adres organu lub jednostki organizacyjnej, która q q

Wykorzystanie Bezzałogowych Statków Latających w różnych zastosowaniach budowalnych i geodezyjnych

WideoSondy - Pomiary. Trzy Metody Pomiarowe w jednym urządzeniu XL G3 lub XL Go. Metoda Porównawcza. Metoda projekcji Cienia (ShadowProbe)

q zgłoszenie pierwotne q zgłoszenie uzupełniające do zgłoszenia o identyfikatorze:

GEODEZJA 2 Wykład + Ćwiczenia dr inż. Krzysztof Deska Katedra Geodezji

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA I. OBOWIĄZUJĄCE PRZEPISY PRAWA WRAZ Z WYDADNYMI DO NICH AKTAMI WYKONAWCZYMI:

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa

SINGLE-IMAGE HIGH-RESOLUTION SATELLITE DATA FOR 3D INFORMATIONEXTRACTION

Raport Ortofotomapa Kontrola wstępna i końcowa Data...

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.

Załącznik nr 2 do Umowy o staż

UWAGI O WYKONYWANIU CYFROWYCH ORTOFOTOMAP TERENÓW ZALESIONYCH

GEODEZJA WYKŁAD Niwelacja Katedra Geodezji im. K. Weigla ul. Poznańska 2/34

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r.

Punkty geodezyjne Wykład 9 "Poziome sieci geodezyjne - od triangulacji do poligonizacji" 4

Kompleksowy monitoring dynamiki drzewostanów Puszczy Białowieskiej z wykorzystaniem danych teledetekcyjnych

WSTĘPNA ANALIZA PRZYDATNOŚCI WIELOSPEKTRALNYCH ZDJĘĆ LOTNICZYCH DO FOTOGRAMETRYCZNEJ INWENTARYZACJI STRUKTUR PRZESTRZENNYCH W DRZEWOSTANACH 3

Temat ćwiczenia: Technika fotografowania.

PROJEKT MODERNIZACJI EWIDENCJI GRUNTÓW I BUDYNKÓW OBRĘBY: RAŻNY, SADOLEŚ, WILCZOGĘBY, ZARZETKA GMINA: SADOWNE POWIAT: WĘGROWSKI WOJ.

Wykład 3. Poziome sieci geodezyjne - od triangulacji do poligonizacji. Wykład 3

Kurs fotogrametrii w zakresie modelowania rzeczywistości, tworzenia modeli 3D, numerycznego modelu terenu oraz cyfrowej true-fotomapy

Fotografia i videografia sferyczna do obrazowania przestrzeni i pomiarów fotogrametrycznych

INŻYNIERIA I BUDOWNICTWO

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

WARUNKI TECHNICZNE ZAŁOŻENIA SZCZEGÓŁOWEJ OSNOWY POZIOMEJ III KLASY DLA WYBRANYCH TERENÓW POWIATU WYSZKOWSKIEGO

Kamil Karlikowski Podstawowe zasady i procedury opracowania mapy do celów projektowych. Acta Scientifica Academiae Ostroviensis nr 35-36,

KAMERALNE ZAGĘSZCZENIE OSNOWY PO LO W EJ DLA BLOKU ZDJĘĆ O MINIMALNYM POKRYCIU

17/ OZNACZENIA INSTALACJI WEW WENTYLACJI MECHANICZNEJ

9. Proszę określić jakie obiekty budowlane (ogólnie) oraz które elementy tych obiektów, podlegają geodezyjnemu wyznaczeniu (wytyczeniu) w terenie.

GPSz2 WYKŁAD 15 SZCZEGÓŁOWA WYSOKOŚCIOWA OSNOWA GEODEZYJNA

w zależności od powierzchni, jaka została użyta do odwzorowania siatki kartograficznej, wyróżniać będziemy 3 typy odwzorowań:

Mój 1. Wykład. z Geodezji i Kartografii. na Wydziale Architektury Politechniki Wrocławskiej

Zajęcia 1. Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych

Ojcowski Park Narodowy OJCÓW 9, Suł oszowa, POLSKA

ZGŁOSZENIE PRAC KARTOGRAFICZNYCH

Przykładowe opracowania fotogrametryczne uzyskane niemetrycznym aparatem cyfrowym z pokładu modelu latającego. Warszawa, wrzesień 2010 r.

