Biotechnologia ogólna dla kierunku biologia, inżynieria środowiska od 2014/2015 ĆWICZENIE 9 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO

Podobne dokumenty
IZOLACJA OLEJKÓW ETERYCZNYCH

IZOLACJA OLEJKÓW ETERYCZNYCH

DWICZENIE 9 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO

Laboratorium - biotechnologia ogólna - dla studentów kierunku biotechnologia od 2014/2015 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO

SENSORYKA I PODSTAWY PERFUMERII. Agata. Jabłońska-Trypuć. Ryszard. Farbiszewski

2.Prawo zachowania masy

SPORZĄDZANIE ROZTWORÓW

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Podejmowanie decyzji. Piotr Wachowiak

Klasyfikacja i oznakowanie substancji chemicznych i ich mieszanin. Dominika Sowa

Oznaczanie właściwości tłuszczów

Laboratorium - biotechnologia ogólna - dla studentów kierunku biotechnologia wersja 1.2 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO

Dr inż. Andrzej Tatarek. Siłownie cieplne

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU CHEMIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Karta charakterystyki

PROCEDURA OCENY RYZYKA ZAWODOWEGO. w Urzędzie Gminy Mściwojów

Test F- Snedecora. będzie zmienną losową chi-kwadrat o k 1 stopniach swobody a χ

7. REZONANS W OBWODACH ELEKTRYCZNYCH

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01]

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie

Lp. Tematyka Liczba godzin I. Wymagania edukacyjne

Temat: Czy świetlówki energooszczędne są oszczędne i sprzyjają ochronie środowiska? Imię i nazwisko

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY

ZAPYTANIE OFERTOWE. Nazwa zamówienia: Wykonanie usług geodezyjnych podziały nieruchomości

OSTRZEŻENIA DANE TECHNICZNE. Wbudowana bateria słoneczna oraz alkaliczna bateria manganowa (1,5 V LR44)

Matematyka:Matematyka I - ćwiczenia/granice funkcji

Regulamin Obrad Walnego Zebrania Członków Stowarzyszenia Lokalna Grupa Działania Ziemia Bielska

Ogólna charakterystyka kontraktów terminowych

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych

Chemia i technologia materiałów barwnych BADANIE WŁAŚCIWOŚCI ZWIĄZKÓW BARWNYCH WYKORZYSTANIEM SPEKTROFOTOMETRII UV-VIS.

spektroskopia UV Vis (cz. 2)

STANDARD Standard określa zasady jednorodności i czystości dodatków do Ŝywności. Spis treści

SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE SST RECYKLING

Efektywność nauczania w Gimnazjum w Lutyni

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) :02:07

I. LOGICZNE STRUKTURY DRZEWIASTE

Uzdatniacz wody. Instrukcja obsługi , ,

INSTRUKCJA OBSŁUGI WD2250A. WATOMIERZ 0.3W-2250W firmy MCP

INSTRUKCJA BHP PRZY RECZNYCH PRACACH TRANSPORTOWYCH DLA PRACOWNIKÓW KUCHENKI ODDZIAŁOWEJ.

Techniczne nauki М.М.Zheplinska, A.S.Bessarab Narodowy uniwersytet spożywczych technologii, Кijow STOSOWANIE PARY WODNEJ SKRAPLANIA KAWITACJI

UCHWAŁA NR RADY MIEJSKIEJ W ŁODZI z dnia

Kalkulacyjny układ kosztów

Metrologia cieplna i przepływowa

Ćwiczenie: "Ruch harmoniczny i fale"

Badanie silnika asynchronicznego jednofazowego

tel/fax lub NIP Regon

Pomiary geofizyczne w otworach

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Automatyka. Etymologicznie automatyka pochodzi od grec.

Karta charakterystyki preparatu niebezpiecznego - Pasta pielęgnacyjna WOCA

- 70% wg starych zasad i 30% wg nowych zasad dla osób, które. - 55% wg starych zasad i 45% wg nowych zasad dla osób, które

ROZPORZĄDZENIE MINISTRA ROLNICTWA I ROZWOJU WSI 1) z dnia r.

