WYBRANE WŁAŚCIWOŚCI FIZYCZNE I CHEMICZNE NIEKTÓRYCH GLEB SŁOWIŃSKIEGO PARKU NARODOWEGO W LATACH

Podobne dokumenty
CHARAKTERYSTYKA GLEB. Marek Degórski

SKUTKI SUSZY W GLEBIE

Księgarnia PWN: Renata Bednarek, Helena Dziadowiec, Urszula Pokojska, Zbigniew Prusinkiewicz Badania ekologiczno-gleboznawcze

GRZEGORZ KUSZA * Wstęp

Frakcje i grupy granulometryczne- stosowane podziały

ZAWARTOŚĆ SIARKI W GLEBACH WYTWORZONYCH Z PIASKOWCÓW NA TERENIE PARKU NARODOWEGO GÓR STOŁOWYCH

Środowiskowe skutki zakwaszenia gleb uprawnych. Witold Grzebisz Uniwersytet Przyrodniczy w Poznaniu

Hodowanie sosny zwyczajnej (Pinus sylvestris L.) na glebach drobnoziarnistych jest nieracjonalne

Zawartość składników pokarmowych w roślinach

EKSTENSYWNE UŻYTKOWANIE ŁĄKI A JAKOŚĆ WÓD GRUNTOWYCH

Jolanta Raczuk* KWASOWOŚĆ ORAZ WŁAŚCIWOŚCI BUFOROWE GLEB GMINY BIAŁA PODLASKA ACIDITY AND BUFFERING PROPERTIES OF SOILS OF THE BIAŁA PODLASKA COMMUNE

ANNALES. Bogusław Karoń, Grzegorz Kulczycki, Antoni Bartmański. Wpływ składu kompleksu sorpcyjnego gleb na zawartość składników mineralnych w kupkówce

Geneza, właściwości i przestrzenne zróżnicowanie gleb w Polsce

Opis efektów kształcenia dla modułu zajęć

AtriGran szybko i bezpiecznie podnosi ph gleby. AtriGran błyskawicznie udostępnia wapń. AtriGran usprawnia pobieranie makroskładników z gleby

KARTA KURSU. Gleboznawstwo z geografią gleb. Kod Punktacja ECTS* 2

Ekologia. Biogeochemia: globalne obiegi pierwiastków. Biogeochemia. Przepływ energii a obieg materii

Ekologia. biogeochemia. Biogeochemia. Przepływ energii a obieg materii

INNOWACYJNY SPOSÓB WAPNOWANIA PÓL

ANEKS 5 Ocena poprawności analiz próbek wody

Katedra Łowiectwa i Ochrony Lasu, Wydział Leśny, Uniwersytet Przyrodniczy w Poznaniu

Wzorzec sylabusa. wykłady: 15, ćwiczenia laboratoryjne: 30. Nakład pracy studenta bilans punktów ECTS Obciążenie studenta

W PŁYW RODZAJÓW SUBSTANCJI ORGANICZNEJ N A W ŁAŚCIW OŚCI FIZYKOCHEMICZNE GLEBY I ZAWARTOŚĆ W ĘGLA ORGANICZNEGO

Zagrożenie eutrofizacją i zakwaszeniem ekosystemów leśnych w wyniku koncentracji zanieczyszczeń gazowych oraz depozytu mokrego

KSZTAŁTOWANIE SIĘ WŁAŚCIWOŚCI FIZYKO CHEMICZNYCH GLEBY UŻYŹNIONEJ REKULTEREM FORMING OF PHYSICO-CHEMICAL PROPERTIES OF SOIL FERTILIZING WITH REKULTER

UBOŻENIE GLEB TORFOWO-MURSZOWYCH W SKŁADNIKI ZASADOWE CZYNNIKIEM WPŁYWAJĄCYM NA WZROST STĘŻENIA RWO W WODZIE GRUNTOWEJ

Możliwość zastosowania biowęgla w rolnictwie, ogrodnictwie i rekultywacji

ODPORNOŚĆ NA DEGRADACJĘ GLEB LEŚNYCH MIASTA LUBLINA

PRZEWODNIK DO ĆWICZEŃ Z GLEBOZNAWSTWA I OCHRONY GLEB. Andrzej Greinert

Ekologia. biogeochemia. Biogeochemia. Przepływ energii a obieg materii

Dorota Kalembasa, Krzysztof Pakuła, Dawid Jaremko

KWANTYFIKACJA EFEKTÓW CZYNNEJ OCHRONY BIORÓŻNORODNOŚCI SIEDLISK TRAWIASTYCH WSCHODNIEJ LUBELSZCZYZNY NA PODSTAWIE AKTYWNOŚCI ENZYMÓW GLEBOWYCH

WPŁYW NAWADNIANIA I POPIOŁU Z WĘGLA KAMIENNEGO NA WŁAŚCIWOŚCI CHEMICZNE GLEBY LEKKIEJ

ANNALES. Wpływ wapnowania, nawożenia azotem i fosforem na wysycenie kompleksu sorpcyjnego gleby kationami wymiennymi

Spis treści - autorzy

Nawożenie warzyw w uprawie polowej. Dr Kazimierz Felczyński Instytut Ogrodnictwa Skierniewice

Wpływ intensywności użytkowania łąki na glebie torfowo-murszowej na wielkość strumieni CO 2 i jego bilans w warunkach doświadczenia lizymetrycznego

Zawartość węgla organicznego a toksyczność osadów dennych

Przez innowacyjność do sukcesu Nowe Technologie w uprawie rzepaku

OCENA WYNIKÓW BADAŃ W GMINIE KUŹNIA RACIBORSKA

GLEBY BORÓW SOSNOWYCH ŚWIEŻYCH LEUCOBRYO-PINETUM AND PEUCEDANO-PINETUM NA OBSZARZE NIŻU POLSKI

Problemy oznaczania pierwiastków w osadach i glebie Marcin Niemiec, Jacek Antonkiewicz, Małgorzata Koncewicz-Baran, Jerzy Wieczorek

a. ph, zawartości makroskładników (P, K, Mg) w 700 próbkach gleby, b. zawartości metali ciężkich (Pb, Cd, Zn, Cu, Ni i Cr ) w 10 próbkach gleby,

KATIONOWA POJEMNOŚĆ WYMIENNA I ZAWARTOŚĆ KATIONÓW WYMIENNYCH W GLEBACH PŁOWYCH O ZRÓŻNICOWANYM UZIARNIENIU*

Tytuł prezentacji. Możliwość wykorzystania biowęgla w rekultywacji gleb zanieczyszczonych. metalami ciężkimi

WARTOŚĆ PRÓCHNICOTWÓRCZA I ZAWARTOŚĆ MAKROSKŁADNIKÓW W OSADACH ŚCIEKOWYCH WOJEWÓDZTWA WARMIŃSKO-MAZURSKIEGO

a. ph, zawartości makroskładników (P, K, Mg) w 899 próbkach gleby, b. zawartości metali ciężkich (Pb, Cd, Zn, Cu, Ni i Cr ) w 12 próbkach gleby,

Wykorzystaniem biowęgla jako podłoża w produkcji szklarniowej ogórka i pomidora

OCENA WYNIKÓW BADAŃ W GMINIE KUŹNIA RACIBORSKA. gleba lekka szt./ % 455/2200 0/0 119/26 53/12 280/61 3/1

Wapnowanie gleby po żniwach - wybierz dobry nawóz!

