Marcin Zachwieja 1, Zuzanna Sawinska 2



Podobne dokumenty
Skutki zmian klimatycznych dla rolnictwa w Polsce sposoby adaptacji

Modele ochrony zbóż jako element integrowanej produkcji

MONITORING ZARODNIKOWANIA FUSARIUM SPP. JAKO PODSTAWA DO PROGNOZOWANIA SZKÓD I CELOWOŚCI ZABIEGÓW CHEMICZNYCH

Aktualne zagadnienia integrowanej ochrony roślin

WIADOMOŚCI - INFORMACJE - OPINIE

AGROFAG PRÓG SZKODLIWOŚCI * WOJEWÓDZTWO POMORSKIE bytowski ziemniak alternarioza. objawy choroby zaraza

MODEL ROZWOJU MĄCZNIAKA RZEKOMEGO (PSEUDOPERONOSPORA HUMULI) APLIKACJA INTERNETOWA *

Nasilenie występowania głównych patogenów ziemniaka na terenie Polski w latach

Journal of Agribusiness and Rural Development

Ekonomiczna opłacalność chemicznego zwalczania chorób, szkodników i chwastów w rzepaku ozimym

HortiOchrona - system doradczy dla ogrodnictwa

INTEGROWANA OCHRONA ROŚLIN Niechemiczne i chemiczne metody ochrony plantacji

Nr Informacja. Przewidywana produkcja głównych upraw rolniczych i ogrodniczych w 2004 r. KANCELARIA SEJMU BIURO STUDIÓW I EKSPERTYZ

Środki ochrony roślin wykorzystywane w szkółkarstwie

System Monitoringu Suszy Rolniczej

Monitoring Suszy Rolniczej w Polsce (susza w 2016 r.) Andrzej Doroszewski

OPRACOWANIE WITRYNY INTERNETOWEJ DO PRZEKAZYWANIA INFORMACJI O ZAGROŻENIU ZIEMNIAKA ZE STRONY PHYTOPHTHORA INFESTANS

Komunikat odnośnie wystąpienia warunków suszy w Polsce

Departament Hodowli i Ochrony Roślin. Ochrona upraw małoobszarowych a zrównoważone stosowanie środków ochrony roślin

Zabieg fungicydowy T1 dopasowany do obecnych warunków polowych

KOMPUTEROWE WSPOMAGANIE CHEMICZNEJ OCHRONY ROŚLIN PRZY POMOCY PROGRAMU HERBICYD-2

mszyce jary zaraza ziemniak przebiegiem pogody oraz z wczesnością i odpornością odmian 1-2 chrząszczy na 25 roślin wczesnych odmian ziemniaka lub

Zagrożenia ze strony grzyba Rhizoctonia solani na plantacjach buraka cukrowego

owies mszyce mszyca czeremchowo-zbożowa - 5 mszyc na 1 źdźbło mszyca zbożowa - 5 mszyc na kłosie

WOJEWÓDZKI INSPEKTORAT OCHRONY ROŚLIN I NASIENNICTWA w Warszawie ODDZIAŁ w PRZYSUSZE

ZAPOTRZEBOWANIE NA PROGRAMY KOMPUTEROWE W ROLNICTWIE NA PRZYKŁADZIE GOSPODARSTW WOJEWÓDZTWA MAŁOPOLSKIEGO

Miedzian Extra 350 SC 0.5L kod produktu: kategoria: Kategoria > Rolnik > Fungicydy - grzybobójcze

Integrowana ochrona, co warto wiedzieć - aktualności. Prof. dr hab. Stefan Pruszyński

Puławy, r. Znak sprawy: NAI DA

Zadanie Upowszechnianie i wdrażanie wiedzy. z zakresu integrowanej ochrony roślin

MONITORING NIEDOBORU I NADMIARU WODY W ROLNICTWIE NA OBSZARZE POLSKI

Efektywne fungicydy na zboża: Priaxor

ROLNICTWO W LICZBACH. Pomorski Ośrodek Doradztwa Rolniczego w Lubaniu

Zgodnie z nową etykietą-instrukcją stosowania, środek może być używany do ochrony:

Zmiany agroklimatu w Polsce

Cabrio Duo. Oczekuj więcej po zbiorach! NOWOŚĆ

ACTA UNIVERSITATIS LODZIENSIS

PORTAL PRECYZYJNE DORADZTWO AGRO SMART LAB

Aktualna sygnalizacja występowania chorób i szkodników wg komunikatu Państwowej Inspekcji Ochrony Roślin i Nasiennictwa na dzień r.

mapę wartości klimatycznego bilansu wodnego (załącznik 2), zestawienie statystyczne zagrożenia suszą dla upraw (załącznik 3),

ACTA UNIVERSITATIS LODZIENSIS KSZTAŁTOWANIE SIĘ WIELKOŚCI OPADÓW NA OBSZARZE WOJEWÓDZTWA MIEJSKIEGO KRAKOWSKIEGO

Ochrona warzyw preparatami SUMI AGRO POLAND. Topsin M 500 SC i Mospilan 20 SP NOWE, ROZSZERZONE REJESTRACJE!