INSTRUKCJA OBSŁUGI URZĄDZENIA: HC8201

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

WYNIKI BADANIA PT. JAK TAM TWOJE POMIDORY? :)

Ilość w szt PRASA NOŻNA PODWÓJNA

22 PRĄD STAŁY. CZĘŚĆ 1

Lekcja 173, 174. Temat: Silniki indukcyjne i pierścieniowe.

Temat lekcji: Bakterie a wirusy.

Sterownik Silnika Krokowego GS 600

Zapytanie ofertowe dotyczące wyboru wykonawcy (biegłego rewidenta) usługi polegającej na przeprowadzeniu kompleksowego badania sprawozdań finansowych

UKŁAD ROZRUCHU SILNIKÓW SPALINOWYCH

Badanie bezszczotkowego silnika prądu stałego z magnesami trwałymi (BLDCM)

PROCEDURA EWALUACJI WEWNĘTRZNEJ W SZKOLE PODSTAWOWEJ IM. JANA PAWŁA II W GRZĘDZICACH

KARTA CHARAKTERYSTYKI PREPARATU Pochłaniacz wilgoci, wkład uzupełniający

Lekcja 15. Temat: Prąd elektryczny w róŝnych środowiskach.

PROGRAM STYPENDIALNY GMINY DOBRZYCA

Technologie kodowania i oznaczania opakowań leków w gotowych. Koło o ISPE AMG 2007

Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą.

PRÓG RENTOWNOŚCI i PRÓG

Wyznaczenie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym

Komentarz technik dróg i mostów kolejowych 311[06]-01 Czerwiec 2009

KOMUNIKAT nr 1 (2008/2009) Rektora Akademii Ekonomicznej w Poznaniu z dnia 1 września 2008 r.

2. Wykonanie zarządzenia powierza się Sekretarzowi Miasta. 3. Zarządzenie wchodzi w życie z dniem podpisania.

Wskaźnik poziomu wody Kemo M167N, 10 diod LED, 3 V/DC

REGULAMIN FINANSOWANIA ZE ŚRODKÓW FUNDUSZU PRACY KOSZTÓW STUDIÓW PODYPLOMOWYCH

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie

KONKURSY MATEMATYCZNE. Treść zadań

REGULAMIN ZAJĘĆ Z PRZEDMIOTU: PODSTAWY PSYCHOTERAPII. - rok akademicki 2015/2016 -

Konspekt. Klasa I Czas trwania: 45 min. Opracowała: Alicja Rożniata. ZAGADNIENIE PROGRAMOWE: Woda, roztwory wodne.

LABORATORIUM TECHNOLOGII NAPRAW WERYFIKACJA TULEJI CYLINDROWYCH SILNIKA SPALINOWEGO

System centralnego ogrzewania

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Podstawowe oddziaływania w Naturze

Regulamin w konkurencjach solowych

Zasady przyjęć do klas I w gimnazjach prowadzonych przez m.st. Warszawę

PODSTAWY OBLICZEŃ CHEMICZNYCH DLA MECHANIKÓW

Urządzenie do odprowadzania spalin

NACZYNIE WZBIORCZE INSTRUKCJA OBSŁUGI INSTRUKCJA INSTALOWANIA

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

str. 1 WSTĘP Instrukcja użytkowania dla zaciskarek ręcznych typów SYQ 14-20A i SYQ14-32A (lipiec 2008) Złączki F5 profil U Złączki F7 profil TH

Właściwości materii - powtórzenie

Warszawska Giełda Towarowa S.A.

18 TERMODYNAMIKA. PODSUMOWANIE

PAKOWARKA PRÓŻNIOWA VAC-10 DT, VAC-20 DT, VAC-20 DT L, VAC-20 DT L 2A VAC-40 DT, VAC-63 DT, VAC-100 DT

UCHWAŁA NR VIII/43/2015 r. RADY MIASTA SULEJÓWEK z dnia 26 marca 2015 r.

