Modelowanie silników skokowych
Silnik skokowy literatura nt. opisu formalnego Pochanke A.: Modele obwodowo-polowe pośrednio sprzężone silników bezzestykowych z uwarunkowaniami zasilania. OWPW, Warszawa, 1999 Sochocki R.: Mikromaszyny elektryczne. OWPW, Warszawa, 1996 Bodnicki M., Pochanke A.: Modelowanie systemu silnik skokowy-stanowisko badawcze w trakcie wyznaczania charakterystyk częstotliwościowych. V Szkoła- Konferencja METROLOGIA WSPOMAGANA KOMPUTEROWO, Rynia k.warszawy, 21-24.05.2001, t. 3, s. 223-228 Pochanke A., Wierciak J.: Trzy modele silnika skokowego hybrydowego. Międzynarodowe 13. Sympozjum Mikromaszyny i Serwonapędy. Krasiczyn, 15-19.09.2002, t. II, s. 389-394 Wierciak J., Pochanke A.: Identyfikacja współczynników modelu hybrydowego silnika skokowego. XII Sympozjum Modelowanie i Symulacja Systemów Pomiarowych. Krynica 16-20 września 2002, s. 175-182 Bodnicki M., Oleksiuk W., Wierciak J.: Model for the numeric simulation of the linear actuator on basis of stepping motor. 5. Franco-Japanese Congress & 3. European-Asian CONGRESS OF MECHATRONICS. 9-11.10.2001, Besançon (Francja) (CD) Jaszczuk W., Wierciak J., Bodnicki M.: Napędy elektromechaniczne urządzeń precyzyjnych. Ćwiczenia laboratoryjne. OWPW. Warszawa 2000
Cechy charakterystyczne s.s. - uwagi ogólne Synchroniczna mikromaszyna przekształcająca ciąg impulsów sterujących w ciąg kątowych przesunięć wału. Kwantowanie przemieszczeń mechanicznych przez zmianę układu sygnałów zasilających pasma uzwojenia (wykonywaną przez układ elektroniczny) Częstotliwość impulsów zmieniających układ sygnałów zasilających (częstotliwość komutacji) nie zależy od stanu pracy silnika.
Silniki skokowe Powstawanie momentu reluktancyjnego (Wróbel 1993) U napięcie zasilania, I prąd wzbudzający, Z liczba zwojów, Φ strumień magnetyczny, θ kątowe położenie zwory
Silniki skokowe Schemat silnika skokowego o wirniku biernym(wróbel 1993) a), b), c) - położenia wirnika w trzech kolejnych taktach, d) - przebiegi napięć pasmowych
Silnik skokowy (Pochanke, 1996) Komutator - układ elektroniczny służący do zasilania cewek lub pasm uzwojenia określonym układem napięć stałych. Każdemu układowi napięć odpowiada stały strumień magnetyczny w szczelinie maszyny o określonym kierunku w przestrzeni. Takt komutacji - stan elektryczny uzwojeń. Cykl komutacji - taka liczba taktów, która powoduje przy określonym sposobie komutacji, uzyskanie wszystkich możliwych sposobów rozkładu pola magnetycznego maszyny.