Ważne zmiany w ochronie roślin Warszawa, 5 grudnia 2011 r.

Oszczędności w gospodarstwie przy użyciu nowoczesnych rozwiązań w rolnictwie.

od 1 kwietnia do 31 maja 2018 roku, stwierdzamy wystąpienie suszy rolniczej na obszarze Polski

Krajowy plan działania na rzecz ograniczenia ryzyka

Ochrona zbóż przed chorobami grzybowymi z wirtuozerią!

The importance of plant protection rope in these multifactor productivity of expenditures (MFP) in greenhouse tomatoes cultivation

System integrowanej produkcji roślinnej (IP) a integrowana ochrona roślin

Integrowana Produkcja Roślin nadzorowana przez PIORIN w latach Dr inż. Grzegorz Gorzała Główny Inspektorat Ochrony Roślin i Nasiennictwa

InŜynieria Rolnicza 14/2005. Streszczenie

Komunikat 7z dnia dotyczący aktualnej sytuacji agrotechnicznej Lustracje przeprowadzono i fotografie wykonano 14 kwietnia br.

Monitorowanie zużycia środków ochrony roślin w uprawie pszenicy ozimej

SPITSBERGEN HORNSUND

Moduł meteorologiczny w serwisie CRIS

Masz mączniaka? Dodaj Kendo!

SPITSBERGEN HORNSUND

INTEGROWANA OCHRONA ROŚLIN

Nauka Przyroda Technologie

WPŁYW MIESZANINY PROPIONIBACTERIUM FREUDENREICHII I LACTOBACILLUS RHAMNOSUS NA ZDROWOTNOŚĆ I PLON RZEPAKU OZIMEGO

Leszek ŁABĘDZKI, Bogdan BĄK, Ewa KANECKA-GESZKE, Karolina SMARZYNSKA, Tymoteusz BOLEWSKI

mapę wartości klimatycznego bilansu wodnego (załącznik 2), zestawienie statystyczne zagrożenia suszą dla upraw (załącznik 3),

Has the heat wave frequency or intensity changed in Poland since 1950?

Nowoczesne zwalczanie szkodników w sadach!

WPŁYW WYBRANYCH CZYNNIKÓW NA OGRANICZENIE WYSTĘPOWANIA CHWOŚCIKA MARCHWI. Wstęp

mapę wartości klimatycznego bilansu wodnego (załącznik 2), zestawienie statystyczne zagrożenia suszą dla upraw (załącznik 3),

SPITSBERGEN HORNSUND

CHARAKTERYSTYKA WARUNKÓW METEOROLOGICZNYCH W REJONIE DOŚWIADCZEŃ ŁĄKOWYCH W FALENTACH

Komunikat 5 z dnia dotyczący aktualnej sytuacji agrotechnicznej

Timorex Gold 24 EC. Nowa Generacja Środków Grzybobójczych Pochodzenia Roślinnego o Szerokim Spektrum Działania

Komunikat odnośnie wystąpienia warunków suszy w Polsce

WSTĘPNY SZACUNEK GŁÓWNYCH ZIEMIOPŁODÓW ROLNYCH I OGRODNICZYCH W WOJEWÓDZTWIE ŁÓDZKIM

SPITSBERGEN HORNSUND

STRATY PLONU A PRÓG OPŁACALNOŚCI OCHRONY ZBÓŻ

Zaraza ziemniaka - Phytophthora infestans (Mont.) de By 1. Systematyka Rząd: Pythiales Rodzina: Pythiaceae Rodzaj: Phytophthora

Rzepak ozimy i jary. Z dobrych nasion dobry plon. Nasiona rzepaku optymalnie dostosowane do polskich warunków.

Komunikat odnośnie wystąpienia warunków suszy w Polsce

PAŃSTWOWA INSPEKCJA OCHRONY ROŚLIN I NASIENNICTWA

Podkarpacki Ośrodek Doradztwa Rolniczego w Boguchwale

Aktualna sygnalizacja występowania chorób i szkodników wg komunikatu Państwowej Inspekcji Ochrony Roślin i Nasiennictwa na dzień r.

Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption

Komunikat 13 z dnia dotyczący aktualnej sytuacji agrotechnicznej Lustracje przeprowadzono i fotografie wykonano 2 maja br.