Zagadnienia transportowe

Transkrypt:

Destylacja Destylacja polega na przemianie substancji w stan pary i następnym jej skropleniu w innym już miejscu po przeprowadzeniu przez aparaturę chłodzącą. Podstawowym warunkiem zastosowania tej metody jest możliwość przejścia oczyszczanej substancji w stan pary bez jednoczesnego rozkładu. I tak, destylację pod zwykłym ciśnieniem stosuje się wyłącznie do substancji o niewielkich cząsteczkach, których temperatura wrzenia leży poniżej 200 0 C. Dla substancji wysokowrzących stosuje się destylację pod zmniejszonym ciśnieniem. Substancje stałe destyluje się z reguły pod zmniejszonym ciśnieniem lub z parą wodną. Temperatura wrzenia jest, jak wiadomo, temperaturą, w której prężność pary substancji osiąga wartość ciśnienia atmosferycznego. Zmiana temperatury wrzenia w toku destylacji dowodzi, że substancja nie jest czysta i mamy do czynienia z mniej lub bardziej złożoną mieszaniną. Destylacja z parą wodną jest wygodną metodą oczyszczania substancji stałych i ciekłych nie mieszających się z wodą, lotnych zaś z parą wodną, tzn. wykazujących w temperaturze bliskiej 100 C dość znaczną prężność pary (co najmniej 6,5-13 hpa). Ponieważ woda i destylowany składnik A nie mieszają się ze sobą, ogólna prężność par, zgodnie z prawem Daltona, jest sumą prężności cząstkowych. P = P W + P A Ponieważ ciecz zaczyna wrzeć, gdy prężność jej par osiągnie wartość ciśnienia atmosferycznego panującego w danej chwili, przeto prężność par rozważanej mieszaniny osiąga wartość ciśnienia atmosferycznego w temperaturze niższej od temperatury wrzenia każdego z jej składników. Z tego wynika, że dopóki istnieją obie fazy ciekłe, destylat będzie miał stały skład, a temperatura wrzenia będzie niższa niż każdego ze składników osobno. Stosuje się więc tę metodę do destylacji cieczy lub ciał stałych (niskotopliwych) o wysokich temperaturach wrzenia lub do wydzielania lotnego z parą wodną składnika ze złożonych mieszanin. Przykładem takiego zastosowania może być wyodrębnianie olejków eterycznych z materiałów roślinnych. Destylacja z parą wodną pozwala ponadto w łatwy sposób: - oddzielić produkt od nielotnych produktów smolistych. - wydzielić związek organiczny z wodnych roztworów soli nieorganicznych. - oddzielić wiele substancji organicznych lotnych z para wodną od związków organicznych nielotnych z para wodną. Jeśli destyluje się z parą wodną znaczne ilości substancji, to parę wodną wytwarza się i doprowadza do układu z kociołka z podgrzewaną wodą (patrz rysunek obok), natomiast przy niewielkiej ilości destylowanej substancji wystarczy dodać do kolby z destylowaną substancją wystarczającą ilość wody i energicznie ogrzewając, prowadzić destylację poprzez łapacz kropel, co przedstawiono poniżej po prawej stronie Minusem destylacji z parą wodną jest konieczność oddzielenia właściwego destylatu od wody, co w przypadku ciał stałych jest proste (odsączenie i wysuszenie) natomiast w przypadku cieczy wymaga dość pracochłonnej ekstrakcji. Zestaw aparatury do destylacji z parą wodną przedstawiono na rysunku obok. 1 - wytwornica pary wodnej, 2 - chłodnica, 3 - kolba destylacyjna, 4 - przedłużacz, 5 - odbieralnik, 6 - rurka bezpieczeństwa. Inny wariant destylacji próbki surowca z wodą przeprowadza się w aparacie Derynga o zamkniętym obiegu wody. Wydzielony olejek zbiera się na powierzchni wody w odbieralniku. Aparat składa się z kolby szklanej i części zasadniczej. Część zasadnicza to kolumna destylacyjna, chłodnica i odbieralnik, który przez trójdrożny kurek i rurkę przepływową łączy się z kolumną destylacyjną tworząc zamknięty obieg wody. Kolumna zawęża rurkę i ta rurka kondensacyjna przechodzi poniżej chłodnicy w część kalibrowaną, stanowiącą odbieralnik. Górna, szersza część odbieralnika jest opatrzona podziałką co 0,1 ml, dolna, zwężona natomiast jest skalibrowana co 0,01 ml. Rurka odbieralnika zakończona jest trójdrożnym kurkiem, który z jednej strony łączy się z rurką przepływową, prowadzącą do kolumny destylacyjnej, a z drugiej strony ma krótką rurkę odpływową. Po zakończeniu oznaczenia resztki olejku usuwa się przepłukując aparat gorącą wodą, następnie etanolem lub acetonem. Schemat aparatu Derynga przedstawiono na rysunku obok. Ekstrakcja Ekstrakcja (z łaciny: extraho = wyciągam) jest to metoda wyodrębniania z mieszaniny ciał stałych lub cieczy jakiegoś składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał przede wszystkim żądany związek. Chemicy stosują tę metodę do otrzymania związków naturalnych z materiału roślinnego (liści, kory itp.). Wszyscy korzystamy z tej metody np. przy parzeniu kawy. W syntezie organicznej produkt reakcji otrzymywany jest często wraz z innymi związkami w postaci roztworu lub zawiesiny w wodzie. Podczas wytrząsania takiej mieszaniny z nie mieszającym się z wodą rozpuszczalnikiem, produkt reakcji ulega ekstrakcji i może być następnie odzyskany przez odparowanie rozpuszczalnika. Ekstrakcja związku z jednej fazy ciekłej do drugiej jest procesem ustalania się równowagi zależnym od rozpuszczalności związku w obu

