PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 69 Transport 2009 Katarzyna BEUTH, Anna STELMACH Wydział Transportu Politechniki Warszawskiej ul. Koszykowa 75, 00-662 Warszawa e-mail: ast@it.pw.edu.pl IDENTYFIKACJA MODELU MATEMATYCZNEGO OPERACJI STARTU SAMOLOTU Streszczenie Przedmiotem artykułu jest modelowanie poszczególnych etapów operacji startu, a nast pnie identyfikacja elementarnych modeli tych etapów w oparciu o parametry zarejestrowane przez pokładowy rejestrator parametrów lotu samolotu. Zbudowane modele odwzorowuj ce rzeczywiste operacje samolotu w rejonie lotniska, b d wykorzystane w praktyce lotniczej. Słowa kluczowe: ruch lotniczy, operacja startu, modelowanie 1. WPROWADZENIE Komputerowa identyfikacja parametrów polega na opracowaniu modelu matematycznego z wykorzystaniem wyników pomiarów przeprowadzonych na rzeczywistym obiekcie [4]. W pierwszej kolejno ci nale y okre li jaka jest posta zale no ci opisuj cej dan zmienn w modelu matematycznym. Nast pnie przeprowadzana jest identyfikacja współczynników dla ju okre lonej postaci funkcji w przedziałach zmienno ci. W przypadku operacji startu dokonano podziału tej fazy na segmenty. S one dobrane tak, aby minimalizowa problem ci gło ci funkcji na granicach przedziałów. Zało ono, e segmentów startu samolotu jest sze. Po okre leniu, we wszystkich segmentach ww. funkcji dla przyj tych zmiennych, dokonuje si oceny jako ci odwzorowania przez model rzeczywistego procesu poprzez obliczenie współczynników jako ci identyfikacji. W ramach analizy takiej jak opisana powy ej mo na, ze wzgl du na zapotrzebowanie i konkretne wykorzystanie modelu, analizowa ró nego rodzaju parametry. Mo na tk e dokona kompleksowej identyfikacji dynamiki ruchu samolotu w fazie startu poprzez identyfikacj sił i momentów sił działaj cych na startuj cy samolot. Tego typu odwzorowanie mo e posłu y do budowy, na przykład, symulatorów lotu słu cych do szkolenia personelu lataj cego [4]. W przedstawionym przykładzie model odwzorowuje rzeczywist pr dko lotu i pr dko pionow samolotu w fazie startu. Jest to wystarczaj ce na potrzeby badania m.in. zaj to ci pasa startowego, czy innego typu bada maj cych na celu wzrost przepustowo ci i bezpiecze stwa w ruchu w rejonie lotniska. 2. IDENTYFIKACJA MODELU W przedstawionym przykładzie analizowane s parametry lotu samolotu Embraer 170 [6] zarejestrowane przez pokładowe rejestratory lotu. Do parametrów rejestrowanych
30 Katarzyna Beuth, Anna Stelmach parametrów nale m.in.: pr dko rzeczywista wzgl dem ziemi, wysoko barometryczna, współrz dne geograficzne, kurs, k t pochylenia i przychylenia, przyspieszenie podłu ne i normalne, liczba Macha lotu, moc silników, poło enie klap/podwozia, mas całkowit samolotu. Wykorzystane do stworzenia modelu przebiegi czasowe parametrów lotu zarejestrowano w lotach z lotniska Warszawa Ok cie, przy starcie z pasa 29 na t sam tras i przy wykorzystaniu tej samej procedury standardowego odlotu (SID) TITAC 1G. Uwzgl dniono dane zarejestrowane do momentu osi gni cia przez samolot pr dko ci 250 w złów. W ten sposób zdefiniowano na potrzeby analizy koniec fazy startu. Spełnienie wymienionych warunków odpowiada praktyce lotniczej i jest równoznaczne ze spełnieniem zało e przyj tych do modelowania. Na rys. 1 i 2 oraz w tab. 1 przedstawiono podział fazy startu na segmenty oraz opisy przebiegu startu. Z kolei dodatkowo na rys. 2 zamieszczono przykładowe przebiegi czasowe pr dko ci lotu podczas operacji startu dla trzech samolotów. Analogicznie jak wy ej rys. 3 przedstawia przebiegi czasowe pr dko ci wznoszenia samolotu podczas startu. Rys. 1. Schemat startu samolotu ródło: opracowanie własne na podstawie [3] Tablica. 