Rozpoczęcie jesiennej sprzedaży ubezpieczeń upraw polowych

SPITSBERGEN HORNSUND

Brunatna plamistość liści- jak ją zwalczać?

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO WYZNACZENIA CECH O NAJWIĘKSZEJ SILE DYSKRYMINACJI WIELKOŚCI WSKAŹNIKÓW POSTĘPU NAUKOWO-TECHNICZNEGO

Uniwersalne rozwiązanie na choroby grzybowe

Podobnie postępować z sadzonką truskawki, maliny, jeżyny, porzeczek kolorowej i czarnej oraz agrestu.

Wynikowy szacunek głównych ziemiopłodów rolnych i ogrodniczych 1) w 2016 r.

Jak chronić uprawy pszenicy jesienią?

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

ZAPLECZE NAUKOWO- BADAWCZE I EDUKACYJNE DLA POTRZEB INTEGROWANEJ OCHRONY ROŚLIN

Jak radzić sobie z chorobami grzybowymi zbóż?

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Numer katalogowy Kod EAN TOPSIN M 500 SC 15ML. Środek grzybobójczy

SPITSBERGEN HORNSUND

Transkrypt:

PROGRESS IN PLANT PROTECTION/POSTĘPY W OCHRONIE ROŚLIN 53 (4) 2013 Making a decision support system to control plant diseases of selected fruits and vegetables available on the website as a part of the integrated production Udostępnienie systemu wspomagania podejmowania decyzji w zwalczaniu wybranych chorób roślin sadowniczych i warzywniczych w serwisie internetowym jako element integrowanej produkcji Marcin Zachwieja 1, Zuzanna Sawinska 2 Summary This paper presents an analysis of the functioning of an online decision support system for integrated production in the fight against of major diseases of apple-, cherry- and bird-cherry-trees, onions, tomatoes and carrots based on the meteorological stations imetos and disease models of the firm Pessl Instruments available at http://www.agropogoda.pl. To make this application we used disease development models based on numerous implementation experiences and scientific publications, which help to calculate the degree of risk/infection dedicated to the disease. The apple scab infection periods are defined on the basis of the model Schwabe. It has predicted Venturia inaequalis infections on the basis of the temperature and duration of the leaf wetness period. The description of the infection course made by Tamm et all. (1994) helped to determine the critical periods of brown rot of stone fruit trees Monilinia laxa. Pessl Instruments, Austria, developed the other disease models. The risk is assessed on the basis of conditions conducive to disease development. Daily weather data (air temperature, relative humidity and total precipitation) are used for calculations. The application calculates the risk on the basis of weather data collected from agro-meteorological stations and attached to them disease models. The user selects a station from the map or from the list of choices and the risk index values are presented in the graphs. Also text files with weather data are generated for selected stations. They can be used for a complex analysis of the conditions conducive to the development of the disease. Key words: meteorological stations, disease models, decision support system, plant protection Streszczenie Przedstawiono analizę funkcjonowania internetowego systemu wspomagania decyzji w integrowanej produkcji, w zwalczaniu najważniejszych chorób jabłoni, wiśni, czereśni, cebuli, pomidora i marchwi, opartego na stacjach meteorologicznych imetos i modelach chorobowych firmy Pessl Instruments dostępnych pod adresem http://www.agropogoda.pl. Do budowy aplikacji wykorzystano modele rozwoju chorób opracowane na podstawie licznych doświadczeń wdrożeniowych oraz publikacji naukowych, dzięki którym wyliczany jest stopień zagrożenia/infekcji dla danej choroby. Terminy infekcji parcha jabłoni wyznaczane są na podstawie modelu Schwabe, który prognozował infekcje Venturia inaequalis na podstawie temperatury i długości okresu zwilżenia liścia. Do wyznaczenia okresów krytycznych brunatnej zgnilizny drzew pestkowych Monilinia laxa posłużyło opracowanie przebiegu infekcji przez Tamm i wsp. (1994). Pozostałe modele chorobowe opracowane zostały przez Pessl Instruments, Austria. Zagrożenie ocenia się na podstawie analizy warunków sprzyjających rozwojowi choroby. Do obliczenia służą dobowe dane pogodowe (temperatura powietrza i wilgotność względna powietrza oraz suma opadu atmosferycznego). Aplikacja oblicza zagrożenie na podstawie danych pogodowych pobranych ze stacji agrometeorologicznych oraz dołączonych do nich modeli chorobowych. Użytkownik wybiera stację z mapy lub z listy wyboru i wartości indeksu zagrożenia są przedstawiane na wykresie. Dla wybranych stacji generowane są także pliki tekstowe z danymi pogodowymi, które użytkownik może wykorzystać do kompleksowej analizy warunków sprzyjających rozwojowi danej choroby. Słowa kluczowe: stacje meteorologiczne, modele chorobowe, system wspomagania decyzji, ochrona roślin Uniwersytet Przyrodniczy w Poznaniu 1 Katedra Sadownictwa Dąbrowskiego 159, 60-594 Poznań mzachwieja@up.poznan.pl 2 Katedra Agronomii Dojazd 11, 60-632 Poznań zuza@up.poznan.pl Institute of Plant Protection National Research Institute Prog. Plant Prot./Post. Ochr. Roślin 53 (4): 878-882 Instytut Ochrony Roślin Państwowy Instytut Badawczy ISSN 1427-4337