rozpuszczalnikach. Stosunek stężenia w jednym rozpuszczalniku do stężenia w drugim nosi nazwę współczynnika podziału i jest wielkością stałą w danej temperaturze, charakterystyczną dla danej substancji i określonej pary rozpuszczalników (prawo Nernsta). C A C B = constans = K gdzie: C A i C B stanowią stężenia substancji w rozpuszczalnikach A i B; K współczynnik podziału Można przyjąć, że w przybliżeniu współczynnik podziału jest równy stosunkowi rozpuszczalności danej substancji w obu rozpuszczalnikach. Związki organiczne są zwykle lepiej rozpuszczalne w rozpuszczalnikach organicznych niż w wodzie i dlatego mogą one być ekstrahowane z roztworów wodnych. Jeżeli substancja rozpuszczona ulega w którejkolwiek z faz reakcjom chemicznym, takim jak asocjacja, dysocjacja, hydroliza czy solwatacja (czyli zmienia się jej stężenie) wyznaczenie współczynnika podziału jest trudne. Z tych samych przyczyn, w większości układów prawo podziału nie jest spełniane. Dlatego w praktyce wyznaczamy globalny, stechiometryczny rozdział interesującego nas składnika pomiędzy fazy (na który ma wpływ współoddziaływanie rozdzielanej substancji z innymi składnikami), zwany współczynnikiem ekstrakcji D. D = C 2 C1 gdzie: C 1 i C 2 - całkowite stężenie substancji w fazie 2 i fazie 1. Współczynnik ekstrakcji jest wielkością zależną od stężenia (nieliniowa izoterma podziału) ponieważ równowaga asocjacji i dysocjacji poważnie wpływa na podział. Można zapobiec nieliniowej izotermie podziału stosując odpowiednio dobraną parę rozpuszczalników, które utrzymywałyby stały stosunek zasocjowanych lub zdysocjowanych cząsteczek do cząsteczek pojedynczych lub niezdysocjowanych. Gdy ekstrahowana substancja nie podlega żadnym reakcjom w obydwu fazach, współczynnik ekstrakcji D jest równy współczynnikowi podziału K. Ekstrakcja periodyczna (nieciągła) polega na rozdziale substancji pomiędzy dwa nie mieszające się rozpuszczalniki, przez wytrząsanie obu warstw ciekłych, aż do osiągnięcia stanu równowagi pomiędzy stężeniami rozdzielanej substancji w obu rozpuszczalnikach. Do ekstrakcji i rozdzielania warstw nie mieszających się ze sobą cieczy używa się rozdzielaczy. Do ekstrakcji roztworów wodnych używa się rozpuszczalników o mniejszej gęstości (np. eter dietylowy) lub większej gęstości niż woda (np. chloroform lub chlorek metylenu) Dla uzyskania jak najpełniejszej ekstrakcji przy określonej ilości rozpuszczalnika powinno stosować się możliwie małe ilości rozpuszczalnika tworzącego fazę 2, a operację ekstrakcji powtarzać wielokrotnie. Przy wielokrotnym wytrząsaniu mniejszymi porcjami rozpuszczalnika uzyskuje się o wiele lepszy rozdział rozpuszczonej substancji niż przy jednorazowej ekstrakcji taką samą ilością rozpuszczalnika. Ekstrakcja ciągła - technikę ekstrakcji ciągłej stosuje się w przypadku układów o małych współczynnikach ekstrakcji. Zastosowanie w tym przypadku ekstrakcji nieciągłej