OCHRONA RADIOLOGICZNA 2 Ochrona radiologiczna w radioterapii Jakub Ośko
Radioterapia Jedna z głównych technik leczenia nowotworów (często w połączeniu z chemioterapią lub chirurgią) Naświetlanie obszaru nowotworu wiązką promieniowania jonizującego. Ponad 50 % pacjentów leczy się radioterapią.
Wskazania do radioterapii Nowotwory głowy i szyi Nowotwory ginekologiczne Nowotwory prostaty Nowotwory miednicy, odbytu, pęcherza moczowego Leczenie uzupełniające nowotworów piersi Nowotwory mózgu Leczenie paliatywne
Cel radioterapii Narządy krytyczne Kierunek wiązki nowotwór
Cel radioterapii Dawka potrzebna do zniszczenia komórek nowotworowych jest nizsza niż dawka konieczna do zniszczenia zdrowych komórek.
Ochrona radiologiczna
Wymagania projektowe Uszkodzenie jednego komponentu systemu musi być natychmiast wykryte Minimalizacja wpływu błędów ludzkich na zwiększenie dawki BSS Appendix II
Wymagania projektowe Każdorazowy wybór, wskazanie i potwierdzenie parametrów: energia, odległość od targetu, wielkość pola, kierunek wiązki, czas naświetlania, dawka
Wymagania projektowe Źródło musi znaleźć się wewnątrz osłony w przypadku odłączenia zasilania. Co najmniej dwa niezależne systemy pozwalające na zakończenie napromieniania Blokady bezpieczeństwa lub inne środki zapobiegania zastosowania urządzenia w warunkach innych niż wybrane w panelu sterowania;
Plan awaryjny Podejmowanie wszelkich uzasadnionych środków w celu zminimalizowania skutków awarii i błędów, Plany postępowania w przypadku wystąpienia awarii i błędów Ćwiczenia okresowe 10
Akceleratory liniowe Wysokie energie (6-21 MeV) grube osłony Monitorowanie zmian parametrów wiązki Monitorowanie rozproszeń Kontrola położenia targetu
Bezpieczny wyłącznik Źródło promieniowania musi zostać wyłączone w przypadku: zakończenia ekspozycji sytuacji awaryjnej 12
Źródła izotopowe Źródła zamknięte Mechanizm sygnalizujące położenie źródła w pozycji roboczej
Awaryjny powrót do pozycji spoczynkowej 14
Standardy IEC & ISO Aparatura musi spełniać wymagania norm IEC i ISO oraz norm krajowych (PN) Specyfikacja pracy i instrukcje obsługi muszą być napisane w języku zrozumiałym dla użytkowników oraz zgodne z odpowiednimi normami ISO lub IEC
Teren kontrolowany Pomieszczenie kontrolne Pomieszczenie z aparaturą Maszynownia
Blokady bezpieczeństwa Blokady mogą zostać odłączone w trakcie zabiegów konserwacyjnych, tylko pod bezpośrednim nadzorem personelu technicznego za pomocą odpowiednich urządzeń, kodów i kluczy.
Systemy bezpieczeństwa Sygnał świetlny informujący o włączeniu/wysunięciu i wyłączeniu/wsunięciu źródła. 18
Systemy bezpieczeństwa Blokada drzwi. Logika dodatnia.
Pomieszczenie terapeutyczne
Pomieszczenie terapeutyczne Zalety dużych pomieszczeń: odległość to skuteczna osłona miejsce dla pacjenta i na akcesoria możliwość przyszłej rozbudowy
Pomieszczenie terapeutyczne Prawidłowe oznakowanie Odpowiednie usytuowanie poczekalni Uniemożliwienie przypadkowego wejścia do pomieszczenia terapeutycznego Ograniczenie przebywania w sąsiedztwie pomieszczenia terapeutycznego
Osłony Promieniowanie pierwotne Promieniowanie rozproszone
Obliczenia osłon Dawka efektywna / rok = WUT /d 2 Sv/rok T = parametr zależny od częstotliwości przebywania osób W= obciążenie U = współczynnik wykorzystania = 0,25 d = odległość zewnętrznej ściany od źródła
Obliczenia osłon T czas, w którym w danym miejscu przebywają pacjenci, personel Wartości od 1 dla obszarów roboczych do 0.06 dla toalet i parkingów
Obliczenia osłon W - obciążenie W = dawka w izocentrum(gy) x liczba pacjentów x czas W przypadku pomiarów i testów QA zwiększane o 20 %.