Silnik skokowy (Pochanke, 1996) Komutacja symetryczna - w każdym takcie komutacji wzbudzana jest jednakowa liczba pasm uzwojenia Komutacja niesymetryczna - w kolejnych taktach komutacji wzbudzana jest niejednakowa liczba pasm uzwojenia
Silniki skokowe Powstawanie momentu reluktancyjnego (Wróbel 1993) U napięcie zasilania, I prąd wzbudzający, Z liczba zwojów, Φ strumień magnetyczny, θ kątowe położenie zwory
Silniki skokowe Zasada działania silnika skokowego z wirnikiem czynnym (komutacja niesymetryczna) (Pochanke,1996)
Silniki skokowe Sposób połączenia uzwojenia silnika w dwa pasma (Pochanke,1996)
Silniki skokowe Przekroje poprzeczne silników skokowych reluktancyjnych (Pochanke,1996) a) silnik trójpasmowy, b) silnik czteropasmowy symetryczny c) silnik czteropasmowy niesymetryczny P 1, P 2, P 3 początki pasm K 1 koniec pasma 1
Silniki skokowe Sterowanie mikroskokowe (API Portescap 2001) a) Pasmo 1 Pasmo 2 b) Pasmo 2 Pasmo 1 a) przebieg prądów w dwu sterowanych pasmach, b) ilustracja ruchu wirnika
Silniki skokowe Zasada działania silnika skokowego z wirnikiem czynnym (Pochanke,1996) a) silnik trójpasmowy, b) silnik czteropasmowy symetryczny c) silnik czteropasmowy niesymetryczny P 1, P 2, P 3 początki pasm K 1 koniec pasma 1
Silniki skokowe Silnik skokowy dwupasmowy o magnesie trwałym w wirniku (Jaszczuk, 2008)
Silniki skokowe Przykłady konstrukcji silników z wirnikiem czynnym (Pochanke, 19968) a) b) a) silnik z wirnikiem pazurowym, b) silnik z wirnikiem tarczowym
Silnik skokowy tarczowy (Jaszczuk, 2008) Silniki skokowe brak sprzężeń magnetycznych między pasmami wirnik o bardzo małym masowym momencie bezwładności
Silniki skokowe Silnik skokowy tarczowy firmy ESCAP (Jaszczuk, 2008)
Silniki skokowe Zasada działania silnika hybrydowego (Sochocki, 1996)
Dwupasmowy silnik hybrydowy (Jaszczuk 2008, Pochanke, 1996) Silniki skokowe Napięcie U 1 2 3 4 (2) (1) Czas t
Rodzaje pracy Pochanke, 1996) Silniki skokowe statyczna quasi statyczna kinematyczna dynamiczna
Silniki skokowe Praca statyczna Pochanke, 1996, Czerwiec, 2000) Praca statyczna silnika skokowego ma miejsce wówczas, gdy prądy w uzwojeniach sterujących są ustalone, a wektor strumienia stojana jest nieruchomy w przestrzeni. Właściwości silnika skokowego w tym stanie pracy określa charakterystyka kątowa momentu statycznego. A Moment elektromagnetyczny M e M m D C M l γ es -π -π/2 0 π/2 π Kąt elektryczny γ e -M m B
Praca statyczna, Pochanke, 1996) Moment wzbudzeniowy M E IpΨ Silniki skokowe m sin p M sin p Em Moment reluktancyjny L M R I 2 Z 2 r d 2 L q sin Z M sin Zr r Rm I p L d, L q Z r Ψ m υ wartość prądu pasma stojana, liczba par biegunów magnesu wirnika, indukcyjność własna uzwojenia stojana odpowiadająca maksimum i minimum permeancji, liczba zębów wirnika, strumień pary biegunów magnesu wirnika, kąt obrotu wirnika względem stojana
Silniki skokowe Błąd położenia w funkcji momentu obciążenia Jaszczuk, 2000) M e statyczny moment silnika, M h moment obciążający, υ kątowe położenie wirnika, Δυ statyczny błąd kątowy położenia wirnika
Silniki skokowe Praca quasi-statyczna Pochanke, 1996 Praca quasistatyczna występuje przy wykonywaniu przez silnik pojedynczego skoku lub ciągu skoków o dostatecznie małej częstotliwości. Odpowiada to przełączaniu uzwojeń z taka częstotliwością, przy której stan pracy przejściowy (najczęściej oscylacyjny), jaki na ogół występuje przy wykonywaniu skoku, zostaje zakończony przed wykonaniem następnego skoku. Największa częstotliwość f m pracy quasistatycznej silnika jest więc ograniczona czasem trwania stanu przejściowego elektromechanicznego.