Progress in Plant Protection/Postępy w Ochronie Roślin 53 (4) 2013 879 Wstęp / Introduction Produkcja roślinna w dużej mierze uzależniona jest od warunków pogodowych. Jest to czynnik zmienny i producenci rolni nie mają na niego wpływu. Mavi i Tupper (2004) podają, że około 75 wszystkich strat w produkcji roślinnej jest powodowane bezpośrednio lub pośrednio czynnikami pogodowymi. Wpływ bezpośredni pogody to anomalia pogodowe (susza, przymrozki, powodzie, grad, itd.). Nie mniej ważny jest pośredni wpływ pogody na populacje organizmów szkodliwych, stwarzający mniej lub bardziej sprzyjające warunki dla ich rozwoju. Liczne badania i dane wskazują, że ponad połowa mieszkańców wsi posiada w domu komputer zarówno w wersji stacjonarnej, jak również w formie urządzeń przenośnych. Te same badania pokazują, że posiadanie komputera jest prawie jednoznaczne z dostępem do internetu. W ostatnich latach korzystało z niego około 61 mieszkańców miast (niezależnie od wielkości) i 39 zamieszkujących na wsi. Na terenach wiejskich notuje się stały wzrost odsetka gospodarstw domowych z dostępem do internetu. W latach 2003 2006 wzrost ten wynosił około 3 4 rocznie, a w okresie 2007 2009 już 20 28 rocznie (Cellary 2013; Kamiński i Knieć 2013). Jest to spowodowane między innymi licznymi programami mającymi na celu informatyzację terenów wiejskich, które w ostatnich latach coraz częściej finalizowały projekty dające dostęp do sieci konkretnym użytkownikom mieszkańcom wsi, producentom owoców i warzyw. Z tego również powodu internet staje się coraz częstszym źródłem informacji o zagrożeniu upraw ze strony sprawców chorób i szkodników roślin. W Europie największy postęp w dziedzinie wykorzystania internetu do realizacji celów związanych z ochroną roślin dokonuje się za sprawą zespołów badawczych z Dani i Niemiec (Wójtowicz i Krasiński 2011). W Polsce od kilku lat funkcjonuje internetowy system sygnalizacji Państwowej Inspekcji Ochrony Roślin i Nasiennictwa pod adresem http://piorin. gov.pl/sygn/start.php oraz witryna internetowa prowadzona przez Instytut Ochrony Roślin Państwowy Instytut Badawczy w Poznaniu, umożliwiająca użytkownikom internetu pod adresem http://www.ior.poznan.pl korzystanie z informacji na temat zagrożenia ze strony Phytophthora infestans. Wszystkie te działania wpisują się w Rozporządzenie Parlamentu Europejskiego i Rady Europy dotyczące zrównoważonego stosowania pestycydów, które nakłada na państwa członkowskie obowiązek powszechnego wprowadzania zasad integrowanej ochrony roślin (Integrated Pest Managment IPM) do powszechnej praktyki od 1 stycznia 2014 roku (Dąbrowski i Majewski 20; Horoszkiewicz-Janka i wsp. 20; Walczak i wsp. 20). Jedną z ważniejszych zasad i zarazem zaleceń dotyczących zasad IPM jest monitorowanie i korzystanie z systemu wspomagania decyzji, które ułatwiają producentom podjęcie ostatecznej decyzji o właściwym terminie wykonania zabiegów ochrony roślin. Prowadząc sygnalizację i doradztwo w zakresie ochrony roślin nie można lekceważyć tego, że w terminach pojawiania się