Definicje Source to Skin Distance (SSD) Source to Axis Distance (SAD) Izocentrum Wielkość pola Półcień
SSD Odległość między źródłem i skórą pacjenta Standardowe wielkości 50 cm dla urządzeń z Cs 137 80 100 dla urządzeń z Co 60 100 cm dla akceleratorów liniowych
SSD SSD=80cm
SAD Odległość między źródłem, a izocentrum Wartości SAD 80cm 100 cm dla urządzeń z Co 100cm dla akceleratorów liniowych
Izocentrum Punkt przecięcia osi obrotu gantry, leżanki, kolimatora i wiązki
Izocentrum Prawidłowy kierunek wiązki jest zapewniony jeżeli środek guza jest umieszczony w punkcie izocentrum
Wielkość pola Szerokość i długość wiązki promieniowania w odległości SSD lub SAD Wielkość pola na dowolnej głębokości szerokość połówkowa profilu na tej głebokości
Półcień Nieostra krawędź wiązki powstająca na skutek skoczonych rozmiarów Półcień geometryczny zależny od Wymiarów źródła SDD SSD Półcień radiologiczny Półcień geometryczny + rozproszenia
Półcień geometryczny P = S x (SSD+d-SDD) SDD P = S x f+d-f d f d CE półcień na płaszczyźnie S x f-f d CE = f d
Półcień radiologiczny/fizyczny zależy od Rozproszeń Energii (im niższa tym większy) Gęstości ośrodka rozpraszającego
Półcień radiologiczny/fizyczny
Współczynniki wyznaczania dawki pochłoniętej Percentage depth dose (PDD) Tissue Air Ratio (TAR) Tissue Maximum Ratio (TMR) Tissue Phantom Ratio (TPR) Scatter Air Ratio (SAR) Scatter Maximum Ratio (SMR)
Percentage Depth Dose (PDD) Field Size (s)=ab PDD (S,Q,f,d) = D D max x 100
Percentage Depth Dose 60 Co 120 100 % depth dose 80 60 40 Co60 20 0 0 5 10 15 20 25 30 35 Depth in cm
Depth Dose Podczas pomiarów PDD wielkość pola określa się na powierzchni fantomu Wzrasta z SSD, energią wiązki, wielkością pola Maleje z głebokością
Tissue Air Ratio Field Size(S)=AB TAR (s,d,q)= D d /D air
TAR TAR Vs Depth 1.2 1 0.8 TAR 0.6 TAR 0.4 0.2 0 0 5 10 15 20 25 30 35 Depth in cm
TAR TAR Vs Field size 1 0.9 0.8 0.7 0.6 TAR 0.5 0.4 0.3 0.2 0.1 0 0 10 20 30 40 50 60 Side of the square field (cm)
TAR Rozmiar pola określany w SAD Nie zależy od SSD Zależy od energii i głębokości
Scatter Air Ratio Field Size(S)=AB SAR (S,Q,d)= TAR(S,Q,d) - TAR(S,Q,0)
SAR Rośnie z energią i wielkością pola Maleje z głębokością
Peak scatter factor Field Size(S)=AB PSF (S,Q) = D max / D air
Tissue Phantom Ratio Field Size(S)=AB TPR(S,Q,d) = D d / D ref
Tissue Maximum Ratio Field Size(S)=AB TMR(S,Q,d) = D d / D max
TMR TMR Vs Depth 1.2 1 0.8 TMR 0.6 0.4 0.2 0 0 5 10 15 20 25 30 35 Depth in cm
TMR TMR Vs Field Size 0.86 0.84 0.82 TMR 0.8 0.78 0.76 0.74 0.72 0 10 20 30 40 50 Side of squre field (cm)
Kontrola jakości 1. Parametry mechaniczne i optyczne 2. Parametry wiązki
Parametry mechaniczne i optyczne Wielkość pola Izocentrum Pole promieniowania
Parametry wiązki X Napięcie i natężenie prądu Parametry wiązki wyjściowej Test pomiaru czasu Wielkość ogniska Rozproszenia
Parametry obrazu Rozdzielczość Kontrast
Testy bezpieczeństwa Test 1. Blokada drzwi 2. Przełączniki ruchu 3. Sygnalizacja świetlna 4. Wyłącznik awaryjny Codziennie
Testy dozymetryczne Fantom z umieszczonymi wewnątrz detektorami (np. TLD) Z uwzględnieniem najbardziej wrażliwych narządów (gonady, oczy, ) Fantom Rando
QA źródła izotopowe i akceleratory Układ mechaniczny Pole promieniowania Wskażniki promieniowania Blokady bezpieczeństwa
Test wielkości pola
Test izocentrum Slide 62
Test izocentrum