wymagałoby użycia dużych ilości rozpuszczalnika. Istotną wadą tego sposobu ekstrakcji jest bardzo duże zużycie ekstrahenta i odpowiednio małe średnie stężenie ekstraktu, stanowiącego mieszaninę cieczy ze stopniowo zmniejszającym się stężeniem substancji ekstrahowanej. Utrudnia to regenerację ekstrahenta i wydzielenie usuwanej z surówki ekstrakcyjnej substancji. Ekstrakcję w układzie ciało stałe-ciecz przeprowadza się kiedy trzeba wyekstrahować z ciała stałego jego składnik rozpuszczalny w jakimś rozpuszczalniku. Ten typ ekstrakcji nazywa się ługowaniem. Ekstrakcja ciało stałe-ciecz jest podstawowym procesem do wyodrębniania związków organicznych z surowców roślinnych. Polega ona na wybiórczym rozpuszczaniu substancji znajdującej się w stałej próbce. W takiej sytuacji przenoszenie substancji do roztworu zależy głównie od rozpuszczalności substancji w danym rozpuszczalniku. W większości przypadków ekstrakcja z ciał stałych jest operacją wymagającą znacznych ilości czasu, dlatego najbardziej korzystny jest ciągły sposób jej realizacji. Najczęściej stosowanym aparatem do ekstrakcji w układzie ciało stałe-ciecz jest aparat Soxhleta. Otrzymywanie ekstraktów roślinnych W ostatnich latach obserwuje się rosnącą liczbę nowych produktów kosmetycznych, w których podstawowymi składnikami aktywnymi są substancje pochodzenia roślinnego. Ich zastosowanie w kosmetyce pielęgnacyjnej zmierza w dwu kierunkach. Pierwszy z nich to wykorzystanie ich właściwości jako substancji aktywnych wpływających na stan, wygląd i zdrowie skóry. Drugi to oddziaływanie na ogólny stan psychiczny i pośrednio fizyczny człowieka. Poza samymi roślinami (ziołami, owocami, liśćmi, korzeniami) stosowanymi w stanie naturalnym, lub w formie rozdrobnionej, już od czasów prehistorycznych wytwarzano produkty kosmetyczne w formie wydzielanych z roślin ich składników. Charakter preparatów roślinnych jak również metody wydzielania pozwalają na próbę dokonania podziału na kilka grup, różniących się składem i przeznaczeniem. Do najstarszych należą niewątpliwie oleje roślinne stosowane zarówno do celów spożywczych jak i pielęgnacyjnych. Generalnie oleje otrzymuje się z roślin przez wytłaczanie, ale również spotyka się oleje otrzymywane metodą ekstrakcji. Liczba stosowanych w kosmetyce olejów roślinnych rośnie bardzo szybko. Pestki wszystkich powszechnie znanych owoców, wszystkie nasiona i dziesiątki innych materiałów roślinnych są wytłaczane lub ekstrahowane w celu uzyskania tłuszczów o coraz ciekawszych właściwościach kosmetycznych. Druga grupa preparatów to olejki eteryczne i różnorodne ekstrakty. Warto tutaj wyjaśnić różnice między wyżej wymienionymi terminami: - olejki eteryczne to mieszaniny lotnych substancji (zapachowych i biologicznie czynnych) otrzymywanych przez destylację surowca roślinnego z para wodną lub przez wyciskanie (np. skórki owoców cytrusowych). Takie produkty nie mogą zawierać