Silniki skokowe Praca quasi-statyczna Pochanke, 1996 3Θ Kąt obrotu wirnika 2 f m 1 5T r 2Θ 1Θ 1 f m maksymalna częstotliwość pracy quasi statycznej, T r - zastępcza stała czasowa aperiodycznego ruchu wirnika 0 1 takt 2 takt 3 takt Czas t 1 kątowe przemieszczenie wirnika, 2 położenia równowagi silnika nieobciążonego
Silniki skokowe Praca quasi-statyczna wpływ zmian obciążenia bezwładnościowego Jaszczuk, 2000) Masowy moment obciążenia J 2 >J 1 >J 0, Czas rozruchu t r = const Czas ustalenia t p2 >t p1 >t p0 Czas dojścia t d2 >t d1 > t d0 Maksymalne... α 2 > α 1 > α 0 > α nom
Silniki skokowe Praca quasi-statyczna wpływ zmian obciążenia tarciem suchym Jaszczuk, 2000) Moment tarcia M t2 >M t1 >M t0, Czas rozruchu t r2 >t r1 >t r0 Czas ustalenia t p2 <t p1 <t p0 Czas dojścia t d1 >t d0 Statyczny błąd skoku (Δα) 2 > (Δα) 1 > (Δα) 0
Praca kinematyczna Wróbel, 1993 Silniki skokowe a) praca start-stopowa (rozruchowa) dla skoków bazowych, b) ruch skokowy o średniej prędkości, c) ruch obrotowy z dużą prędkością
Charakterystyki częstotliwościowe Moment Charakterystyka graniczna Charakterystyka rozruchowa Częstotliwość
Charakterystyki częstotliwościowe Moment Punkty tworzące ch-kę rozruchową Punkty tworzące ch-kę graniczną Częstotliwość
Silniki skokowe Praca quasi-statyczna wpływ bezwładności na charakterystyki Jaszczuk, 2000) A B J 0 - graniczna charakterystyka rozruchowa silnika, - graniczna charakterystyka pracy silnika; - masowy moment bezwładności wirnika J 2 > J 1 - masowe momenty bezwładności obciążenia
Silniki skokowe Praca quasi-statyczna wpływ bezwładności na charakterystyki Jaszczuk, 2000) M a) f 1 f 0 J 2J m m J 1 J l J 1 A 1 A b) f t f 1 f 0 J m J 1 częstotliwość graniczna, częstotliwość graniczna odczytana z charakterystyki, masowy moment bezwładności wirnika, masowy moment bezwładności obciążenia zredukowany do wałka silnika f t
Praca dynamiczna (Pochanke, 1996) Silniki skokowe Praca dynamiczna jest wykonywana w stanach przejściowych tj. podczas rozruchu, hamowania, nawrotu czy zmiany częstotliwości impulsów sterujących. Charakter stanów przejściowych zależy zarówno od właściwości samego silnika i obciążenia, jak i od warunków początkowych, przy których rozpoczął się rozpatrywany stan pracy.
Cechy charakterystyczne s.s. - uwagi ogólne cd. przy ustalonym systemie komutacji wirnik zajmuje określone, stałe położenia odległość kątowa (lub liniowa) między sąsiednimi położeniami jest stała i nazywa się skokiem metodami elektronicznymi skok można dzielić na dowolną liczbę mikroskoków moment napędowy jest we wszystkich położeniach równowagi równy 0 każda próba wychylenia wirnika z pozycji równowagi powoduje powstanie momentu synchronizującego skierowanego ku niej maksymalny moment synchronizujący nosi nazwę momentu trzymającego moment trzymający występuje po wychyleniu wirnika o wartość jednego skoku
Cechy charakterystyczne s.s. - uwagi ogólne cd. Związek pomiędzy kątem elektrycznym a mechanicznym: Dla silników z magnesem trwałym e p Dla silników reluktancyjnych i hybrydowych Zr p - liczba par biegunów magnesu wirnika Z r liczba zębów wirnika γ mechaniczny kąt obrotu wirnika γ e kąt obrotu wirnika wyrażony w mierze kątów elektrycznych e