PRZEWODNIK PO PRZEDMIOCIE BILOGIA GLEBY

GLEBA I JEJ FUNKCJE. Jacek Niedźwiecki. Puławy, 2016

STAN WŁAŚCIWOŚCI AGROCHEMICZNYCH GLEB I ZANIECZYSZCZEŃ METALAMI CIĘŻKIMI GRUNTÓW NA UŻYTKACH ROLNYCH STAROSTWA POWIATOWEGO RACIBÓRZ W GMINIE NĘDZA

INFORMATOR dla studentów kierunku ROLNICTWO, I rok przedmiot: Gleboznawstwo. Program wykładów

a. ph, zawartości makroskładników (P, K, Mg) w 956 próbkach gleby, b. zawartości metali ciężkich (Pb, Cd, Zn, Cu, Ni i Cr ) w 14 próbkach gleby,

PRZEDMIOT ZLECENIA. Odebrano z terenu powiatu Raciborskiego próbki gleby i wykonano w Gminie Kornowac:

ZDOLNOŚĆ BUFOROWA I ZAWARTOŚĆ MATERII ORGANICZNEJ GLEB OBSZARU ŹRÓDLISK POTOKU WODNA W CHRZANOWIE

Dorota Kawałko*, Paweł Jezierski*, Jarosław Kaszubkiewicz*

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1186

PRZEDMIOT ZLECENIA :

GLEBOZNAWSTWO = pedologia - nauka o glebach

Sabina Dołęgowska, Zdzisław M. Migaszewski Instytut Chemii, Uniwersytet Humanistyczno- Przyrodniczy Jana Kochanowskiego w Kielcach

PROCESY BIOGEOCHEMICZNE NA LĄDACH

VI. MONITORING CHEMIZMU OPADÓW ATMOSFERYCZNYCH I DEPOZYCJI ZANIECZYSZCZEŃ DO PODŁOŻA

RECYKLING ODPADÓW ZIELONYCH. Grzegorz Pilarski BEST-EKO Sp. z o.o.

WPŁYW PYŁÓW CEMENTOWYCH NA ZMIANY WŁAŚCIWOŚCI GLEB BIELICOZIEMNYCH

Acta 12 (2) 2012.indd :41:15. Acta Sci. Pol., Formatio Circumiectus 12 (2) 2013,

STAN WŁAŚCIWOŚCI AGROCHEMICZNYCH GLEB I ZANIECZYSZCZEŃ METALAMI CIĘŻKIMI GRUNTÓW NA UŻYTKACH ROLNYCH STAROSTWA POWIATOWEGO RACIBÓRZ

PRZEPŁYW MATERII W PROFILU: ATMOSFERA ROŚLINNOŚĆ GLEBA

WPŁYW CZYNNIKÓW ANTROPOGENICZNYCH NA WYMYWANIE POTASU Z GLEBY

Obieg materii w skali zlewni rzecznej

PROCESY GLEBOTWÓRCZE EUROPY ŚRODKOWEJ

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 277

Bernard Gałka* TERENIE RODZINNYCH OGRODÓW DZIAŁKOWYCH ZABOBRZE

IV. wzór opisu modułu kształcenia/przedmiotu (sylabus). Opis modułu kształcenia / przedmiotu (sylabus)

Rok akademicki: 2014/2015 Kod: BOS s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Zagospodarowanie pofermentu z biogazowni rolniczej

OCENA WYNIKÓW BADAŃ W GMINIE KRZYŻANOWICE

Elżbieta BIERNACKA, Ilona MAŁUSZYŃSKA, Marcin J. MAŁUSZYŃSKI

Sukcesja ekologiczna na lądzie kończy się zazwyczaj klimaksem w postaci formacji leśnej Lasy są najpotężniejszymi ekosystemami lądowymi

ELŻBIETA MUSZTYFAGA, MATEUSZ CUSKE, EWA PORA, KATARZYNA SZOPKA *

Przyrodnicze uwarunkowania gospodarki przestrzennej PUGP. Ćwiczenie 1 zagadnienia wprowadzające do informacji o środowisku przyrodniczym

Program zajęć: Przedmiot CHEMIA ROLNA Kierunek: Rolnictwo (studia niestacjonarne) II rok Wykładowca: prof.dr hab. Józefa Wiater Zaliczenie

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 432

OZNACZANIE WŁAŚCIWOŚCI BUFOROWYCH WÓD

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 277

Laboratoryjne badania gruntów i gleb / Elżbieta Myślińska. Wyd. 3. Warszawa, Spis treści. Przedmowa 13

Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej

WŁAŚCIWOŚCI CHEMICZNE POBAGIENNYCH GLEB Z POZIOMEM RUDY DARNIOWEJ STAREGO BAG NA55 W DOLINIE RZEKI KARPINY

Nieudane nawożenie jesienne- wysiej nawozy wieloskładnikowe wiosną!