żadnych innych składników niż te, które pochodzą z surowca. Podobne składniki można otrzymać metodą podwójnej ekstrakcji (rozpuszczalnikiem organicznym niepolarnym i po jego usunięciu z otrzymanego konkretu rozpuszczalnikiem polarnym najczęściej etanolem), która daje produkt zwany absolutem. Ten zazwyczaj zawiera resztki rozpuszczalników używanych w procesie, a często w celu poprawienia konsystencji dodany na końcu procesu rozpuszczalnik organiczny. - ekstraktem najpowszechniej nazywa się produkt otrzymany poprzez wymywanie pożądanych składników z surowca roślinnego przy pomocy rozpuszczalnika, na ogół organicznego, a następnie usunięciu rozpuszczalnika. W niektórych przypadkach dla uzyskania odpowiedniej konsystencji pozostawia się część rozpuszczalnika. Konsystencja zależy od charakteru ekstrahowanych składników (i ilości pozostawionego rozpuszczalnika) może być płynna, półpłynna lub stała (ekstrakty suche). - wyciągi natomiast to ekstrakty, w których pozostawiono cały lub większość rozpuszczalnika użytego do ekstrakcji. Najczęściej dotyczy to ekstraktów wodnych, alkoholowych lub alkoholowo-wodnych, ale także glicerynowych, glikolowych, olejowych. - Budowa i występowanie olejków eterycznych W naszym klimacie olejki eteryczne najczęściej pozyskuje sie z roślin należących do następujących rodzin: baldaszkowatych (Umbelliferae), - krzyżowych (Cruciferae), - liliowatych (Liliaceae), - różowatych (Rosceae), - wargowych (Labiatae), - złożonych (Compositae). Olejki wytwarzane są w wyspecjalizowanych tkankach wydzielniczych. W komórce powstają tylko w cytoplazmie przy udziale struktur Golgiego i retikulum endoplazmatycznego. Są one uważane za końcowe produkty przemiany materii. Gęstość właściwa większości olejków jest mniejsza niż wody. W temperaturze pokojowej olejki maja zwykle konsystencje płynna, rzadziej mazista, a wyjątkowo zestalają sie (olejek anyżowy). Najczęściej są bezbarwne, ale mogą być lekko _żółte, brunatnawe, błękitne i zielone. Bardzo słabo rozpuszczają sie w wodzie, natomiast stosunkowo łatwo rozpuszczają sie w tłuszczach, rozpuszczalnikach organicznych oraz innych olejkach eterycznych. Olejki są optycznie czynne - prawo- i lewoskrętne. Temperatury wrzenia mieszczą sie zwykle w przedziale 150-300 0 C. W temperaturze poniżej 0 0 C niektóre olejki eteryczne wydzielają związki stałe, najczęściej w postaci krystalicznej, które zwane są stearoptenami. Na przykład z olejku miętowego uzyskuje sie w ten sposób mentol, z olejku anyżowego - anetol, z kamforowego - kamforę. Jeden olejek przeważnie składa sie z kilkudziesięciu związków o różnym stężeniu, pochodzeniu i charakterze biogenetycznym. Najważniejsze składniki olejków eterycznych należą do związków terpenowych i ich pochodnych. W ich składzie można ponadto spotkać inne niż terpeny substancje zapachowe, np. - estry (octan linalilu), - alkohole (benzylowy, fenylowy), - aldehydy (cynamonowy, benzoesowy), - ketony (iron), - fenole (tymol), - etery (anetol, eugenol), - węglowodory, - kumaryny, - kwasy organiczne. Skład olejku zależy też od części rośliny, z których jest otrzymywany. W przypadku drzewa cynamonowego, głównym składnikiem olejku eterycznego zawartego w liściach jest eugenol, podczas gdy w olejku z kory dominuje aldehyd cynamonowy. Charakterystyka niektórych olejków eterycznych Występowanie Zapach Główny składnik Aktywność aromatoterapeutyczna Skórka cytryny cytrynowy D-limonen, cytral bakteriobójcza Igły jodły pospolitej balsamiczny pinen, limonen infekcje górnych dróg oddechowych Skórka pomarańczy słodkiej pomarańczowy nerol, limonen Ziele mięty pieprzowej miętowy mentol, menton Nasiona kminku kminkowy karwon, limonen łagodząca Płatki kwiatów róży damasceńskiej różany geraniol, cytronelol, alkohol fenyloetylowy antydepresyjna, lekko uspokajająca antyseptyczna, łagodząca, stymulująca trawienie, znieczulająca stymulująca, afrodyzjalna, antyinfekcyjna Igły sosny żywiczny pinen, kareny,kadiden antyseptyczna, immunostymulująca