1. Opis poszczególnych segmentów fazy startu samolotu Segment Opis segmentu I pocz tek rozbiegu II rozbieg do momentu osi gni cia pr dko ci decyzji (V 1 ), nast pnie pr dko rotacji (V R ) a do oderwania i wznoszenie na bezpiecznej pr dko ci III dalsze wznoszenie oraz chowanie podwozia IV chowanie klap V lot od chwili schowania klap do momentu osi gni cie pr dko ci 210 w złów VI lot do chwili osi gni cia pr dko ci 250 w złów ródło: opracowanie własne
Identyfikacja modelu matematycznego operacji startu samolotu 31 Rys. 2. Pr dko rzeczywista samolotu z trzech lotów. Rys. 3. Pr dko pionowa samolotu w trzech lotach Poni ej przedstawiono wyniki komputerowej identyfikacji modeli odwzorowuj cych przebieg zmian w czasie pr dko ci lotu oraz pr dko ci wznoszenia. Wykorzystano metod komputerowej identyfikacji parametrycznej [4] wraz ze stosownym oprogramowaniem. Identyfikacji dokonano wykorzystuj c dane z rejestratorów trzech wybranych lotów wykonanych w dniach 14, 29 oraz 31 grudnia 2008 r.
32 Katarzyna Beuth, Anna Stelmach Po analizie rzeczywistych lotów przyj to, e posta funkcji b d cej przedstawieniem pr dko ci rzeczywistej (V) i pionowej (w) samolotu w fazie startu s wielomiany algebraiczne postaci: V w mj mj () t = () t = k i= 1 m l= 1 at i bt i 1 l 1 l gdzie: V mj (t) pr dko rzeczywista samolotu w chwili t dla j-tego segmentu, w mj (t) pr dko pionowa (wznoszenia) samolotu w chwili t dla j-tego segmentu, a i b i j t współczynniki wielomianu okre laj cego pr dko rzeczywist samolotu, współczynniki wielomianu okre laj cego pr dko pionow (wznoszenia) samolotu, numer segmentu fazy startu, czas [s]. (1) Dla ka dego segmentu okre lono posta modelu (stopnie wielomianów k i m) i warto ci współczynników a i oraz b i. Wykorzystano przy tym wyznaczane wska niki ilo ciowe i jako ciowe identyfikacji dokładno ci odwzorowania przez model rzeczywistych V i w [4]. Poni ej przedstawiono wyniki identyfikacji rozpatrywanych model dla poszczególnych segmentów. Segment I Tablica. 2. Współczynniki wielomianu modelu pr dko ci rzeczywistej i pionowej samolotu EMB 170 w segmencie I fazy startu współ. V m1 w m1 V m1 w m1 V m1 w m1 a 1 /b 1 0 0 0 0 0 0 a 2 /b 2 2,26E+00 5,46E-02 3,29E+00-4,53E-02 8,69E+00-2,13E+00 a 3 /b 3 2,37E+00-2,37E-01 3,40E+00 1,51E-01 3,08E+00 4,09E+00 a 4 /b 4-1,40E-01 - -5,63E-02 - -1,95E+00 a 5 /b 5 - -1,11E-00-3,83E-02-3,91E-01 a 6 /b 6 - -2,73E-04 - -6,65E-03 - -3,51E-02 a 7 /b 7 2,52E-05 3,19E-04 1,16E-03 W tab. 2 przedstawiono wyniki identyfikacji parametrów a i i b l dla pojedynczo identyfikowanych modeli lotów samolotu 1, 2 i 3. Dla rozpatrywanego segmentu lotu pr dko rzeczywist odwzorowuje wielomian pierwszego stopnia natomiast pr dko pionow wielomian szóstego stopnia. Wyznaczone warto ci wska ników jako ci identyfikacji podane zostały w tab.3. Wyznaczono tu współczynnik korelacji, wariancj resztkow 2 oraz warto ci przedziałów ufno ci a i b.