Cechy charakterystyczne s.s. - uwagi ogólne cd. Wartość skoku jednostkowego zależy od liczby taktów w cyklu komutacji oraz liczby zębów wirnika lub par biegunów wirnika 0 2 Z k r 0 2 pk α Z r k p kąt skoku silnika liczba zębów wirnika liczba taktów w cyklu komutacji liczba par biegunów wirnika
Podstawowe równania 1) Bilans momentów (równanie momentów) 2) Generowanie momentu elektromagnetycznego (w modelach rozwiniętych : równanie/równania napięć)
Generowanie skoku Θ e Moment elektromagnetyczny M e Ilustracja warunku wykonania skoku przez obciążony silnik E F M el M red 0 -π π -π+θ e Kąt elektryczny γ e e 90 Wysterowanie kolejnej cewki skok w pożądanym kierunku tylko wtedy, gdy jego dotychczasowe położenie będzie mieściło się w granicach strefy stabilności charakterystyki momentu w drugim takcie komutacji. e Zapas stabilności silnika nieobciązonego
Modele s. s. - klasyfikacja Model ruchu obrotowego o ruchu dyskretnym idealizowany Model rozwinięty - z równaniami równowagi napięć w pasmach silnika
Podstawowe równania bilans momentów J d 2 dt 2 D d dt M f sgn d dt M L M e
Podstawowe równania bilans momentów d 2 Js Jred Dm M F M Fred sgn Mred Me dt 2 d dt d dt gdzie: J red, M Fred, M red mechaniczne obciążenia zredukowane do wałka silnika, M e moment elektromagnetyczny silnika, γ kąt obrotu wirnika, Pozostałe symbole oznaczają parametry silnika niezbędne do korzystania z powyższego modelu: moment bezwładności J s wirnika, wewnętrzny momentu tarcia M F, współczynnik tłumienia D m.
Silnik skokowy - model obiektu wirującego o ruchu dyskretnym (model idealizowany) Założenia Parametry silnika są parametrami skupionymi, zaś charakterystyka momentu wymuszającego zależy tylko od chwilowego położenia części ruchomej (wirnika). Równania obwodów elektrycznych zostają pominięte. Moment wymuszający jest reprezentowany przez podstawową harmoniczną. Funkcja określająca zmianą położenia równowagi stabilnej jest funkcją dyskretną.
Charakterystyka kątowa momentu Me Przebieg statycznego momentu elektromagnetycznego w funkcji kąta położenia wirnika względem stojana nosi nazwę charakterystyki kątowej momentu (statycznego, elektromagnetycznego) silnika skokowego. Przebieg tej charakterystyki jest zależny od konstrukcji silnika, od sposobu zasilania i od stopnia nasycenia obwodu magnetycznego. W ogólnym przypadku zwłaszcza dla silników niesymetrycznych i o nasyconym obwodzie magnetycznym charakterystyka kątowa momentu może zawierać pełne spektrum harmonicznych. Udział wyższych harmonicznych może być w znacznym stopniu ograniczany np. przez dobór odpowiednich rozwiązań konstrukcyjnych i materiałowych obwodu magnetycznego oraz odpowiednie kształtowanie rozkładu uzwojeń i strefy przy szczelinie powietrznej. W rezultacie charakterystyki kątowe momentu wielopasmowych silników magnetoelektrycznych i reluktancyjnych o budowie symetrycznej są z reguły zbliżone do sinusoidy, a w przypadku silników magnetoelektrycznych udział składowej reluktancyjnej jest najwyżej kilkunastoprocentowy. Jedynie w przypadku silników jednopasmowych charakterystyka kątowa momentu jest znacznie odkształcona od przebiegu sinusoidalnego.