Nasiona lawendy lawendowy octan linalilu, geraniol Liście eukaliptusa Ziele szałwi orzeźwiający gorzko ziołowy eukaliptol, cyneol, pinen, kamfen β-tujon, pinen, salwen, kamfen, borneol stymulująca, uspokajająca, antyseptyczna, przeciwgrzybicza, przeciwbólowa przeciwbakteryjna, przeciwwirusowa, łagodząca, pobudzająca, przeciwbólowa stymulująca, łagodząca depresje, ułatwiająca oddychanie Ziele tymianku tymolowy tymol immunostymulująca, pobudzająca Związki terpenowe Terpenami nazywamy naturalne węglowodory pochodzenia głównie roślinnego o ogólnym wzorze (C 5H 8) n, będące oligomerami izoprenu (2-metylobuta-1,3-dienu). W zależności od stopnia polimeryzacji n (n liczba jednostek izoprenowych), wyróżnia się: - hemiterpeny, n=1, - monoterpeny (terpeny), C 10H 16, n=2, - seskwiterpeny, C 15H 24, n=3, - diterpeny, C 20H 32, n=4, - sesterterpeny, C 25H 40, n=5, - triterpeny, C 30H 48, n=6, - tetraterpeny, C 40H 64, n=8, - politerpeny, n>8 Hemiterpeny - kwas metyloetylooctowy z olejku arcydzięglowego - kwas izowalerianowy z olejku walerianowego - alkohol izoamylowy z olejku miętowego - prenol z olejku kopru włoskiego cytronelol Monoterpeny W olejkach monoterpeny stanowią najliczniejsza grupę związków. Są one bardzo lotne i maja intensywny zapach. Związki te charakteryzują sie dużą różnorodnością struktur związanych z możliwością cyklizacji, obecności podwójnych wiązań, izomerii strukturalnej i optycznej. Ze względu na budowę monoterpeny oraz ich pochodne (najczęściej tlenowe), czyli monoterpenoidy, można podzielić na niecykliczne, jednopierścieniowe, i dwupierścieniowe. Ze względu na stopień utlenienia w wymienionych monoterpenach i monoterpenoidach można wyróżnić węglowodory, alkohole, aldehydy, ketony, kwasy, estry i tlenki. Monoterpeny acykliczne - cytronelol olejek różany i pelargoniowy - geraniol olejek różany, pelargoniowy i cytrynowy Monoterpeny jednopierścieniowe - limonen - olejek pomarańczowy, cytrynowy, kminkowy, świerkowy, jodłowy - α-terpinen składnik olejku kolendrowego i pomarańczowego - mentol składnik olejku mięty pieprzowej Monoterpeny dwupierścieniowe Stanowią jedną z najbardziej zróżnicowanych grup terpenoidów i dzielą się pod względem budowy szkieletu węglowego na siedem głównych grup. Najważniejsze to: - grupa tujanu - α-tujon olejek tujowy i ziele piołunu - grupa karanu 3-karen olejek sosnowy - grupa pinenu kamfora olejek kamforowy α-tujon Seskwiterpeny Stanowią dużą grupę związków. Są gęstymi lepkimi cieczami lub substancjami stałymi, wrzącymi powyżej 250 0 C, nie rozpuszczają sie w wodzie, natomiast łatwo ulęgają rozpuszczeniu w rozpuszczalnikach organicznych. Większość z nich jest trudno lotna lub nielotna. Możemy wśród nich wyróżnić związki acykliczne, monocykliczne, dwucykliczne i trójcykliczne. Przykłady seskwiterpenów to: - farnezol składnik olejku konwaliowego, lipowego, muszkatołowego, akacjowego - bisabolen - z olejku bergamotowego oraz roślin cytrusowych