Identyfikacja modelu matematycznego operacji startu samolotu 33 Tablica. 3. Wska niki jako ci identyfikacji dla segmentu I fazy startu samolotu EMB 170 V m1 w m1 V m1 w m1 V m1 w m1 Uogólniony współczynnik 0,9043 0,9050 0,9693 0,6152 0,9688 0,8704 korelacji Wariancja resztkowa 2 4,46E+00 0,37E+00 3,68E+00 7,51E-01 3,06E+00 5,65E-01 a 2 / b 2 5,49E+00 3,33E+00 3,86E+00 1,47E+00 3,21E+00 1,10E+00 Przedziały ufno ci a 3 / b 3 7,46E-01 4,42E+00 5,46E-01 2,86E+00 4,54E-01 2,15E+00 a 4 / b 4-1,91E+00-1,64E+00-1,23E+00 a 5 / b 5-3,56E+00-3,62E-01-2,72E-01 a 6 / b 6-2,97E-02-3,37E-02-2,54E-02 a 7 / b 7-9,08E-04-1,12E-03-8,42E-04 Rys. 4. Pr dko rzeczywista (V) i pionowa (w) (zarejestrowana w rzeczywistym locie (Vr i wr) i z modelu (Vm i wm)) samolotu w segmencie I fazy startu dla lotu 1 Przebiegi czasowe zmiany pr dko ci rzeczywistej i pr dko ci pionowej z modelu i z rzeczywistego lotu przedstawiono na rys. 4. Z przedstawionego wykresu celowym jest przyj cie modelu w postaci wielomianu wy szego stopnia. wiadcz o tym równie niekorzystne warto ci wska ników jako ci identyfikacji (tab. 3). Segment II Tablica. 4. Współczynniki wielomianu modelu pr dko ci rzeczywistej i pionowej samolotu EMB 170 w segmencie II fazy startu współ. V m2 w m2 V m2 w m2 V m2 w m2 a 1 /b 1 0 0 0 0 0 0 a 2 /b 2-1,18E+01-1,18E+02 2,11E+00 1,94E+02 6,79E+00 2,41E+02 a 3 /b 3 4,60E+00 2,81E+01 4,38E+00-3,49E+01 4,16E+00-4,53E+01 a 4 /b 4 - -2,70E+00-2,11E+00-3,04E+00 a 5 /b 5-1,31E-01 - -4,13E-02 - -8,30E-02 a 6 /b 6 - -3,21E-03 - -3,23E-04-6,08E-04 a 7 /b 7-3,10E-05-1,35E-05-5,39E-06
34 Katarzyna Beuth, Anna Stelmach Tablica. 5. Wska niki jako ci identyfikacji dla segmentu II fazy startu samolotu EMB 170 V m2 w m2 V m2 w m2 V m2 w m2 Uogólniony współczynnik 0,9965 0,9058 0,9955 0,9531 0,9930 0,9599 korelacji Wariancja resztkowa 2 0,30E+01 1,85E+00 3,08E+00 1,51E+00 3,50E+00 1,62E+00 a 2 / b 2 4,27E+00-4,63E+00-5,26E+00 - Przedziały ufno ci a 3 / b 3 1,64E-01-1,82E-01-2,7E-01 - a 4 / b 4 - - - - - - a 5 / b 5 - - - - - - a 6 / b 6 - - - - - - a 7 / b 7 - - - - - - Rys. 5. Pr dko rzeczywista (V) i pionowa (w) (zarejestrowana w rzeczywistym locie (Vr i wr) i z modelu (Vm i wm)) samolotu w segmencie II fazy startu dla lotu 2 Segment III Tablica. 6. Współczynniki funkcji pr dko ci rzeczywistej i pionowej samolotu EMB 170 w segmencie III fazy startu współ. V m3 w m3 V m3 w m3 V m3 w m3 a 1 /b 1 0 0 0 0 0 0 a 2 /b 2 1,47E+02-1,67E+02-1,16E+00 1,65E+02-9,87E+02 a 3 /b 3 4,54E-01-1,75E+01-2,89E-01 1,03E+02-5,02E-01 5,49E+01 a 4 /b 4-5,96E-03 8,34E-01 - -2,11E+00 3,50E-03-9,56E-01 a 5 /b 5 - -7,08E-03-1,08E-02-7,00E-03 a 6 /b 6 - -1,08E-03-1,28E-04 - -5,37E-05 a 7 /b 7-1,32E-06-1,22E-06-4,64E-07