chorób lub szkodników, czy ich kolejnych stadiów rozwojowych, obserwowane są różnice nie tylko w skali kraju, województwa, czy powiatu, ale nawet na terenie jednej miejscowości lub konkretnej plantacji (Pruszyński i Walczak 2006), dlatego też większa liczba i dostępność profesjonalnych platform internetowych wyspecjalizowanych w sygnalizowaniu najgroźniejszych chorób i szkodników roślin uprawnych pozwoli spełnić nałożone przez Unię Europejską wymagania. Celem przeprowadzonej analizy jest przedstawienie zasad funkcjonowania internetowego systemu wspomagania podejmowania decyzji w zwalczaniu najważniejszych chorób: jabłoni, wiśni, czereśni, cebuli, pomidora i marchwi, opartego na pomiarach rologicznych imetos i modelach chorobowych firmy Pessl Instruments, dostępnych pod adresem http://www.agropogoda.pl, będącego elementem integrowanej produkcji. Materiały i metody / Materials and methods Niezbędnym elementem serwisu internetowego są automatyczne stacje meteorologiczne imetos (Pessl Instruments, Austria). Za pomocą specjalistycznych sensorów dokonują one pomiarów temperatury powietrza, wilgotności względnej powietrza, opadów oraz zwilżenia liścia. Wszystkie sensory zintegrowane są ze stacją meteorologiczną, co umożliwia automatyczny zapis pomiarów, co godzinę oraz ich bezpośrednią transmisję siecią GPRS (General Packet Radio Service) i natychmiastową publikację w serwisie internetowym. Aktualne dane pogodowe publikowane są również co jedną godzinę i przedstawione w syntetycznej tabeli zbiorczej. Jednocześnie prezentowane są dane z okresu ostatnich 48 godzin oddzielnie dla każdej z lokalizacji. Ważnym aspektem dołączonym do każdej rologicznej są modele chorobowe (tab. 1) opracowane na podstawie licznych doświadczeń wdrożeniowych oraz publikacji naukowych, dzięki którym wyliczany jest stopień zagrożenia/infekcji dla danej choroby. Terminy infekcji parcha jabłoni wyznaczane są na podstawie modelu zaproponowanego przez Schwabe (1980). Prognozował on infekcje Venturia inaequalis na podstawie temperatury i długości okresu zwilżenia liścia. Do wyznaczenia okresów krytycznych brunatnej zgnilizny drzew pestkowych Monilinia laxa posłużyło opracowanie przebiegu infekcji przez Tamm i wsp. (1994). Pozostałe modele chorobowe opracowane zostały przez Pessl Instruments, Austria. Prezentacja danych z modeli chorobowych została przedstawiona w sposób graficzny za pomocą wykresów obrazujących stopień infekcji lub zagrożenia chorobą oraz tabelarycznie wyrażona w procentach. Każda ze rologicznych umieszczona jest w reprezentatywnych warunkach polowych odpowiednich dla danej uprawy. Pozwala na to fakt wyposażenia stacji w solar słoneczny, który stanowi źródło zasilania oraz modem GPRS sieci komórkowej do transmisji danych. Na stronie głównej serwisu internetowego umieszczono mapę Google Maps, na której zamieszczono graficznie poszczególne lokalizacje na obszarze kraju, a na każdej podstronie rologicznej dodatkowo zaznaczono kolorowym promieniem zakres powierzchni, z jakich dane te mogą być analizowane.