ROLA MATERII ORGANICZNEJ I IŁU KOLOIDALNEGO W KSZTAŁTOWANIU WŁAŚCIWOŚCI BUFOROWYCH GLEB PARKU SZCZYTNICKIEGO

O/100 g gleby na rok, czyli około 60 kg K 2

SUBSTANCJE HUMUSOWE I WŁAŚCIWOŚCI CZARNYCH ZIEM WYSTĘPUJĄCYCH W OBNIŻENIU MILICKO-GŁOGOWSKIM

WŁAŚCIWOŚCI SORPCYJNE I BUFOROWE GLEB NISZ ŹRÓDLISKOWYCH W DOLINIE JAROSŁAWIANKI (RÓWNINA SŁAWEEŃSKA)

OCENA ZAWARTOŚCI GLINU WYMIENNEGO I WYBRANYCH PARAMETRÓW GLEB WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO

Przewodnik do æwiczeñ z gleboznawstwa. dla studentów I roku geografii

Nawożenie borówka amerykańska

Szanse wynikające z analiz glebowych

Makro- i mikroskładniki w dokarmianiu dolistnym kukurydzy

WPŁYW ŚRODKÓW CHEMICZNYCH STOSOWANYCH DO ODŚNIEŻANIA NA WŁAŚCIWOŚCI SORPCYJNE RĘDZIN WŁAŚCIWYCH W MIEŚCIE OPOLE

Transkrypt:

Geologia i geomorfologian n9n nsłupsk 212, s. 159172 Agnieszka Parzych WYBRANE WŁAŚCIWOŚCI FIZYCZNE I CHEMICZNE NIEKTÓRYCH GLEB SŁOWIŃSKIEGO PARKU NARODOWEGO W LATACH 2225 Słowa kluczowe: las, gleba, poziom genetyczny, wilgotność, materia organiczna Key words: forest, soil, genetic horizons, moisture, organic matter WSTĘP Gleby są jednym z czynników decydujących o ekologicznej odrębności ekosystemów leśnych. Badanie gleb parków narodowych, jako obszarów chronionych, dostarcza wielu podstawowych informacji o funkcjonowaniu całego środowiska przyrodniczego na danym terenie (Tobolski i in. 1997, Klimowicz i in. 24). Ekosystemy leśne rozwinięte na ubogich glebach bielicowych mają bardzo niewielkie zasoby substancji biogenicznych, zakumulowane głównie w poziomach organicznych i próchnicznych (Trojanowski, Parzych 27). Właściwości fizycznochemiczne gleby w istotny sposób wpływają na wzrost i rozwój roślinności. Właściwe funkcjonowanie roślin zależy w jednakowym stopniu od zaopatrzenia ich w wodę, w składniki mineralne oraz od właściwości fizycznych i chemicznych gleby, decydujących o prawidłowym wzroście i funkcjonowaniu korzeni (Ostrowska i in. 21). Dobra struktura gleby ułatwia penetrację korzeni roślin, stwarzając dogodne warunki do oddychania oraz pobierania wody i składników mineralnych. Próchnica zwiększa zwięzłość gleb gruboziarnistych, a zmniejsza drobnoziarnistych (Bednarek i in. 25). Korzenie roślin reagują przede wszystkim na kwasowość roztworu glebowego. Jego skład jest jednak ściśle powiązany ze składem kationów wymiennych. Nadmierna kwasowość gleby jest często czynnikiem ograniczającym wzrost roślin, głównie na skutek zmniejszania dostępności wielu pierwiastków pokarmowych i wzrostu dostępności pierwiastków potencjalnie toksycznych, np. glinu (Gworek 26). Ponadto wraz ze wzrostem ilości materii organicznej zwiększa się dostępność wielu pierwiastków niezbędnych dla roślin (Stevenson 1985). Celem pracy było określenie i porównanie wybranych właściwości fizycznych i chemicznych gleb bielicowych, porośniętych dwoma różnymi zespołami leśnymi w Słowińskim Parku Narodowym: Vaccinio uliginosibetuletum pubescentis i Empetro nigripinetum, w kontekście odżywiania szaty roślinnej tych zespołów. 159

16 Rys. 1. Plan sytuacyjny Słowińskiego Parku Narodowego lokalizacja powierzchni badawczych, 1 granica Parku, 2 granica terenu administrowanego przez Park, 3 linie oddziałów leśnych, 4 drogi, 5 powierzchnia badawcza I (VuBp), 6 powierzchnia badawcza II (EnP) Fig. 1. Situation an of the Słowiński National Park locations of the study sites, 1 border of NP, 2 border of Park s administration area, 3 border of forest compartments, 4 roads, 5 research ot I (VuBp), 6 research ot II (EnP)

MATERIAŁ I METODY BADAŃ Obszar badań Badania prowadzono w dwóch różnych ekosystemach leśnych na terenie Słowińskiego Parku Narodowego, wzdłuż drogi biegnącej ze Smołdzińskiego Lasu do Czołpina, w odległości 6 m jedna od drugiej. Lokalizację powierzchni badawczych przedstawiono na rysunku 1. Na powierzchni I występują gleby bielicowe wytworzone z luźnych piasków wydmowych podścielonych glebą kopalną o następującej budowie profilu glebowego: OlOfhCOtnib oraz szata roślinna należąca do Vaccinio uliginosibetuletum pubescentis (VuBp). Na powierzchni II występują gleby bielicowe (OlOfhC) oraz roślinność należąca do Empetro nigripinetum (EnP). Drzewostany badanych powierzchni wykazywały zróżnicowanie gatunkowe i wiekowe. Powierzchnię I porastał luźny drzewostan sosnowobrzozowy o wysokości 1819 m. Udział 6letniej sosny zwyczajnej (Pinus sylvestris L.) wynosił 25%, a 47letniej brzozy omszonej (Betula pubescens) 75%. Powierzchnię II porastał jednolity, 14letni drzewostan sosnowy (Pinus sylvestris L.; Plan... 23). Metodyka badań Na każdej,5 ha powierzchni badawczej wykonano odkrywkę glebową i opisano budowę profilu. Taksonomię gleb opracowano na podstawie Systematyki gleb Polski PTG (1989). Oznaczenia podstawowych właściwości fizycznych, glinu wymiennego oraz właściwości sorpcyjnych próbek glebowych wykonano jednokrotnie w maju 22 roku. Próbki do analiz chemicznych i pomiaru wilgotności pobierano za pomocą świdra, średnio co sześć tygodni w okresie sezonów wegetacyjnych w latach 2225 ze wszystkich poziomów genetycznych badanych profili, zagęszczając liczbę próbek w przypadku dużej miąższości poziomu. Materiał badawczy pobierano z kilkunastu losowo wybranych stanowisk każdej powierzchni leśnej do głębokości 1,5 m (ze względu na głębokość występowania korzeni roślin), a następnie łączono go, tworząc tzw. próbki mieszane (Czarnowski 1978). Po przewiezieniu do laboratorium i wstępnym przygotowaniu próbki glebowe poddawano odpowiednim analizom według metod zaproponowanych przez Ostrowską i in. (1991) oraz Bednarek i in. (25). Wszystkie analizy wykonywano w trzech powtórzeniach. W próbkach glebowych oznaczono: gęstość właściwą (Dw) metodą piknometryczną; gęstość objętościową (Do) w próbkach o nienaruszonej strukturze; skład frakcyjny piasku (na sucho) metodą sitową; odczyn gleb potencjometrycznie w roztworze wodnym i w 1 M roztworze KCl; wilgotność aktualną (Ww) metodą suszarkowowagową; straty prażenia (Sp) w piecu muflowym w temp. 55 o C; glin wymienny (Al 3+ ) metodą Sokołowa; sumę zasad wymiennych (S) metodą Kappena; kwasowość hydrolityczną (Hh) metodą Kappena. 161