Identyfikacja modelu matematycznego operacji startu samolotu 35 Tablica. 7. Wska niki jako ci identyfikacji dla segmentu III fazy startu samolotu EMB 170 V m3 w m3 V m3 w m3 V m w m3 Uogólniony współczynnik 0,7492 0,9460 0,9628 0,9213 0,7231 0,9867 korelacji Wariancja resztkowa 2 1,43E+00 2,92E+00 7,41E-01 2,31E+00 1,25E+00 1,21E+00 a 2 / b 2 2,12E+01-1,63E+00-1,79E+01 - Przedziały ufno ci a 3 / b 3 8,22E-01-3,12E-02-7,08E-01 - a 4 / b 4 7,81E-03 - - - 6,58E - a 5 / b 5 - - - - - - a 6 / b 6 - - - - - - a 7 / b 7 - - - - - - Rys. 6. Pr dko rzeczywista (V) (zarejestrowana w rzeczywistym locie (Vr) i z modelu (Vm) samolotu w segmencie III fazy startu dla lotu 2 Rys. 7. Pr dko pionowa (w) (zarejestrowana w rzeczywistym locie (wr) i z modelu (wm)) samolotu w segmencie III fazy startu dla lotu 3
36 Katarzyna Beuth, Anna Stelmach Segment IV Tablica. 8. Współczynniki funkcji pr dko ci rzeczywistej i pionowej samolotu EMB 170 w segmencie IV fazy startu współ. V m4 w m4 V m4 w m4 V m4 w m4 a 1 /b 1 0 0 0 0 0 0 a 2 /b 2 5,93E+01 9,05E+02 3,19E+01-1,47E+01 5,66E+01-6,44E+01 a 3 /b 3 1,37E+00-8,80E+00 1,73E+00 1,78E+00 1,32E+00 - a 4 /b 4 - -2,20E-01-9,53E-03 - -2,09E+02 a 5 /b 5 - -2,11E-05 - -2,10E-04-4,01E-03 a 6 /b 6-6,39E-05 - -7,59E-06 - -7,60E-05 a 7 /b 7 - -4,22E-05-7,49E-08-3,90E-07 Tablica 9. Wska niki jako ci identyfikacji dla segmentu IV fazy startu samolotu EMB 170 Uogólniony współczynnik korelacji V m4 w m4 V m4 w m4 V m4 w m4 0,9977 0,9647 0,9969 0,9519 0,9633 0,9933 Wariancja resztkowa 2 6,57E-01 1,47E+00 1,00E+00 1,98E+00 2,72E+00 1,23E+00 a 2 / b 2 3,28E+00-4,68E+00-1,26E+01 - Przedziały ufno ci a 3 / b 3 4,13E-02-5,93E-02-1,60E-01 - a 4 / b 4 - - - - - - a 5 / b 5 - - - - - - a 6 / b 6 - - - - - - a 7 / b 7 - - - - - - Rys. 8. Pr dko rzeczywista (V) (zarejestrowana w rzeczywistym locie (Vr) i z modelu (Vm)) samolotu w segmencie IV fazy startu dla lotu 1
Identyfikacja modelu matematycznego operacji startu samolotu 37 Rys. 9. Pr dko pionowa (w) (zarejestrowana w rzeczywistym locie (wr) i z modelu (wm)) samolotu w segmencie IV fazy startu dla lotu 3 Segment V Tablica. 