880 Making a decision support system to control selected plant diseases / Udostępnienie systemu wspomagania podejmowania decyzji Tabela 1. Liczba pracujących z określonym modelem chorobowym, w poszczególnych lokalizacjach, w latach 2011 2012 Table 1. The number of meteorological stations working with a specific disease model in different locations, in the years 2011 2012 Liczba Number of weather stations 27 Lokalizacja Location of the weather station 1, 2, 3, 4, 5, 6, 7, 8, 9,, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,, 28 3, 4, 7, 9, 11, 12, 16, 18, 23, 28 3, 4, 7, 9, 11, 12, 16, 18, 23, 28 1, 4,, 11, 16, 18, 25, 1, 4,, 11, 16, 18, 25, 1, 4,, 11, 16, 18, 25, Gatunek rośliny uprawnej Crop species jabłoń apple wiśnia i czereśni sour cherry and cherry truskawka strawberry marchew carrots cebula onion pomidor tomato Monitorowana choroba / Model chorobowy The observed disease / Disease model parch jabłoni apple scab / Venturia inaequalis brunatna zgnilizna drzew pestkowych brown rot disease / Monilinia laxa drobna plamistość liści drzew pestkowych leaf spot disease / Blumeriella jaapi szara pleśń truskawki grey mould / Botrytis cinerea mączniak prawdziwy truskawki powdery mildew of strawberry / Sphaerotheca maculari, zgnilizna korony truskawki crown rot infection in strawberry / Phytophthora cactorum alternarioza naci marchwi carrot leaf blight / Alternaria dauci / Alternaria radicina mączniak rzekomy cebuli downy mildew / Peronospora destructor zgnilizna szyjki cebuli neck rot of onion Botrytis alli / Botrytis squamosa antraknoza pomidora anthracnose / Colletotrichum atramentarium alternarioza pomidora early blight / Alternaria solani mączniak prawdziwy pomidora powdery mildew / Oidium lycopersicum septorioza pomidora septoria leaf spot / Septoria lycopersici W latach 2011 i 2012, w serwisie funkcjonowało 28 rologicznych, w tym 2 w województwie dolnośląskim, 1 w województwie lubelskim, 1 w województwie małopolskim, w województwie mazowieckim, 1 w województwie opolskim, 3 w województwie świętokrzyskim, 2 w województwie warmińsko-mazurkim oraz 8 w województwie wielkopolskim (tab. 2). Właścicielami rologicznych są osoby prywatne, gospodarstwa sadownicze oraz warzywnicze. Z każdym właścicielem rologicznej została podpisana umowa użyczenia danych do celów niniejszej publikacji. Witryna internetowa opracowana została z wykorzystaniem systemu CMS (Content Management System) Seagull na licencji Open Source GPL (General Public License) zezwalająca na modyfikację i redystrybucję zmodyfikowanych wersji oprogramowania. Dostęp do danych meteorologicznych oraz modeli chorobowych z każdej stacji jest bezpłatny i wymaga zarejestrowania (zalogowania) w jednym z serwisów partnerskich przeznaczonych dla producentów owoców pod adresem http://www. sadownictwo.agro.pl lub producentów warzyw http://www. warzywnictwo.agro.pl. Pozwala to na optymalizację dostępu, zabezpieczenie przed bezpośrednim włamaniem internetowym do serwisu, a także skuteczniejszym zarządzaniem bazą danych MySQL (Structured Query Language) powiązaną z całą aplikacją. Wyniki i dyskusja / Results and discussion Połączenie rologicznej, modeli chorobowych, systemu CMS oraz praktycznej wiedzy pozwoliło stworzyć unikatowy serwis internetowy przeznaczony dla producentów owoców i warzyw w kraju. Analizując pierwsze opinie producentów należy stwierdzić, że głównymi użytkownikami serwisów są producenci owoców, głównie sadownicy posiadający sady jabłoniowe. Dla nich serwis internetowy oferował największą ilość lokalizacji rologicznych połączonych z modelami chorobowymi. Producenci ci wykazują się największą wiedzą w zakresie monitorowania i sygnalizacji chorób, a tym samym mają łatwość w dostosowaniu wyników aktualnych danych pogodowych i progów infekcji do panującej sytuacji agrotechnicznej w swoim sadzie. Potwierdzają się tym samym wnioski prezentowane przez Dąbrowskiego i Majewskiego (20), którzy zaobserwowali, iż tylko producenci jabłek dysponują własnym sprzętem do sygnalizacji zabiegów przeciwko chorobom i szkodnikom oraz posiadają wiedzę dotyczącą interpretacji tych wyników. Na podstawie tych samych danych prezentowanych przez Dąbrowskiego i Majewskiego (20) można stwierdzić, iż mniejsze zainteresowanie producentów monitorowaniem chorób w uprawach warzyw związane jest z faktem strat w plonach w wyso-