Test wskaźnika SSD wskażnik
QA źródła izotopowe Aktywność raz w miesiącu Energia nie wymagana Pomiar czasu - codziennie
QA akcelerator liniowy Moc dawki codziennie Energia codziennie
QA akcelerator liniowy Profil wiązki Symetria wiązki Półcień Raz na pół roku
QA Brachyterapia Testy bezpieczeństwa Integralność źródła Położenie źródła
Verification of source position Slide 69
Radiografia Pozycja źródła
Dawka 1. Dawka na jedną frakcję naświetlania 2. Moc dawki
Planowanie terapii Technika: SSD lub SAD Liczba wiązek Parametry wiązki Określane w izocentrum lub D max Modyfikacje wiązki kliny, osłony, kompensatory
Planowanie terapii Osłony Stop Wood a (Bi, Cd, Pb, Sn), współczynnik absporpcji zbliżony do ołowiu, temperatura topnienia oraz plastyczność niższa możliwość wielokrotnego przerabiania w modelarni
Układ niezależnych listków wolframowych Planowanie terapii Kolimator listkowy
Planowanie terapii
Example: Przykład Dawka 6000 cgy w 30 frakcjach: w punkcie, izocentrum (100% wg ICRU) izodoza wokół guza (95%)
Dawka w jednej frakcji Punktowo Izodoza D f = TD N = 6000cGy 30 = 200cGy D f = TD N %Izodozy = 6000cGy 100 30 95 = 210,5cGy TD - Tumour Dose
Dawka od wiązki we frakcji Dose (b,f) = D (f) x w (b) Total Weight(W)
Dawka Korekcja na wielkość pola S ref= 10 x 10 cm 2 S=15 x 15cm 2 d ref D(d ref,s ref ) d ref D(d ref, s) D(d ref,s) =D(d ref, S ref ) x RDF( S) Relative dose factor (RDF)
Dawka Jeśli do kalibracji wykorzystano TPR (Tissue Phantom Ratio) S ref =10 x 10 cm 2 Treatment Field Size (S) d ref D(d ref,s ref ) d D(d, s) D(d ref,s) =D(d ref, S ref ) x RDF( S) x TPR(d,s,Q)
3. Korekcja na osłony Dawka Osłona S ref =10 x 10 cm 2 d ref D(d ref,s ref ) Treatment Field Size (S) d D(d, s) D(d ref,s) =D(d ref, S ref ) x RDF( S) x TPR(d,S,Q) x T f T f współczynnik osłony
3. Korekcja na klin Dawka Osłona S ref =10 x 10 cm 2 Klin Treatment Field Size (S) d ref d D(d ref,s ref ) D(d, s) D(d ref,s) =D(d ref, S ref ) x RDF( S) x TPR(d,S,Q) x T f x W f W f współczynnik klina
Obliczanie czasu terapii czas terapii = Dawka na wiązkę na frakcję Moc dawki w pukcie t = Dose (f) x w (b) /Total Wt D(d ref, S ref ) x RDF( S) x TPR(d,s,Q) x S f x W f
Obliczanie czasu terapii Uwzględnienie procentowej dawki głębokiej PDD t = Dose (f) x100 x w (b) / Total Wt D(d ref, S ref ) x RDF( S) x PDD(d,f,s,Q) x S f x W f x Total Wt
Try this example Calculate Treatment time to deliver 3000 cgy to 4 cm depth in15 # by single direct field 15 x 15 cm 2, no wedge but shielding included (RDF=1.024, W f =1, S f =.965, TPR(4cm)=1.06, D (ref) =150cGy/minute) Treatment Time = Dose per beam per fraction Dose rate at that point Dose per beam per fraction = 3000/15=200cGy Dose rate at 4cm = 150 x 1.024 x 1 x.965 x 1.06 =157.2 cgy/min Treatment Time = 200/157.2 = 1.29 minutes Part VIII.3.5 Determination of Dose to a Patient-I Slide 85
Wypadki w radioterapii
Wypadek w radioterapii Wypadek radiacyjny to niezamierzone zdarzenie, które może spowodować negatywne skutki. Błąd operatora Awaria aparatury Inne
Potencjalni poszkodowani 1. Osoby z populacji napromieniowani na skutek niewłaściwej realizacji zasad ochrony radiologicznej i bezpieczeństwa 2. Personel napromieniowani podczas przygotowywania źródeł, terapii, instalacji, naprawy, wymiany źródła, itp. 3. Pacjenci