Na podstawie uzyskanych wyników analiz laboratoryjnych obliczono: porowatość ogólną (Po), Po = (Dw Do) : Dw 1%; aktualne zasoby wody glebowej (Zo), Zo = Ww Do h : 1 [mm]; h miąższość poziomu genetycznego; zasoby glebowej materii organicznej, Zas. mat. org. = Sp Do h [kg m 2 ]; pojemność wymienną kationów (T), T = S + H h [cmol(+) kg 1 ]; stopień wysycenia gleb kationami zasadowymi (V), V = S T 1 1 [%]. WYNIKI BADAŃ I DYSKUSJA Skład frakcyjny badanych gleb był podobny (tab. 1). Dominował w nich piasek średni (,5,25 mm), którego udział w profilu powierzchni I wynosił od 61,3% do 68,4%, a w profilu powierzchni II od 49,% do 54,9%. Następny pod względem składu frakcyjnego gleby był piasek drobny (,25,1 mm), którego zawartość w profilu powierzchni I wynosiła od 3,1% do 34,6%, a w profilu powierzchni II od 44,4% do 49,1%. Zawartość piasku grubego (1,5 mm) była dość mała i wynosiła przeciętnie od 1,1% do 3,2% (VuBp) i od,2% do 2,8% (EnP). Najmniejsza była ilość frakcji pyłu, bo od,1,3% (VuBp) do,1% (EnP). Przewaga piasku średniego i drobnego w badanych glebach była charakterystyczna dla gleb bielicowych, w których powyższe frakcje według Zawadzkiego (1999) mogą przekraczać nawet 95%. Analiza uziarnienia wykazała małe zróżnicowanie materiału w obu badanych profilach glebowych, co wskazuje, iż skład frakcyjny nie będzie wpływał Uziarnienie gleb Soil texture Tabela 1 Table 1 Powierzchnie i zespoły leśne Poziom genetyczny 21 [mm] Zawartość frakcji części ziemistych 1,5 [mm],5,25,25,1,1,5 [mm] [mm] [mm] <,5 [mm] Grupa granulometryczna Powierzchnia I VuBp,1 1,4 1,1 1,1 3,2 66,9 68,4 66,1 61,3 3,9 3,1 32,5 34,6,5,3,2,6,2,1,1,3 Powierzchnia II EnP C 3 2,8 1,5,5,3,2 49, 51, 5, 54,9 52, 47,7 47, 49,1 44,4 47,3,4,4,4,4,4,1,1,,,1 Objaśnienia w tekście Exanations in text 162

różnicująco na właściwości gleb pod badanymi zespołami leśnymi. Równie niewielkie zróżnicowanie gleb w obrębie składu frakcyjnego wykazali Banaszuk i Kondratiuk (1996) na polu wydmowym w rezerwacie Szelągówka. Gęstość właściwa badanych gleb była najmniejsza w poziomach próchniczno eluwialnych 2,54 g cm 3 (EnP) i 2,61 g cm 3 (VuBp) oraz poziomie gleby kopalnej Otnib 1,99 g cm 3 (VuBp) i stopniowo wzrastała wraz z głębokością do wartości 2,71 g cm 3 w poziomie skały macierzystej VuBp i do 2,832,84 g cm 3 EnP (tab. 2). Gęstość objętościowa (tab. 2) w badanych profilach glebowych wzrastała wraz z głębokością, w poziomach organicznych profilu powierzchni I (VuBp) przyjmując wartości,1,22 g cm 3, a w przypadku powierzchni II (EnP),8,17 g cm 3. Nieco większe jej wartości występowały w poziomach próchnicznoeluwialnych () badanych profili glebowych. W poziomach wzbogacenia () cecha ta osiągała wartość 1,25 g cm 3 VuBp oraz,99 g cm 3 EnP. W poziomie gleby kopalnej (Otnib) gęstość objętościowa wynosiła,64 g cm 3 (VuBp), a w poziomie skały macierzystej od 1,2 g cm 3 (VuBp) do 1,16 g cm 3 (EnP). Uzyskane wartości gęstości są typowe dla odpowiednich poziomów genetycznych gleb bielicowych (Uggla, Uggla 1979). W ścisłym związku ze zmianami gęstości pozostawała porowatość (tab. 3), która zmieniała się od 53,39% w poziomach przypowierzchniowych do 52,6% w poziomie C (VuBp) oraz od 64,6% do 59,3% (EnP). Znacznie większą porowatość wykazywały poziomy próchnicznoeluwialny i wzbogacenia w przypadku powierzchni II w porównaniu z odpowiednimi poziomami profilu powierzchni I. Porowatość ogólna i zależna od niej gęstość objętościowa gleby, łącznie z uziarnieniem, decydowały o przestrzennym rozkładzie wody glebowej i jej dostępności dla roślin. W glebach piaskowych porowatość waha się najczęściej w granicach 355% (Puchalski, Prusinkiewicz 1975), a wartości powyżej 4% są charakterystyczne dla gleb leśnych (Ostrowska i in. 21). Optymalna dla rozwoju rośliny porowatość zależy od gatunku rośliny i właściwości gleby (Drozd i in. 1992). Uzyskane wyniki badań wskazują na dobre właściwości powietrznowodne badanych gleb, co korzystnie wpływa na system korzeniowy roślin leśnych zarówno w zespole Vaccinio uliginosibetuletum pubescentis, jak i w Empetro nigripinetum. Zawartość materii organicznej wyrażają straty prażenia (tab. 2), które maleją wraz z głębokością profili glebowych. W podpoziomach organicznych Ol i Ofh powierzchni I utrzymywały się na poziomie odpowiednio 88,7979,83%, powierzchni II na poziomie 91,686,65%, a w przypadku gleby kopalnej na poziomie około 8%. Według Pokojskiej (1992) zawartość materii organicznej w podpoziomach organicznych bielic utrzymuje się w przedziale wartości od 86,5% do 97,3%. Największe zasoby materii organicznej występowały w profilu glebowym powierzchni I (VuBp), około 93% powyższych zasobów było zakumulowane w poziomie gleby kopalnej (tab. 2). Znacznie mniejsze ilości materii organicznej zawierały poziomy mineralne (3,27 kg m 2 na powierzchni I oraz 3,75 kg m 2 na powierzchni II). Poza tym występowały różnice pomiędzy jej zawartością w poziomach próchnicznoeluwialnych i poziomach wzbogacenia obu badanych profili glebowych. Powyższe poziomy powierzchni I (VuBp) zawierały około 3% więcej 163