Progress in Plant Protection/Postępy w Ochronie Roślin 53 (4) 2013 881 Tabela 2. Lista lokalizacji pracujących w serwisie 2011 2012 Table 2. The list of the location of the meteorological stations working on the website in the years 2011 2012 Lp. No. Lokalizacja / Numer Location / Number weather station Powiat District Województwo Voivodeship 1 Milicz [1] milicki dolnośląskie 2 Oleśnica [2] oleśnicki dolnośląskie 3 Opole Lubelskie [3] opolski lubelskie 4 Góra Świętego Jana [4] limanowski małopolskie 5 Belsk Duży [5] grójecki mazowieckie 6 Mogielnica [6] grójecki mazowieckie 7 Odrzywołek [7] grójecki mazowieckie 8 Tworki [8] grójecki mazowieckie 9 Warka [9] grójecki mazowieckie Wola Żyrowska [] grójecki mazowieckie 11 Żdżary [11] grójecki mazowieckie 12 Wysoczyn [12] otwocki mazowieckie 13 Gąbin [13] płocki mazowieckie 14 Kopana [14] pruszkowski mazowieckie 15 Baborów [15] głubczycki opolskie 16 Opatów [16] opatowski świętokrzyskie 17 Sandomierz [17] sandomierski świętokrzyskie 18 Szydłów [18] staszowski świętokrzyskie 19 Lubawa [19] iławski 20 Rakowice [20] iławski warmińskomazurskie warmińskomazurskie 21 Wyszyny [21] chodzieski wielkopolskie 22 Rożnowo [22] obornicki wielkopolskie 23 Łobżenica [23] pilski wielkopolskie 24 Rabowice [24] poznański wielkopolskie 25 Skałowo [25] poznański wielkopolskie 26 Skórzewo [26] poznański wielkopolskie 27 Złotniki [27] poznański wielkopolskie 28 Szamotuły [28] szamotulski wielkopolskie kości 12,3 w odniesieniu do chorób. Nie ulega jednak wątpliwości, iż jedną z możliwości zmniejszenia stosowania fungicydów jest stosowanie ich zgodnie ze wskazaniami systemu wspomagania decyzji, w którym dawki i terminy zabiegów oparte są między innymi na progach ekonomicznej szkodliwości oraz podatności odmiany (Hostgaard i Wolny 2002). W pierwszym roku funkcjonowania serwis zanotował 18 971 unikalnych użytkowników IP (liczba pojedynczych numerów komputerów IP Internet Protocol). W kolejnym roku liczba ta zwiększyła się o 21 730 unikalnych użytkowników IP i osiągnęła wartość 40 701 (tab. 3). Należy zwrócić uwagę, iż największy okres zainteresowania serwisem przypada na okres wiosny. W pierwszym roku ponad 74 użytkowników odwiedziło serwis w maju, czerwcu i lipcu. W kolejnym roku, tj. 2012 większe zainteresowanie serwisem ponad 63, wydłużyło się do okresu pięciu miesięcy, tj. od kwietnia do sierpnia. Pozwala to wnioskować, że okres wzrostu oraz najintensywniejszej ochrony przeciwko monitorowanym chorobom powoduje znaczne zainteresowanie producentów publikowanymi danymi. Tabela 3. Oglądalność oraz liczba użytkowników serwisu internetowego w latach 2011 2012 Table 3. The number of users of the website in the years 2011 2012 Liczba i unikalnych użytkowników IP The number and of unique IP users Miesiąc Month Styczeń January Luty February Marzec March Kwiecień April Maj May Czerwiec June Lipiec July Sierpień August Wrzesień September Październik October Listopad November Grudzień December Suma Sum 2011 udział share 2012 rok year udział share różnica difference 2011/2012 różnica difference 2011/2012 [] 3 0,5 1592 3,9 1489 3,4 5 0,6 1709 4,2 1604 3,6 273 1,4 1444 3,5 1171 2,1 361 1,9 4636 11,4 4275 9,5 5448 28,7 6271 15,4 823 13,3 5919 31,2 4581 11,3 1338 19,9 2807 14,8 5298 13,0 2491 1,8 11 5,3 5204 12,8 4193 7,5 640 3,4 2070 5,1 1430 1,7 873 4,6 3418 8,4 2545 3,8 783 4,1 2826 6,9 2043 2,8 648 3,4 1652 4,1 04 0,6 18 971 0 40 701 0 21 730 Dane: Google Analytics Data: Google Analytics Dodatkowym atutem omawianego serwisu internetowego jest prezentacja aktualnych danych pogodowych w szczególności temperatur powietrza (średnia, maksymalna, minimalna) oraz opadów deszczu. Witryna podczas pierwszego roku funkcjonowania właśnie dzięki tym danym zyskała ogromną popularność (tab. 3). Majowe przymrozki w rejonie Wielkopolski, Kujaw oraz części województwa mazowieckiego powodowały znaczne obawy producentów, szczególnie owoców jabłek i truskawek o plony. Podobna zależność notowana jest w okresach wczesnowiosennych i jesiennych, kiedy producenci wa-