A - dno doliny, B wysoczyzna, C dolinki boczne (osady organiczne), D wydmy zarośnięte lasem wydmy

Geodezja i Kartografia

Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański

Dane teledetekcyjne. Sławomir Królewicz

ANALIZA ZDJĘĆ LOTNICZYCH I SATELITARNYCH

Tolerancje kształtu i położenia

Metody obliczania obszarowych

Metody obliczania obszarowych

Załącznik nr 1 do SIWZ. Opis Przedmiotu Zamówienia OPIS PRZEDMIOTU ZAMÓWIENIA NA DOSTAWĘ BAZY DANYCH ZOBRAZIWAŃ LOTNICZYCH

Kod modułu Fotogrametria naziemna, lotnicza i satelitarna. semestr 5. semestr zimowy (semestr zimowy / letni)

OPIS PRZEDMIOTU ZAMÓWIENIA

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie B-2 POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI

DROGOWA PROJEKT STAŁEJ ORGANIZACJI RUCHU

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY. z dnia 25 czerwca 2003 r. w sprawie sposobu zgłaszania oraz oznakowania przeszkód lotniczych.

Województwo podlaskie Powiat łomżyński. Tworzenie i aktualizacja bazy GESUT i BDOT500 Gmina Przytuły Warunki Techniczne

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) semestr 3

Witold Radzio Radca prezesa GUGiK. Pogorzelica, 23 września 2011r.

Obciążenia środowiskowe: śnieg i wiatr wg PN-EN i PN-EN

Geodezja Inżynieryjno-Przemysłowa

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE

Robocza baza danych obiektów przestrzennych

Geodezja Inżynierska

RYSUNEK MAP. Ćwiczenie 2 Arkusze mapy topograficznej i zasadniczej KATEDRA GEODEZJI SZCZEGÓŁÓWEJ. Dr hab. inż.. Elżbieta Lewandowicz

Transkrypt:

PROJEKTOWANIE ZDJĘĆ LOTNICZYCH DLA CELÓW POMIAROWYCH 33 Katarzyna Kwiecień PROJEKTOWANIE ZDJĘĆ LOTNICZYCH DLA CELÓW POMIAROWYCH Zdjęcie lotnicze jest to zdjęcie wycinka terenu robione z powietrza za pomocą odpowiednich kamer lotniczych. Zdjęcia lotnicze pojawiły się wraz z udoskonaleniem fotografii i wynalezieniem samolotu na początku XX wieku. Od tego czasu poprawiła się technika wykonywania zdjęć lotniczych. Kamery lotnicze wyposażone są w wysokiej jakości obiektywy skonstruowane specjalnie dla celów fotogrametrii lotniczej. Dzięki nim uzyskuje się zdjęcia wysokiej jakości, które umożliwiają dokonywanie dokładnych pomiarów odfotografowanych obiektów. Na zdjęciach wykonywanych z samolotu można zmierzyć obiekty o rozmiarach ok. 2 m. Współczesna kamera lotnicza składa się z następujących zespołów: korpusu, kasety, podwieszenia, stożka obiektywowego, urządzenia sterującego pracą kamery.