- kadiden olejek sosnowy. ZWIAZKI AROMATYCZNE wchodzące w skład olejków eterycznych to węglowodory aromatyczne i ich pochodne, fenole i ich pochodne oraz heterocykliczne pochodne związków aromatycznych. Bardzo często są one syntetyzowane z jednostek izoprenoidowych (tak jak terpenoidy) a nie w przemianach pierścienia aromatycznego. - węglowodory aromatyczne - na uwagę zasługują tutaj alkohol i aldehyd kuminowy, istotne składniki olejku otrzymywanego z kminu rzymskiego, aldehyd anyżowy oraz główne składniki olejku cynamonowego (alkohol, aldehyd i kwas cynamonowy). - fenole i ich pochodne - przykładem fenoli jednowodorotlenowych są anetol oraz estragol składniki olejku estragonowego a także tymol składnik olejku tymiankowego. Do fenoli dwuwodorotlenowych należy eugenol składnik ziela angielskiego i liści laurowych. Wykonanie ćwiczenia. 1.1. Zestawić aparaturę (aparat Derynga). 1.2. Do kolby o pojemności 250 cm 3 wsypać rozdrobniony i uprzednio zważony materiał roślinny Dokładnie odważyć próbkę surowca (skórka pomarańczy lub cytryny, melisa, lawenda, mięta, płatki kwiatów) 50-100g i natychmiast umieścić w kolbie o pojemności 250 cm 3. Całość zalać wodą destylowaną w ilości 150 ml. 1.3. Kolbę połączyć z aparatem Derynga, napełnić odbieralnik wodą, włączyć chłodzenie i ogrzewać ok. 1 godziny. 1.4. Po zakończeniu destylacji chłodzenie wyłączyć, olejek sprowadzić na mikroskali i odczytać otrzymany wynik. 1.5. Odczytana ilość olejku przeliczyć na 100 gramów surowca roślinnego. 1.6. Rozmontować aparaturę i umyć szkło. 1.7. Uzyskany olejek eteryczny zlać delikatnie do probówki. 1.8. Dokonać pomiaru współczynnika refrakcji (nd) w refraktometrze PAL-BR/RI. 1.9. Kalibrację refraktometru wykonujemy wodą destylowaną. Niewielką ilość wody (ok. 0,3ml) nanosimy na okienko pomiarowe i naciskamy przycisk START urządzenie powinno wskazać 0,0%, jeżeli nie naciskamy przycisk ZERO. Po kalibracji wodę usuwamy bibułą. Następnie nanosimy badaną próbę: krótkie naciśnięcie przycisku START - pomiar w skali %Brix, 2 sekundowe przytrzymanie przycisku START pomiar w współczynnika refrakcji nd. Wyłączenie urządzenia przytrzymanie przycisku START 4s. Po wykonaniu pomiaru urządzenie dobrze przemyć wodą destylowaną i osuszyć bibułą. 1.10. Opracowanie wyników Przedstawić opis doświadczenia w zeszycie wraz z rysunkiem aparatu Derynga i z charakterystyką otrzymanego materiału roślinnego. Podać ilość wydzielonego podczas destylacji olejku eterycznego w przeliczeniu na 100 g materiału roślinnego i jego współczynnik refrakcji. 2. Materiały do ćwiczeń, które zapewnia student!!!! Materiał roślinny do otrzymywania olejku: skórka pomarańczy lub cytryny, melisa, lawenda, mięta, płatki kwiatów 3. Literatura - Koźmińska-Kubarska A., Zarys kosmetyki lekarskiej, PZWL, 1978. - Fengier W., Szeląg P., Chemia kosmetyczna, 1998. - Arct J., O kosmetykach, WTN, 1987.