882 Making a decision support system to control selected plant diseases / Udostępnienie systemu wspomagania podejmowania decyzji rzyw z uwagą śledzą informacje dotyczące temperatur uniemożliwiających siewy lub zbiory warzyw. Z roku na rok zwiększa się liczba lokalizacji i województw objętych monitorowaniem z zastosowaniem serwisu internetowego. Poza 24 lokalizacjami uwzględnionymi w latach 2011 2012 do systemu zostanie wdrożonych kolejnych 6 lokalizacji. Głównie ze względu na zainteresowanie producentów owoców będą to lokalizacje typowo sadownicze z modelami chorób V. inaequalis oraz Botrytis cinerea. W planach pozostaje również stworzenie kolejnego segmentu sygnalizacji, tym razem dla rolników. Firma Pessl Instruments oferuje również modele chorobowe dla zbóż, rzepaku, ziemniaka oraz kukurydzy. Korzystanie z systemu wspomagania decyzji, jak i cała integrowana ochrona roślin wymaga w wielu przypadkach zmiany zachowania producenta i przełamania jego wieloletnich przyzwyczajeń. Istnieje pilna potrzeba przygotowania doradców, a następnie masowych szkoleń producentów w zakresie korzystania i interpretacji publikowanych danych (Pruszyński i wsp. 2012). Wnioski / Conclusions 1. Przedstawiona aplikacja internetowa jest ważna, ponieważ rozwija wspomaganie podejmowania decyzji w integrowanej ochronie roślin sadowniczych i warzywnych. 2. Aplikacja internetowa umożliwia przewidywanie wystąpienia i nasilenia choroby oraz ustalenie momentu, w którym należy podjąć decyzję o wykonaniu zabiegu zwalczania. 3. Aktualizacja w odstępach godzinowych, lokalizacja, wybór monitorowanych chorób oraz bezpłatny dostęp dla każdego z użytkowników serwisu, wpływa na rosnące zainteresowania przedstawianymi danymi ze strony producentów owoców i warzyw. 4. Publikacja podstawowych danych meteorologicznych z rejonu działania wspomaga również podejmowanie decyzji dotyczących większości zabiegów agrotechnicznych, wykonywanych w sadach oraz w uprawie warzyw. Literatura / References Cellary W. 2013. Wieś, wiedza, Internet. www.witrynawiejska.org.pl/data/mevita/content/evita1.pdf. Dostęp:.02.2013. Dąbrowski Z., Majewski M. 20. Stan wiedzy i stosowanych praktyk ochrony roślin przez różne grupy producentów a wymagania integrowanej ochrony roślin czy wystąpiły zmiany w ostatnich latach? [Status of knowledge and practices of plant protection by various groups of farmers and requirements of integrated pest management have changes taken place during the last five years?]. Prog. Plant. Prot./Post. Ochr. Roślin 50 (3): 1143 1151. Horoszkiewicz-Janka J., Walczak F., Korbas M., Jajor E. 20. Zastosowanie systemu wspomagania decyzji w ochronie pszenicy przed chorobami. [Application of decision support system in wheat protection against diseases]. Prog. Plant. Prot./Post. Ochr. Roślin 50 (3): 1329 1333. Hostgaard M.B., Wolny S. 2002. Założenia duńskiego sytemu wspomagania decyzji w ochronie roślin i możliwość jego wdrożenia w Polsce. [Principles of the Danish decision support system for crop protection and the possibilities of their implementation in Poland]. Prog. Plant. Prot./Post. Ochr. Roślin 42 (1): 293 290. Kamiński R., Knieć W. 2013. Problemy polskiej wsi w kontekście informatyzacji. www.witrynawiejska.org.pl/inw/metoda20evita,20problemy20polskiej20wsi.pdf. Dostęp:.02.2013. Mavi H.S., Tupper G.J. 2004. Agrometeorology: Principles and Applications of Climate Studies in Agriculture. Food Products Press, New York, 272 pp. Pruszyński S., Dąbrowski Z., Hurej M., Nawrot J., Olszak R.W. 2012. Naukowe i praktyczne podstawy zwalczania szkodników w integrowanej ochronie roślin. [Scientific and practical basis for pests control in Integrated Pest Management]. Prog. Plant. Prot./Post. Ochr. Roślin 52 (4): 843 848. Pruszyński S., Walczak F. 2006. Rola regionalnej sygnalizacji w wyznaczaniu optymalnego terminu zwalczania agrofagów. [The role of regional pests and diseases monitoring in determination of the optimal date of chemical control treatments]. Prog. Plant. Prot./Post. Ochr. Roślin 46 (1): 169 175. Schwabe W.F.S. 1980. Wetting and temperature requirements for apple leaf infection by Venturia inaequalis in South Africa. Phytophylactica 12: 69 80. Tamm L., Minder C.E., Flückiger W. 1994. Phenological analysis of brown rot blossom blight of sweet cherry caused by Monilinia laxa. Phytopathology 85: 401 408. Walczak F., Tratwal A., Krasiński T. 20. Kierunki rozwoju prognozowania i sygnalizacji agrofagów w ochronie roślin rolniczych. [Directions of the development of pest forecasting and warning systems in plant protection]. Prog. Plant. Prot./Post. Ochr. Roślin 50 (1): 81 86. Wójtowicz A., Krasiński T. 2011. Opracowanie witryny internetowej do przekazywania informacji o zagrożeniu ziemniaka ze strony Phytophthora infestans. [Development of web-based system providing the information on late blight threat to potato crops]. Prog. Plant. Prot./Post. Ochr. Roślin 51 (2): 82 86.