Powierzchnie i zespoły leśne Powierzchnia I VuBp Powierzchnia II EnP Objaśnienia w tekście Exanations in text Poziom genetyczny Ol Ofh Otnib Ol Ofh C 3 Właściwości fizyczne i zasoby materii organicznej gleb Physical properties and reserves organic matter of soil Głębokość [cm] Miąższość poziomu [cm] Gęstość właściwa [g cm 3 ] Gęstość objętościowa [g cm 3 ] 84 4,1 4 4,22 13 13 2,61 1,22 1341 28 2,65 1,25 4172 31 2,71 1,15 7214 32 2,54 1,2 1415 38 1,99,64 85 3,8 5 5,17 18 18 2,54,89 1848 3 2,64,99 4872 24 2,71 1,17 7212 3 2,84 1,16 1215 4 2,83 1,16 Porowatość ogólna [%] 53,39 52,82 57,5 52,6 67,65 64,6 62,45 56,84 58,82 59,3 Straty prażenia [%] 88,79 79,83,73,32,19,8 8,12 91,6 86,65,56,29,21,18,17 Tabela 2 Table 2 Zasoby mat. org. [kg m 2 ] 3,55 7,2 1,16 1,12,68,31 194,85 2,19 7,36,89,86,59,63,79 164

Wilgotność aktualna gleb (n = 25) w latach 2225 Actual moisture of soil (n = 25) in the 2225 Tabela 3 Table 3 Powierzchnie i zespoły leśne Poziom genetyczny Wilgotność aktualna [% wag.] śr. min. max. CV [%] Aktualne zasoby wody [mm] Ol 16,33(±6,51) 7,87 31,16 39,86,65 Ofh 23,6(±8,43) 11,8 44,32 36,56 2,3 Powierzchnia I VuBp 4,73(±1,42) 4,32(±2,77) 1,6(±4,33) 2,97 1,38 2,89 7,83 11,84 19,58 29,99 64,18 4,83 7,5 15,12 37,79 18,4(±6,) 5,8 31,39 32,6 7,65 Otnib 36,72(±14,23) 12,2 69,8 38,75 89,3 Ol 21,52(±7,1) 6,12 34,71 32,99,52 Ofh 32,31(±7,93) 7,47 44,2 24,54 2,75 Powierzchnia II EnP 5,74(±4,27) 6,7(±4,23) 9,65(±5,84) 1,68 2,2 3,2 2, 16,3 22,64 74,39 69,69 6,51 9,19 18,3 27,9 13,36(±5,83) 4,92 28,91 43,64 46,49 C 3 17,26(±6,2) 8,94 38,66 35,92 8,8 śr. wartość średnia, (±) odchylenie standardowe, min. wartość minimalna, max. wartość maksymalna, CV współczynnik zmienności śr. average value, (±) standard deviation, min. minimum value, max. maximum value, CV variability factor Tabela 4 Opady atmosferyczne i średni poziom wód gruntowych w latach 2225 Table 4 Precipitation and average groundwater level in 2225 Wyszczególnienie 22 23 24 25 Średnio Opady atmosferyczne [mm] 682 552 848 579 665 Średni poziom wód gruntowych [cm] VuBp 79,8(±18,) 79,1(±17,2) 6,8(±24,9) 73,7(±18,7) 73,3(±2,1) EnP 93,8(±2,9) 93,6(±18,5) 79,3(±36,9) 94,3(±31,7) 9,2(±28,4) (±) odchylenie standardowe (±) standard deviation 165

zasobów materii organicznej niż odpowiednie poziomy glebowe powierzchni II (EnP), co korzystniej wpływało na rozwój roślinności runa w tym ekosystemie leśnym ze względu na znacznie większe ilości zgromadzonych w nich składników odżywczych. Uzyskane wyniki wskazują na lepsze warunki zaopatrzenia roślinności runa w biogeny w VuBp niż w EnP, co potwierdzają również wyniki badań składu chemicznego roślin runa leśnego (Parzych 21). Wilgotność aktualna badanych profili glebowych była zróżnicowana w czteroletnim okresie badań (tab. 3). Znaczną wilgotność wykazywały podpoziomy organiczne Ofh, zalegające bezpośrednio pod podpoziomem surowinowym, co wiąże się z wpływem opadów atmosferycznych i większą pojemnością wodną, oraz poziomy w dolnych partiach profili glebowych, znajdujące się w obrębie zmiennego poziomu wód gruntowych (por. tab. 4; Parzych, Trojanowski 27). Najmniejszą wilgotność miały poziomy genetyczne w wewnętrznych częściach profili glebowych, średnio na głębokości 41 cm (VuBp) oraz 48 cm (EnP). Najsilniej uwilgotniona była gleba powierzchni I, gdzie poziom wody gruntowej występował średnio na głębokości 73,3 cm pod powierzchnią terenu. Średnia maksymalna wilgotność gleb w badanych zespołach leśnych była najwyższa w poziomie gleby kopalnej (Otnib) około 7% wag. oraz w podpoziomach butwinowych (Ofh) około 44% wag. Średnia wilgotność gleby pozostawała w ścisłym związku z zawartością materii organicznej oraz gęstością objętościową. Dowodem są wysokie i przeciętne wartości współczynników korelacji Spearmana, odpowiednio R =,72 (p <,5, n = 5) w profilu glebowym powierzchni I i R =,83 (p <,5, n = 5) w profilu powierzchni II oraz,42 (p <,5, n = 5, VuBp) i,73 (p <,5, n = 5, EnP). Zależność wilgotności gleby od zawartości materii organicznej i gęstości objętościowej zaobserwowali również Czyż i in. (23) oraz Andersson i Wiklert (1972). Zasoby wody zgromadzone w glebie odgrywają istotną rolę w zaopatrywaniu roślin w trakcie całego sezonu wegetacyjnego. Obecność gleby kopalnej podścielającej gleby bielicowe powierzchni I ze względu na dużą zawartość materii organicznej oraz dużą pojemność wodną wywierała istotnie korzystny wpływ na zaopatrzenie roślinności Vaccinio uliginosibetuletum pubescentis w wodę, zwłaszcza tej o rozbudowanym systemie korzeniowym. Fakt ten znajduje potwierdzenie w wynikach badania frekwencji i zagęszczenia roślinności zarówno Vaccinio uliginosibetuletum pubescentis, jak i Empetro nigripinetum SPN (Parzych, Sobisz 21). Dynamikę wilgotności poszczególnych poziomów badanych gleb odzwierciedlały wartości współczynników zmienności (CV; tab. 3). Największa zmienność występowała w środkowych częściach badanych profili glebowych. Najczęstsze przesuszenia w profilu powierzchni I były w poziomie wzbogacenia (CV = 64%), a w przypadku powierzchni II w poziomie wymywania (CV = 74%). Znacznie mniejsze wartości minimalne wilgotności gleby były w poziomach genetycznych profilu powierzchni II niż w odpowiednich poziomach profilu powierzchni I, co niekorzystnie wpływało na rozwój roślinności w Empetro nigripinetum w okresach związanych z ograniczoną ilością opadów atmosferycznych. Właściwości retencyjne gleb, wyrażone średnimi zapasami wody w poziomach i podpoziomach genetycznych, przedstawiono w tabeli 3. Największe zasoby wody zmagazynowane były w poziomie gleby kopalnej (powierzchnia I) oraz w dolnych 166