Charakterystyka kątowa momentu Me A Moment elektromagnetyczny M e M m D C M l γ es -π -π/2 0 π/2 π Kąt elektryczny γ e -M m B
Modeli idealizowany generowanie momentu M e Z r Wymuszenie: M u m t u sin t gdzie: E funkcja entier, f k stała częstotliwość komutacji, δ kąt niezgodności (różnica położeń rzeczywistego γ i chwilowego stabilnego γ u ) a pozostałe symbole oznaczają kolejne parametry silnika niezbędne do korzystania z powyższego modelu: podstawowy kąt skoku γ u0, liczba Z r zębów wirnika (liczba par biegunów magnesu stałego p) ( t) u0 p E 1 u f k t
Parametry silnika moment bezwładności J s wirnika, wewnętrzny momentu tarcia M F, współczynnik tłumienia D m. podstawowy kąt skoku γ u0, liczba Z r zębów wirnika (liczba par biegunów p)
Parametry silnika współczynnik tłumienia D m. Opisane w pracy [Wierciak, Pochanke; 2002] badania symulacyjne wykazały, że doświadczalne wyznaczanie współczynnika D m na podstawie skokowej odpowiedzi silnika przetworzonej za pomocą specjalnie opracowanego algorytmu nie prowadzi do jednoznacznej wartości. Wyznaczony współczynnik silnie zależy od inercyjnego obciążenia J red badanego silnika i rośnie ze wzrostem tego obciążenia
Parametry silnika współczynnik tłumienia D m. 0,020 Współczynnik tłumienia D m [N m s] 0,015 0,010 0,005 0,000 0 20 40 60 80 100 Masowy moment bezwł. obciążenia J red [kg m 2 ] Zależność wyznaczanej wartości współczynnika tłumienia D m od inercyjnego obciążenia J red silnika; wyniki badań symulacyjnych modelu silnika FA 23C 21S8 [Wierciak, Pochanke; 2002]
Efekty pracy modelu Kąt obrotu wirnika γ 3Θ Kąt obrotu wirnika 2 γ 1 γ 2 2Θ 1 T γ u0 1Θ Czas t 0 1 takt 2 takt 3 takt Czas t Ruch wirnika: a) drgania wirnika silnika po wykonaniu pojedynczego skoku b) ruch wirnika przy quasi statycznej pracy silnika obciążonego momentem czynnym; 1 kątowe przemieszczenie wirnika, 2 położenia równowagi silnika nieobciążonego
Nr skoku Wymuszenie model rozszerzony df dt 1 T ( t) Czasowy przebieg sygnału wymuszającego
Silnik skokowy - model rozwinięty z równaniami napięć w pasmach silnika Założenia W modelu tym zjawiska elektryczne są uwzględnione w postaci fizyki obwodów liniowych, zaś moment wymuszający jest nadal przedstawiany jako podstawowa harmoniczna. Zmiennymi niezależnymi procesu przetwarzania energii są prądy pasmowe i k oraz położenie kątowe wirnika γ. Siły wymuszające stanowią napięcia zasilania u k
Silnik skokowy - model rozwinięty z równaniami napięć w pasmach silnika gdzie: R rezystancje pasm, i k prądy pasm, u Ri u k napięcia zasilania pasm k d k dt k strumienie sprzężone z pasmami k
Silnik skokowy - model rozwinięty z równaniami napięć w pasmach silnika Ogólne funkcje k i M e są nieliniowymi funkcjami położenia kątowego i prądów pasmowych: M M, i... i e e 1 k i k k i k k t t,i... i 1 k
Silnik skokowy - model rozwinięty z równaniami napięć w pasmach silnika Silnik dwupasmowy: ) sin ( d d d d e m e 1 1 1 1 1 t t i L i R u ) (cos d d d d e m e 2 2 2 2 2 t t i L i R u E m m e K p t d d dt d dodatkowo: L indukcyjności pasm, K E stała napięciowa silnika, ω prędkość kątowa wirnika.
Silnik skokowy - model rozwinięty z równaniami napięć w pasmach silnika Spełnienie warunku bilansu energii ograniczającego zakres pracy: max K E U
Silnik skokowy - model rozwinięty z równaniami napięć w pasmach silnika Moment elektromagnetyczny M e p( i1 m sin e i2 m cos e ) Strumień skojarzony p gdzie: K T stała momentu m K T
Silnik skokowy - model rozwinięty z równaniami napięć w pasmach silnika Wymuszenia (efekt pracy generującego napięcia): u 1 t U sgncos f 2 k t u 2 t U sgnsin f 2 k t