Wypadki z narażeniem populacji i personelu 1. Zgubienie źródła promieniowania 2. Zgubienie lub uszkodzenie osłon 3. Wyciek lub uwolnienie 4. Niezamierzone narażenie 5. Niezamierzone skażenie
Narażenie pacjenta Radioterapia to bardzo skomplikowany proces od planowania do naświetlania. technolog może wykonywać 50 zabiegów dziennie. Ich parametry są bardzo podobne. Slide 90
Klasyfikacja wypadków Wypadki w radioterapii Związane z aparaturą Indywidualne Poszkodowanych wielu pacjentów Poszkodowany jeden pacjent
Przyczyny aparaturowe Aparatura dozymetryczna Kalibracja Symulatory Planowanie terapii Aparatura terapeutyczna Slide 92
Aparatura dozymetryczna 1. Niewłaściwe użycie współczynnika kalibracji 2. Złe porównanie z wzorcem 3. Niewłaściwe użycie
Planowanie terapii Niewłaściwe dane wejściowe Niezrozumienie algorytmu Niewystarczające szkolenie
Aparatura terapeutyczna Uruchomienie i testy Kalibracja Testy okresowe Awaria Niewłaściwe użycie
Wypadki radiacyjne Incydent: Kalibracja przeprowadzona dla dawki w wodzie, ale zinterpretowana dla dawki w powietrzu. Konsekwencje: Wzrost dawki o 11% Przyczyny: Niewłaściwe szkolenie
Wypadki radiacyjne Incydent: Użycie złej strony komory podczas kalibracji wiązki. Przyczyna: Nieprawidłowe oznaczenie. Konsekwencje: 6MeV wzrost dawki o 20% 9MeV wzrost dawki o 10% 12MeV wzrost dawki o 8% Działania naprawcze: Powtórna kalibracja
Wypadki radiacyjne Incydent: Niewłaściwe ciśnienie podczas kalibracji układu z Co. Konsekwencje: Wzrost dawki o 21% Przyczyna: Niewłaściwy odczyt ciśnieniomierza.
Wypadki radiacyjne Incydent: Dwukrotne uwzględnienie współczynnika klina. Konsekwencje: wzrost dawki o 14% Przyczyny: Niezrozumienie algorytmu
Korekta na klin 100 75 90 65 80 70 50 60 50 40 40 30 Normalized isodose Corrected isodose
Wypadki radiacyjne Incydent: Pacjent miał w ramach zabiegu teleterapii Co60 miał otrzymać dawkę 300 cgy w dwóch frakcjach po 150. Dozymetrysta omyłkowo wyliczył dawkę 2 razy po 300 cgy. Pacjent otrzymał dawkę 600 cgy.
Wpadki radiacyjne Przyczyna: Błąd dozymetrysty Działania naprawcze: Szkolenie personelu
Wypadki radiacyjne Incydent: Luźno zamontowany klin, zmiana rozkładu i zwiększenie dawki Przyczyny: Personel nie sprawdził ustawienia klina.
Wypadki radiacyjne t { { { } t Konsekwencje: Rozkład dawki otrzymanej przez pacjent był nieprawidłowy.
Wypadki radiacyjne Incydent: Energia elektronów emitowanych z akceleratora liniowego wynosiła 36MeV niezależnie od ustawień na konsoli Przyczyny: Awaria akceleratora. Błąd serwisanta.
Wypadki radiacyjne Przeprowadzono 27 zabiegów w ciągu 10 dni. Po tym okresie rozpoczęto poszukiwania korelacji reakcji obserwowanych u niektórych pacjentów ze stanem aparatury.
Wypadki radiacyjne Przyczyny: Zwarcie w układzie. Nieskuteczna komunikacja - fizycy nie zostali powiadomieni o awarii. Błędna interpretacja sprzecznych sygnałów, zignorowano odczyt miernika analogowego 36MeV.
Potencjalne przyczyny wypadków w brachyterapii Nieprawidłowo wykalibrowana aktywność źródła Nieprawidłowe oznakowanie źródła Nieprawidłowe postępowanie ze źródłem Błędne dane wejściowe do systemu planowania Niedostateczna wiedza o algorytmie systemu planowania Awaria mechaniczna
Wypadki w brachyterapii Incydent: Błąd w jednostkach Laboratorium zamówiło źródła o aktywności 0.79 mci. Producent dostarczył źródła o aktywności 0.79 mg równoważnika radu (1.36 millicurie. Podczas planowania terapii nie zwrócono uwagi na niewłaściwe jednostki.