poziomach genetycznych profili glebowych, co ma istotne znaczenie w zaopatrywaniu roślinności w wodę zwłaszcza w sezonach wegetacyjnych. Badane gleby bielicowe miały odczyn kwaśny i silnie kwaśny. Największą kwasowością charakteryzowały się poziomy organiczne i próchniczne na obu badanych powierzchniach leśnych, gdzie wartości ph zawierały się w przedziale od 4,18 do 4,87 (ph H2O). Nieco większa była kwasowość poziomów organicznych w zespole Empetro nigripinetum (tab. 5). Wraz z głębokością kwasowość malała, co odzwierciedlało się wzrostem wartości ph do 5,32 w skale macierzystej profilu glebowego powierzchni I oraz do 5,69 w poziomie skały macierzystej powierzchni II. Odczyn był podobny do odczynu w innych badanych glebach bielicowych. KoneckaBetley i in. (1999) stwierdzili, że gleby bielicowe charakteryzują się silnym zakwaszeniem górnych poziomów, gdzie ph H2O wynosi najczęściej 3,4,5. Zbliżone wartości kwasowości czynnej (ph, H 2 O) i wymiennej (ph, KCl) uzyskali Szołtyk i Walendziak (1998) oraz CzępińskaKamińska i in. (1999). Stopień zakwaszenia gleby wpływał na dostępność składników odżywczych, bytowanie organizmów glebowych, procesy nitryfikacji, występowanie toksycznie działających jonów glinu i metali ciężkich (Kowalkowski 22). Niewielkie zakwaszenie gleby (ph = 67) wpływa jednak korzystnie na przyswajalność azotu i fosforu przez roślinność leśną (Puchalski, Prusinkiewicz 1975). Wraz ze wzrostem zakwaszenia gleb wzrastało stężenie jonów Al 3+, które decydują o ph gleb leśnych. Zależność taką wykazali również inni badacze (Brogowski 1967, Gworek i in. 2, Gworek 26). Największa koncentracja jonów glinu była w poziomach organicznych obu badanych profili, osiągając nieco większe wartości w glebie pod borem sosnowym (Empetro nigripinetum; tab. 5). Zwiększona kwasowość i zawartość jonów glinu niekorzystnie wpływała na rozwój roślinności, powodując zmniejszenie frekwencji, zagęszczenia i produkcji pierwotnej runa leśnego (Parzych, Sobisz 21). Największa dynamika kwasowości badanych gleb miała miejsce w górnych poziomach genetycznych i malała w głąb profilu, osiągając najmniejszy współczynnik zmienności w poziomie skał macierzystych (ph (H 2 O) odpowiednio CV = 8,2% i 8,5%; tab. 5). Odczyn gleby zmieniał się w ciągu roku zależnie od jej wilgotności oraz zapotrzebowania roślinności na składniki odżywcze. Intensywne pobieranie kationów zasadowych (K +, Ca 2+, Mg 2+, NH 4 + ) z roztworu glebowego przez roślinność w okresie maksymalnego wzrostu (wiosnalato) powodowało spadek wartości ph gleby, zwiększając jednocześnie dostępność dla roślin toksycznego glinu (Barszczak, Bilski 1983, Gworek 26). Najsilniejsze wahania kwasowości występują zazwyczaj w glebach słabo zbuforowanych, o małej pojemności sorpcyjnej i niskim stopniu wysycenia komeksu sorpcyjnego kationami o charakterze zasadowym (Puchalski, Prusinkiewicz 1975). Największe zdolności sorpcyjne mają poziomy organiczne (32,4428,55 cmol (+) kg 1 ) i próchniczne (11,5812,51 cmol(+) kg 1 ) badanych profili glebowych (tab. 6). Całkowita pojemność wymienna (T) w badanych poziomach organicznych jest porównywalna. Zdolność tych poziomów do adsorpcji i wymiany kationów sprawia, że ektopróchnice tworzą pewnego rodzaju filtr przechwytujący wiele składników trafiających do gleby w rozmaity sposób (Pokojska 1992). Znacznie mniejsze zdolności sorpcyjne niż poziomy organiczne wykazują poziomy mineralne (Buckman, 167

Powierzchnie i zespoły leśne Powierzchnia I VuBp Powierzchnia II EnP Odczyn badanych gleb (n = 25) i stężenie wymiennego glinu w latach 2225 Reaction of soil (n = 25) and concentration of removable aluminium in 2225 Tabela 5 Table 5 Poziom genetyczny ph (H 2 O) ph (KCl) Al 3+ w. [cmol(+) kg 1 ] śr. min. max. CV [%] śr. min. max. CV [%] Ol 4,44(±,54) 3,54 5,35 12,2 3,63(±,4) 3,6 4,33 11, 1,8 Ofh 4,62(±,59) 3,68 5,59 12,8 3,83(±,46) 3, 4,53 12, 1,9 4,87(±,46) 4,15 5,99 9,2 4,2(±,52) 3,9 4,78 12,9,63 5,17(±,49) 4,7 6,1 9,5 4,42(±,55) 3,53 5,29 12,4,54 5,37(±,51) 4,46 6,4 9,5 4,63(±,6) 3,48 5,7 12,9,28 5,35(±,44) 4,47 6, 8,2 4,66(±,57) 3,57 5,67 12,2,12 Otnib 5,34(±,47) 4,53 6,1 8,8 4,69(±,58) 3,7 6,5 12,4,1 Ol 4,18(±,36) 3,22 4,55 8,6 3,46(±,14) 2,44 4,6 4, 2,15 Ofh 4,19(±,38) 3,4 4,81 9,1 3,37(±,45) 2,46 4,11 13,4 2,1 4,8(±,64) 3,66 5,85 13,9 4,3(±,5) 3,12 5,32 12,4,26 5,19(±,52) 4, 5,95 1,4 4,34(±,41) 3,55 5,14 9,4,17 5,41(±,49) 4,41 6,5 9,3 4,66(±,28) 4,1 5,3 6,,1 5,77(±,48) 4,86 6,6 8,5 4,85(±,4) 4,5 5,65 8,2,9 C 3 5,64(±,6) 4,75 6,8 1,6 4,96(±,37) 4,28 5,6 7,5,9 168