34 ACTA SCIENTIFICA ACADEMIAE OSTROVIENSIS Objaśnienia do rysunku: I - korpus kamery, II - kaseta, III podwieszenie, IV - stożek obiektywowy, V - urządzenie sterujące, 1- filtr, 2- szyba ochronna, 3- migawka i przysłona, 4- blok wskaźników, 5- urządzenie służące do wyrównywania i dociskania filmu, 6- płyta dociskowa, 7- płyta wyrównawcza, 8- mechanizm regulujący pracę kasety, 9, 10- rolki prowadzące film, 11- podłoga samolotu, 12- amortyzator, 13- obiektyw, 14- płaszczyzna ramki tłowej, 15, 16- szpule transportowe. Zdjęcia lotnicze dostarczają wielu informacji o rozmieszczeniu i rozmiarach obiektów występujących na powierzchni Ziemi, oraz informacji o ich cechach. Na podstawie analizy zdjęcia można określić np.: rodzaj roślinności, stopień zanieczyszczenia wód, gatunki roślin, obszar występowania niektórych złóż mineralnych, itp. Zdjęcia lotnicze w zależności od położenia osi kamery podzielić można na: zdjęcia pionowe - posiadają pionową oś optyczną i poziome położenie ramki tłowej. Dla terenu płaskiego i poziomego zdjęcia te charakteryzują się jednakową skalą na całej powierzchni, zdjęcia prawie pionowe posiadają oś odchyloną od linii pionu nie więcej niż 3 o, zdjęcia nachylone posiadają oś odchyloną od linii pionu o kąt większy od 3 o zdjęcia ukośne posiadają oś optyczną odchyloną od linii pionu kąt, taki że w polu widzenia kamery jest widoczna linia horyzontu. o

PROJEKTOWANIE ZDJĘĆ LOTNICZYCH DLA CELÓW POMIAROWYCH 35 W zależności od przeznaczenia zdjęć, zasięgu i kształtu fotografowanego obiektu wykonuje się: zdjęcia pojedyncze - znajdują swe zastosowanie w przypadku, gdy cały obiekt odwzoruje się na jednym zdjęciu np.: mosty, obiekty archeologiczne, małe obiekty przemysłowe, zdjęcia szeregowe - gdy wydłużony obiekt pokrywany jest jednym szeregiem zdjęć, zdjęcia zespołowe - gdy rozległy obiekt pokrywany jest równoległymi częściowo zachodzącymi na siebie szeregami zdjęć, tworzącymi zespół zdjęć. Zdjęcia lotnicze projektuje się dla następujących zadań: opracowania map sytuacyjnych, tworzenia bazy danych topograficznych, aktualizacji istniejących map, budowy numerycznego modelu terenu, sporządzania ortofotomap, założenia szczegółowej geodezyjnej osnowy metodami fotogrametrycznymi. Duże znaczenie dla kosztów wykonania zdjęć oraz ich przydatności a także późniejszego opracowania ma skala oryginalnego zdjęcia. Im skala większa, tym większa może być dokładność opracowania. Wiąże się to jednak z większą ilością wykonania i opracowania liczby zdjęć pokrywających obszar, co zwiększa koszty opracowania. Dla zadanej skali mapy należy wybrać najmniejszą skalę, która zapewni osiągnięcie dokładności opracowania. Zależność tą określa wzór Otto Grubera m = c M gdzie: c- współczynnik empiryczny, M mianownik skali opracowywanej mapy, m mianownik skali zdjęcia. Współczynnik empiryczny zależy od przyjętej technologii opracowania mapy, jakości zdjęć, precyzji sprzętu. Obecnie wykonuje się opracowania map w skalach 1:2000, 1:1000, 1:500. Lot fotogrametryczny projektuje się tak, aby szeregi zdjęć były zsynchronizowane z ramkami sekcyjnymi map. Relacje pomiędzy skalą opracowania, a skalą zdjęć dla map wielkoskalowych są następujące:

36 ACTA SCIENTIFICA ACADEMIAE OSTROVIENSIS Dla mapy 1:500 m = 2500 3000 Dla mapy 1:1000 m = 4000 5000 Dla mapy 1:2000 m = 8000 Dla mapy 1:5000 m = 18000 Przybliżone relacje dokładnościowe: a) błąd wysokościowy opracowania jest wprost proporcjonalny do wysokości z której wykonano zdjęcia, b) błąd sytuacyjny opracowania jest odwrotnie proporcjonalny do skali zdjęcia, c) dokładność sytuacyjna i wysokościowa uzyskana w procesie aerotriangulacji wynosi: błąd wysokościowy mz = ± 0.08 wysokości fotografowania, kamery normalnokątne i szerokokątne, mz = ± 0.10 wysokości fotografowania, kamery nadszerokokątne błąd sytuacyjny m X,Y = ± 8 µm w skali zdjęcia d) dokładność wysokościowa warstwicy kreślonej bezpośrednio na autografie m z = ±0.3 wysokości fotografowania e)dokładność budowy Numerycznego Modelu Terenu, czyli średni błąd wysokości interpolowanych w dowolnym punkcie w oparciu o NMT, m z = ±0.2 0.4 wysokości fotografowania Projektowanie wysokości fotografowania Wysokość fotografowania określa się względem średniej płaszczyzny obszaru fotografowania. Wysokość ustala się dla zaprojektowanej skali i wybranego obiektywu kamery według zależności: W = fm z M z mianownik skali zdjęcia W wysokość fotografowania względem średniej płaszczyzny obszaru f ogniskowa kamery Dla terenów lekko pofałdowanych i równinnych określa się jedną wysokość średniej płaszczyzny obszaru H śr = ½ (H max + H min ) H max, H min elementarne wysokości w terenie odczytane z map Dla terenów pofałdowanych wysokość określa się oddzielnie dla każdego szeregu, wysokość średnią określa wzór H śr = H max 1/3 (H max H min )

PROJEKTOWANIE ZDJĘĆ LOTNICZYCH DLA CELÓW POMIAROWYCH 37 Projektowanie kierunku osi szeregów i podział obszaru na rejony Obszar opracowania pokrywa się częściowo zachodzącymi na siebie oraz równoległymi szeregami zdjęć. Kierunek szeregów projektuje się po liniach wschód-zachód lub północ-południe. Wybór jednego z tych kierunków zależy od kształtu obszaru. Kierunek wschód-zachód wybiera się jeśli obszar ma zwarty kształt, a inne względy nie preferują żadnego z tych dwóch kierunków. W terenach górskich szeregi projektuje się równolegle do dominującego kierunku układu grzbietów górskich i dolin. Dla obiektów o wydłużonym kształcie (szlaki komunikacyjne, rurociągi, koryta rzek) które są pokrywane jednym szeregiem zdjęć, szereg projektuje się wzdłuż osi obiektu. Natomiast gdy obiekt jest krzywoliniowy, to jest pokrywany prostoliniowymi szeregami zdjęć, aby cały obszar miał pokrycie stereoskopowe. Duże obszary dzieli się na rejony prac, jako kryteria podziału przyjmuje się : dopuszczalną długość szeregów dopuszczalne deniwelacje w rejonie wydajność prac fotolotniczych Granice rejonów powinny przebiegać wzdłuż podziału sekcyjnego map. Wielkość rejonu powinna być taka, żeby cały rejon mógł być pokryty zdjęciami w czasie jednej misji. Długość rejonu powinna być taka, aby zdjęcia w sąsiednich szeregach mogły być wykonane w odstępie czasu nie przekraczającym 0.5 godziny. Projektowanie pokrycia podłużnego i poprzecznego Pokrycie poprzeczne q Określa pokrycie zdjęć między sąsiednimi szeregami, wyrażone w procentach, potrzebne dla późniejszego połączenia szeregów w spójny blok zdjęć. Rzeczywiste pokrycie może odbiegać od projektowanego z następujących powodów: nachyleń kamery, deniwelacji, błędów pilotażowo-nawigacyjnych. Podczas fotografowania terenów pofałdowanych pokrycie poprzeczne trzeba zwiększyć o wpływ rzeźby terenu. Wówczas pokrycie powinno wynosić około:

38 ACTA SCIENTIFICA ACADEMIAE OSTROVIENSIS q [%] = q o [%] + 70 (ΔH / W) [%] gdzie: q o - standartowe pokrycie H- maksymalne deniwelacje występujące w szeregu, liczone względem średniej płaszczyzny danego obszaru Pokrycie poprzeczne w szczególnych przypadkach może odbiegać od standardowego, może to mieć miejsce w następujących przypadkach: zwiększonego pokrycia do 60% dla opracowań o podwyższonej dokładności, zwiększonego pokrycia dla zsynchronizowania przebiegu osi szeregu z podziałem sekcyjnym map, zwiększonego pokrycia w konsekwencji projektowania zdjęć celowych nad arkuszami opracowywanych map. Pokrycie podłużne p Zdjęcia wykonuje się tak, aby ich terenowe zasięgi częściowo się nakładały. Pokrycie zdjęć w szeregu musi być większe niż 50 %. Znaczy to, że występują pasy potrójnego pokrycia, czyli pasy zobrazowane na trzech kolejnych zdjęciach. Pełni on ważną rolę w dalszym opracowaniu fotogrametrycznym, wybiera się punkty przejściowe które wiążą zdjęcia w blok w procesie aerotriangulacji. Bazą na zdjęciu nazywamy odległość między punktem głównym zdjęcia, a obrazem punktu głównego zdjęcia sąsiadującego. Dla zdjęć prawie pionowych obszaru równinnego długość bazy wyznacza się z następującego wzoru: b x = l (100 p) / 100 gdzie: b x długość bazy podłużnej wyrażona w skali zdjęcia, l długość boku zdjęcia p pokrycie podłużne zdjęć wyrażone w procentach. Rzeczywiste pokrycie może różnić się od planowanego z następujących powodów: błędów pilotażowo-nawigacyjnych, deniwelacji, nachyleń kamery. Podczas fotografowania terenów pofałdowanych, pokrycie należy zwiększyć o wpływ rzeźby terenu, wówczas pokrycie będzie wynosić:

PROJEKTOWANIE ZDJĘĆ LOTNICZYCH DLA CELÓW POMIAROWYCH 39 p [%] = p o [%] + 50 (ΔH / W) [%] gdzie: p o - zasadnicze pokrycie H- maksymalne deniwelacje występujące w szeregu, liczone względem średniej płaszczyzny danego szeregu Pokrycie podłużne standardowo wynosi 60%, jednak w szczególnych przypadkach pokrycie może odbiegać od pokrycia standardowego. Może mieć to miejsce w przypadkach: zwiększenia pokrycia do około 80-90 % dla uzyskania zdjęć celowanych nad arkuszami opracowywanych map, zwiększenie pokrycia o 80 % dla uzyskania dwóch oryginalnych kompletów zdjęć o standartowym pokryciu, zwiększonego pokrycia do około 70 % w przypadku fotografowania miast z wysoką zwartą budową. Wybór stożka kamery pomiarowej Przy wyborze stożka należy uwzględnić: rodzaj opracowania, uwarunkowania techniczne, typ i ukształtowanie terenu, zakładaną dokładność opracowania wysokościowego. Z wyborem stożka kamery wiąże się występowanie martwych pól, czyli obszarów zasłoniętych przeszkodami i niemożliwych do opracowania stereoskopowego. Powierzchnie te zależą od kąta rozwarcia obiektywu i wysokości przeszkody. Dlatego też stożki normalnokątne stosuje się dla terenów wysokogórskich i terenów miejskich z zabudową wielokondygnacyjną. Sezon lotniczy trwa od pierwszego marca do trzydziestego listopada. Największe prawdopodobieństwo wystąpienia bezchmurnego nieba w sezonie fotografowania występuje nad województwami wschodnimi i centralnymi. Poniższy rysunek przedstawia wskaźnik pogodowego nieba w okresie marzec-listopad. Podstawą wykonania zdjęć lotniczych jest projekt lotu, który zawiera warunki techniczne niezbędne do wykonania prac fotolotniczych. Projekt składa się z dwóch części - obliczeniowej oraz graficznej.