10. Współczynniki funkcji pr dko ci rzeczywistej i pionowej samolotu EMB 170 w segmencie V fazy startu współ. V m5 w m5 V m5 w m5 V m5 w m5 a 1 /b 1 0 0 0 0 0 0 a 2 /b 2-2,59E+02 8,76E+02 1,44E+02 2,32E+02 1,32E+02 1,51E+03 a 3 /b 3 7,95E+00-1,42E+01 5,91E-01-5,52E+00 6,70E-01-2,39E+01 a 4 /b 4-3,38E-02-4.20E-02 - -1,28E-02 - -8,61E-02 a 5 /b 5-9,65E-04-3,22E-04-1,30E-03 a 6 /b 6-5,78E-06-7,01E-06-1,86E-05 a 7 /b 7 - -5,53E-08 - -5,40E-08 - -1,38E-07 Tablica. 11. Wska niki jako ci identyfikacji dla segmentu V fazy startu samolotu EMB 170 Uogólniony współczynnik korelacji V m5 w m5 V m5 w m5 V m5 w m5 0,9794 0,9666 0,8895 0,9699 0,8277 0,9878 Wariancja resztkowa 2 1,50E+00 3,77E+00 2,95E+00 3,95E+00 4,40E+00 2,71E+00 a 2 / b 2 7,80E+01-1,21E+01-1,80E+01 - Przedziały ufno ci a 3 / b 3 1,50E+00-1,13E-01-1,68E-01 - a 4 / b 4-6,95E-03 - - - - - a 5 / b 5 - - - - - - a 6 / b 6 - - - - - - a 7 / b 7 - - - - - -
38 Katarzyna Beuth, Anna Stelmach Rys. 10. Pr dko rzeczywista (V) (zarejestrowana w rzeczywistym locie (Vr) i z modelu (Vm)) samolotu w segmencie V fazy startu dla lotu 1 Rys. 11. Pr dko pionowa (w) (zarejestrowana w rzeczywistym locie (wr) i z modelu (wm)) samolotu w segmencie V fazy startu dla lotu 3 Segment VI Tablica. 12. Współczynniki funkcji pr dko ci rzeczywistej i pionowej samolotu EMB 170 w segmencie VI fazy startu współ. V m6 w m6 V m6 w m6 V m6 w m6 a 1 /b 1 0 0 0 0 0 0 a 2 /b 2 1,02E+02 3,75E+02 7,54E+01 1,94E+03 8,18E+01 3,80E+03 a 3 /b 3 8,85E-01-3,76E+00 1,10E+00-1,78E+01 1,07E+00-4,10E+01 a 4 /b 4-1,06E-02 - -5,51E-02 - -7,31E-02 a 5 /b 5 - -3,22E-05-3,56E-04-7,64E-04 a 6 /b 6-5,70E-08-0,45E-05-1,04E-05 a 7 /b 7-8,15E-10 - -1,94E-08 - -5,04E-08
Identyfikacja modelu matematycznego operacji startu samolotu 39 Tablica. 13. Wska niki jako ci identyfikacji dla segmentu VI fazy startu samolotu EMB 170 V m6 w m6 V m6 w m6 V m6 w m6 Uogólniony współczynnik korelacji 0,9922 0,9455 0,9871 0,9360 0,9517 0,9089 Wariancja resztkowa 2 1,69E+00 2,21E+00 2,19E+00 3,32E+00 4,42E+00 3,83E+00 a 2 / b 2 4,82E+00-8,30E+00-1,57E+01 - Przedziały ufno ci a 3 / b 3 3,22E-02-5,79E-02-1,09E-01 - a 4 / b 4 - - - - - - a 5 / b 5 - - - - - - a 6 / b 6 - - - - - - a 7 / b 7 - - - - - - W wyniku identyfikacji współczynników wielomianu, oraz weryfikacji poprzez wyznaczenie wska ników jako ci identyfikacji, otrzymano funkcje opisuj ce zmian pr dko ci rzeczywistej i pionowej samolotu w segmencie VI fazy startu dla lotu 1 (rys. 12). Rys. 12. Pr dko rzeczywista (V) i pionowa (w) (zarejestrowana w rzeczywistym locie (Vr i wr) i z modelu (Vm i wm)) samolotu w segmencie VI fazy startu dla lotu 1 Wykorzystuj c wyniki identyfikacji omawianych równa przedstawiono na rys. 13 przebiegi czasowe pr dko ci rzeczywistej V i pionowej w samolotu w fazie startu, uzyskane z modelu i z rejestracji pokładowej. Z rysunku wida dobre odwzorowanie rzeczywisto ci przez model.