Brady 1971). W przypadku badanych profili glebowych wartości pojemności sorpcyjnej malały w głąb profilu, osiągając w poziomie skały macierzystej 1,95 cmol (+) kg 1 (powierzchnia I) i 1,85 cmol(+) kg 1 (powierzchnia II). Zgodnie z danymi literaturowymi pojemność sorpcyjna piasków wynosi zwykle 11 cmol (+) kg 1 s.m. (Puchalski, Prusinkiewicz 1975). W poziomie gleby kopalnej całkowita pojemność wymienna miała wartość największą (48,83 cmol(+) kg 1 ). Badane gleby charakteryzowały się również niewielkimi sumami kationów zasadowych (S) w komeksie sorpcyjnym, decydującymi o zdolnościach buforowych gleby w stosunku do jonów wodorowych (tab. 6). Największe ilości kationów zasadowych występowały w poziomie gleby kopalnej (41,4 cmol(+) kg 1 ), w poziomach organicznych (9,214,74 cmol(+) kg 1 ) i próchnicznych (2,26,55 cmol(+) kg 1 ) badanych profili glebowych, co jest wynikiem akumulacji biologicznej (Dziadowiec 199, Pokojska 1992). Kwasowość hydrolityczna (Hh) badanych gleb malała w głąb profili (tab. 6). Największą kwasowość zaobserwowano w poziomach organicznych powierzchni II Właściwości sorpcyjne badanych gleb Sorption properties researched of soil Tabela 6 Table 6 Powierzchnie i zespoły leśne Poziom genetyczny S Hh T = S + Hh [cmol(+) kg 1 ] V=S T 1 1 [%] Ol 14,74 16,95 31,69 46,51 Ofh 11,15 17,4 28,55 39,5 Powierzchnia I VuBp 2,2 2, 1,15 1,31 2,4 1,35 12,51 4,4 2,5 17,58 45,45 46, Otnib 1,5 41,4,9 7,43 1,95 48,83 53,85 84,79 Ol 12,61 19,83 32,44 38,87 Ofh 9,2 22,65 31,65 29,7 Powierzchnia II EnP 6,55 1,2 1,5 5,3 1,5 1,16 11,58 2,7 2,21 56,59 44,44 47,45,95,9 1,85 51,35 C 3,4,75 1,15 34,78 S suma zasad wg Kappena (Ca 2+ + Mg 2+ + K + + Na + ), Hh kwasowość hydrolityczna wg Kappena, T całkowita pojemność wymienna, V stopień wysycenia zasadami S (TEB) Total Exchangeable Bases according to Kappen (Ca 2+ +Mg 2+ +K + +Na + ), Hh hydrolytic acidity according to Kappen, T (CEC) Cation Exchange Capacity according to Kappen, V (BS) Base Saturation 169

(EnP). W wyniku przeprowadzonych analiz stwierdzono, iż kwasowość hydrolityczna zależy od odczynu i zawartości związków organicznych w glebach. Im niższe ph i większa zawartość próchnicy, tym wyższa wartość kwasowości hydrolitycznej. Potwierdzają to wysoce istotne współczynniki korelacji Spearmana odpowiednio dla ph i Hh, R =,92 (VuBp) i R =,93 (EnP), p <,5, n = 5 oraz dla ph i zawartości materii organicznej R =,78 (VuBp) i R =,98 (EnP), p <,5, n = 5. Podobne relacje pomiędzy powyższymi parametrami uzyskali Gworek i in. (2). Ważnym wskaźnikiem jakości gleby jest jej stopień wysycenia kationami o charakterze zasadowym (V), (Ca 2+ + Mg 2+ + K + + Na + ). W poziomach organicznych powierzchni I jest on średnio o 25,9% większy od V poziomów organicznych powierzchni II (tab. 6). Wraz ze wzrostem stopnia humifikacji szczątków organicznych nagromadzonych w kolejnych podpoziomach organicznych (Ol, Ofh) wartość V maleje na obu powierzchniach badawczych. Zależność taką zaobserwowała w swoich badaniach również Pokojska (1992). Stopień wysycenia zasadami poszczególnych poziomów glebowych wzrasta zwykle w głąb profilu glebowego (Sikorska 1999). Zależność taką wykazuje profil glebowy powierzchni I, w którym V maleje od podpoziomu surowinowego (Ol) do poziomu próchnicznoeluwialnego (), a następnie stopniowo wzrasta w kolejnych poziomach mineralnych, osiągając maksimum wysycenia zasadami w poziomie gleby kopalnej (84,79%). Nieco inna była sytuacja w profilu glebowym powierzchni II, gdzie maksymalne V stwierdzono w poziomie (56,59%) oraz w poziomie C (51,35%). Ponadto, im większe było wysycenie gleby wymiennymi zasadami, tym mniejszy był udział kationów H + i Al 3+, a tym samym mniejsza kwasowość. PODSUMOWANIE Badane gleby bielicowe, wytworzone na wydmach, wykazują małe zróżnicowanie składu frakcyjnego poziomów mineralnych. Dominuje w nich piasek średni i drobny, przy niewielkim udziale piasku grubego i pyłu. Charakteryzują się one odczynem kwaśnym i silnie kwaśnym, który maleje w głąb badanych profili glebowych. Nieco większą kwasowość oraz zawartość dostępnego glinu Al 3+ miały poziomy organiczne powierzchni II (Empetro nigripinetum), co niekorzystnie wpływało na rozwój tamtejszej roślinności. Na uwagę zasługuje większa ilość materii organicznej w podpoziomach organicznych powierzchni II (EnP), niż w odpowiednich podpoziomach powierzchni I (VuBp). Średnia wilgotność gleby pozostawała w ścisłym związku z zawartością materii organicznej oraz gęstością objętościową. Zaobserwowano wzrost wilgotności gleby wraz ze wzrostem zawartości materii organicznej i spadkiem gęstości objętościowej. Dowodem na to były istotne statystycznie współczynniki korelacji Spearmana. Wilgotność aktualna profili glebowych była zróżnicowana w badanych sezonach wegetacyjnych, co wiązało się z opadami atmosferycznymi i zmieniającym się poziomem lustra wód gruntowych. Ilość wody zawartej w profilach glebowych pod badanymi zespołami leśnymi wskazywała na lepsze zaopatrzenie w wodę roślinności w zespole Vaccinio uliginosibetuletum pubescentis niż w Empetronigri Pinetum. 17