40 ACTA SCIENTIFICA ACADEMIAE OSTROVIENSIS Podstawą wykonania zdjęć lotniczych jest projekt lotu, który zawiera warunki techniczne niezbędne do wykonania prac fotolotniczych. Projekt składa się z dwóch części - obliczeniowej oraz graficznej. Część obliczeniowa Zawiera podstawowe parametry fotogrametryczne, takie jak: rodzaj tworzonej mapy oraz metody jej opracowania, obrys opracowywanego obiektu na mapie, lokalizacje lotnisk z których będzie startował samolot, założenia projektowe wynikające z ustalonych metod opracowania map, takie jak: pokrycie podłużne i poprzeczne, skala mapy, format zdjęć i ogniskowa kamery, okres wykonania lotu, odstęp między osiami szeregów, wysokość fotografowania, liczbę zdjęć w szeregu. Wzory oraz oznaczenia niezbędne do wykonania projektu lotu: 1. Skala zdjęcia 1 : Mz = f : W Mz mianownik skali zdjęcia f - ogniskowa kamery W wysokość fotografowania

PROJEKTOWANIE ZDJĘĆ LOTNICZYCH DLA CELÓW POMIAROWYCH 41 2.Wysokość fotografowania 3. Terenowy zasięg zdjęcia l- długość boku zdjęcia W = fmz L = lmz 4. Baza podłużna B x = L(100 p) /100 p- pokrycie podłużne 5. Baza poprzeczna B y = L (100 -q) / 100 q- pokrycie poprzeczne 6. Stosunek bazowy v = B x / W b x długość bazy podłużnej wyrażona w skali zdjęcia 7. Wysokość absolutna lotu H o = W + H śr H śr średnia wysokość obszaru fotografowania, odniesiona do poziomu morza 8. Wysokość lotu względem lotniska W lot = W + H śr - H lot H lot wysokość lotniska, z którego wykonuje się nalot 9. Terenowa powierzchnia zdjęcia P t = L 2 10. Terenowa powierzchnia modelu stereoskopowego P m = (L B x )L 11. Powierzchnia użyteczna modelu P = B x B y 12. Liczba zdjęć w szeregu N x = (D x / B x ) + 5 D x długość obszaru fotografowania

42 ACTA SCIENTIFICA ACADEMIAE OSTROVIENSIS 13.Liczba szeregów N y = D y / B y D y szerokość obszaru fotografowania 14. Całkowita liczba zdjęć w rejonie N = N X N Y N X liczba zdjęć w szeregu N Y liczba szeregów zdjęć 15. Interwał czasu między ekspozycjami t = B x / v Rysunek przedstawia parametry geometryczne zdjęć lotniczy Część graficzna Część graficzną sporządza się na mapach, na których nanosi się osie szeregów, przedłużając je poza granice fotografowanego obiektu, aby zapewnić załodze samolotu wlot na obiekt zgodny z projektem. Długość wlotów i wylotów zależy od skali mapy na której projektuje się lot. Przy opracowywaniu map topograficznych i zasadniczych osie nalotów powinny przebiegać przez środki sekcji map w kierunku wschód-zachód i północ-południe. Wybiera się jeden kierunek, który pozwala pokryć obiekt najmniejszą liczbą szeregów zdjęć.

PROJEKTOWANIE ZDJĘĆ LOTNICZYCH DLA CELÓW POMIAROWYCH 43 Na mapę nanosi się: 1. Granice obszaru, kolorem zielonym, ciągłą linią o grubości 1 mm. 2. Granice rejonu (w przypadku podziału na rejony), kolorem zielonym, przerywaną linią o grubości 1 mm. 3. Osie szeregów linią ciągłą o grubości 0,3 mm. 4. Granice sekcji opracowywanej mapy, kolorem niebieskim, ciągłą linią o grubości 0,2 mm. 5. Numerację szeregów z północy na południe lub z zachodu na wschód, czerwonymi cyframi o wysokości 6 mm. 6. Znaczki włączenia i wyłączenia kamery, kolorem niebieskim, ciągłą linią, o grubości 1 mm prostopadle do osi szeregu. Literatura: 1. Kurczyński Z., Lotnicze i satelitarne obrazowanie Ziemi, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2006. 2. Kurczyński Z., Preuss R., Podstawy fotogrametrii, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2003.