Wypadki w brachyterapii Konsekwencje: Dawka podczas terapii nowotworu prostaty wyniosła 56.69Gy zamiast 32.58Gy Działania naprawcze: Lekarz kierujący został poinformowany i zdecydował nie informować pacjenta. Pacjent został zbadany w czasie kolejnych wizyt kontrolnych, które nie wykazały niepożądanych skutków ze względu na zwiększone promieniowanie.
Wypadki w brachyterapii Przyczyny: Błąd pracowników weryfikujących źródło. Nieporozumienie między użytkownikiem a dostawcą. Wnioski: Weryfikacja źródła powinna być wykonywana przez bezpośredni pomiar przed implantacją.
Wypadki w brachyterapii Incydent: Pacjent poddany terapii nowotworu odbytu za pomocą źródła High Dose Rate (HDR) zmarł. Źródło Ir-192 4.3 Ci umieszczono w pięciu różnych pozycjach, w cewnikach które miały pozostać w ciele pacjenta do końca terapii. Personel miał problemu z umieszczeniem źródła w jednym z cewników.
Wypadki w brachyterapii Nie wiedzieli, że krótki kawałek przewodu zawierającego źródło zerwał się i pozostał w jednym z cewników. Pacjent został przewieziony do pobliskiego domu opieki. Źródło pozostało w ciele pacjenta przez cztery dni, kiedy cewnik wypadł. Cewnik umieszczono w magazynie w worku (medical biohazard). Personel nie wiedział, że wewnątrz znajduje się źródło promieniotwórcze
Wypadki w brachyterapii Przyczyny: Mimo sygnału alarmowego informującego o konieczności wycofania źródeł, pracownicy nie przeprowadzili badania poziomu promieniowania za pomocą przenośnych detektorów. Sprawdzono jednie położenie źródeł po zakończeniu terapii, konsola wskazała pozycje safe.
Wypadki w brachyterapii Przyczyny określone po dochodzeniu: Niedociągnięcia w programie bezpieczeństwa Niewystarczające szkolenie w zakresie ochrony radiologicznej. Wiele niedociągnięć podczas projektowania i testowania urządzenia. Ignorowanie alarmu. Nie ustalono jego przyczyny. Brak badania pacjentów, źródeł i pomieszczenia po zabiegu.
Wypadki w brachyterapii Przyczyna śmierci pacjenta: narażenie na promieniowanie i jego konsekwencje Do czasu odzyskania źródła pacjenci, pracownicy i odwiedzający w domu opieki byli narażeni na promieniowanie. Dawki dla 94 osób wyniosłu od 400 µsv do 220 msv. Nie było możliwości oszacowania dawki dla wszystkich potencjalnie narażonych.
Wypadki w brachyterapii Incydent: Podczas brachyterapii dwa źródła Ir-192 o aktywności 48.25 mci umieszczono w cewnikach w przewodzie żółciowym wspólnym, poprzez nacięcie jamy brzusznej.
Wypadki w brachyterapii Podczas nocnej zmiany pacjent skarżył się, że jego opatrunek jest mokry. Pielęgniarka podczas zmiany opatrunku pielęgniarka znalazła źródła Ir-192 leżące na brzuchu pacjenta. Nie zdając sobie sprawy, że to źródła promieniowania, zmieniła opatrunek, a źródła Ir-192 przykleiła na brzuchu pacjenta.
Wypadki w brachyterapii Konsekwencje: Onkolog wydał ustne polecenie dziennej zmianie "nie do zmiany opatrunku" ale nie zostały one przekazane zmianie nocnej. Dawka na skórę brzucha pacjenta wyniosła od 1,72 Gy do 10,32 Gy. Dawka na skórę dłoni pielęgniarki 76 mgy.
Wypadki w brachyterapii 1. Brak nadzoru IOR nad procedurą 2. Niewystarczające szkolenie. Pielęgniarka nie była w stanie zidentyfikować źródła do brachyterapii i odpowiednio z nim postępować.
Wnioski Wypadki w brachyterapii 1. Szkolenie personelu w zakresie źródeł brachyterapii. 2. Powołanie nowego IOR 3. Stworzenie procedury postępowania dla pielęgniarek. 4. Opracowanie programu szkoleń OR dla personelu pielęgniarskiego.
Dziękuję za uwagę 122