L I T E R AT U R A Andersson S., Wiklert P., 1972: Waterholding properties of Swedish soils, Grundförbättring 25 (23), s. 53143 Banaszuk P., Kondratiuk P., 1996: Charakterystyka gleb i ich substratu na polu wydmowym w rezerwacie Szelągówka, Zesz. Nauk. Polit. Białost. 19, Inż. Środ. 9, s. 911 Barszczak T., Bilski J., 1983: Działanie glinu na rośliny, Postępy Nauk Roln. 3, s. 233 Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z., 25: Badania ekologiczno gleboznawcze, Warszawa Brogowski Z., 1967: Wiązanie wapnia, magnezu, potasu i sodu w niektórych rodzajach gleb, Warszawa Buckman H.C., Brady N.C., 1971: Gleba i jej właściwości, Warszawa Czarnowski M.S., 1978: Zarys ekologii roślin lądowych, Warszawa CzępińskaKamińska D., Rutkowski A., Zakrzewski S., 1999: Sezonowe zmiany zawartości NNH 4 i NNO 3 w glebach leśnych, Rocz. Glebozn. 5, 4, s. 4756 Czyż E., Dexter A.R., Niedźwiecki J., 23: Retencja wodna gleb wieloletnich statycznych doświadczeń poletkowych, Rocz. Glebozn. 54, 3, s. 2737 Drozd J., Licznar M., Pisarek I., 1992: Gleboznawstwo, podręcznik do ćwiczeń dla studentów szkół wyższych, Opole Dziadowiec H., 199: Rozkład ściółek w wybranych ekosystemach leśnych, Toruń Gworek B., 26: Glin w środowisku przyrodniczym a jego toksyczność, Ochrona Środowiska i Zasobów Naturalnych 29, s. 2738 Gworek B., Brogowski Z., Degórski M., Wawrzoniak J., 2: Zmiany właściwości fizycznochemicznych niektórych gleb Białowieskiego Parku Narodowego, Rocz. Glebozn. 51, 1/2, s. 8799 Klimowicz Z., Debicki R., Pyl A., 24: Wybrane właściwości gleb bielicoziemnych na terenie Parku Krajobrazowego Podlaski Przełom Bugu, Annales UMCS 59, 11, s. 181191 KoneckaBetley K., CzępińskaKamińska D., Janowska E., 1999: Systematyka i kartografia gleb, Warszawa Kowalkowski A., 22: Wskaźniki ekochemicznego stanu gleb leśnych zagrożonych przez zakwaszenie, Regionalny Monitoring Środowiska Przyrodniczego 3, s. 3144 Ostrowska A., Gawliński S., Szczubiałka Z., 1991: Metody analizy i oceny gleb i roślin. Katalog, Warszawa Ostrowska A., Porębska G., Borzykowski J., Król H., Gawliński S., 21: Właściwości gleb leśnych i metody ich oznaczania, Warszawa Parzych A., 21: Azot, fosfor i węgiel w roślinności leśnej Słowińskiego Parku Narodowego w latach 2225, Ochrona Środowiska i Zasobów Naturalnych 43, s. 4766 Parzych A., Sobisz Z., 21: Biomasa i produkcja pierwotna netto runa leśnego w wybranych ekosystemach Słowińskiego Parku Narodowego, Ochrona Środowiska i Zasobów Naturalnych 42, s. 7283 Parzych A., Trojanowski J., 27: Biogenic substances versus the level of ground waters in chosen woodland ecosystems of Słowiński National Park, Ann. Pol. Chem. Soc., s. 423 426 Plan ochrony Słowińskiego Parku Narodowego. Operat ochrony ekosystemów leśnych na lata 22221, 23: t. 8, opis ogólny, t. 9/1, opis taksacyjny lasu Obręb Lądowy Oddziały 163, Jeleniogórskie Biuro Planowania i Projektowania Pokojska U., 1992: Adsorpcja i wymiana kationów w próchnicach leśnych, Toruń Puchalski T., Prusinkiewicz Z., 1975: Ekologiczne podstawy siedliskoznawstwa leśnego, Warszawa Sikorska E., 1999: Siedliska leśne, cz. I, Siedliska obszarów niżowych, Kraków 171

Stevenson F.J., 1985: Geochemistry of soil humic substances. W: Humic substances in soil, sediment and water, red. G.R. Aiken, D.M. McKnight, R.L. Wershaw, P. McCarthy, New York, s. 1352 Systematyka gleb Polski, 1989: Rocz. Glebozn. 4 (3/4) Szołtyk G., Walendziak R.J., 1998: Charakterystyka zmian właściwości chemicznych gleb makroregionu północnowschodniej Polski w latach 19881996, Warszawa, s. 9511 Tobolski K., Mocek A., Dzięciołowski W., 1997: Gleby Słowińskiego Parku Narodowego w świetle historii roślinności i podłoża, BydgoszczPoznań Trojanowski J., Parzych A., 27: Seasonal changes of nitrogen and phosphorus content in organic horizons in chosen forest sites of the Słowiński National Park, Arch. Environ. Prot. 33, 3, s. 9716 Uggla H., Uggla Z., 1979: Gleboznawstwo leśne, Warszawa Zawadzki S., 1999: Gleboznawstwo, Warszawa Selected physical and chemical properties of some soil in the Słowiński National Park in 2225 SUMMARY The study of properties proper podzol soils was carried out in two different forest ecosystems: Vaccinio uliginosibetuletum pubescentis and Empetro nigripinetum in the period between 2225. Researched of soils are acidity and strongly acidity which decrease with depth of genetic horizons. Average moisture of soil is in important relation with contents of organic matter and bulk density. Average and high values of Spearman correlation coefficient, confirm it and there are respectively R =.72 (p <.5, n = 5) in genetic horizons Vaccinio uliginosibetuletum pubescentis, R =.83 (p <.5, n = 5) in the Empetro nigripinetum and,42 (p <.5, n = 5, Vaccinio uliginosibetuletum pubescentis),.73 (p <.5, n = 5, Empetro nigripinetum). Organic matter and water contents in selected soil of SNP indicate the better resources for ants developments in Vaccinio uliginosibetuletum pubescentis than in Empetronigri Pinetum. Agnieszka Parzych Zakład Chemii Środowiskowej Instytut Biologii i Ochrony Środowiska Akademia Pomorska ul. Arciszewskiego 22b 762 Słupsk parzycha1@op. 172