40 Katarzyna Beuth, Anna Stelmach Rys. 13. Wynik identyfikacji modelowego przebiegu czasowego pr dko ci rzeczywistej i pionowej samolotu Embraer 170w fazie startu 3. PODSUMOWANIE Przedstawiony przykład potwierdza, e metody komputerowej identyfikacji mog by z powodzeniem stosowane w opracowaniu modelu matematycznego o wysokim stopniu dokładno ci odwzorowania lotu rzeczywistego samolotu. Przy analizie odpowiednio du ej liczby parametrów mo liwe jest odwzorowanie dynamiki lotu samolotu w dowolnej fazie lotu, lub w całym przebiegu lotu. Tak skonstruowany model matematyczny lotu samolotu mo e posłu y do wielu celów, na przykład do budowy modeli symuluj cych lot, czy badania przepustowo ci drogi startowej. Wad metody komputerowej identyfikacji jest jednak konieczno podziału obszaru analizy na przedziały zmienno ci parametrów co generuje problemy z zachowaniem ci gło ci badanych parametrów na granicach tych przedziałów.
Identyfikacja modelu matematycznego operacji startu samolotu 41 LITERATURA [1] Aneks 14 ICAO Aerodromes volume aerodrome design and operations. wydanie 4, 2004. [2] Aerodata EU OPS Regulatory Compliance Statement, Wydawnictwo AeroData, Inc., Scottsdale 2008. [3] ERJ170 Airplane Flight Manual, Wydawnictwo Empresa Brasileira de Aeronautica S.A.,2004. [4] Manerowski J.: Identyfikacja modeli dynamiki ruchu sterowanych obiektów lataj cych, Wydawnictwo Naukowe Akson, Warszawa, 1999. [5] Operations Manual part B rev18 ERJ170 Quick Reference Handbook, Wydawnictwo Empresa Brasileira de Aeronautica S.A., 2008. [6] Operations Manual part B rev18 ERJ170 v2, Wydawnictwo Empresa Brasileira de Aeronautica S.A., 2008. [7] PN 83 L 01010.02 Mechanika lotu samolotów i szybowców. [8] Procedura B, PL 8168, Operacje Statków Powietrznych, tom 1. MATHEMATICAL MODELING OF THE TAKE-OFFOPERATION OF AN AIRPLANE Abstract The purpose of this article is to create models for particular stages of the take-off operation and to identify elementary models of these stages basing on parameters recorded by the board flight recorder. The created mathematical and computer models (for simulation research), reproducing the aircraft s real operations in the area of the airport, shall be used for automatization of the operations conducted in the airport s area. Key words: air traffic, take-off operation, modeling Recenzent: Jerzy Manerowski