Współczesne metody badań instrumentalnych



Podobne dokumenty
Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych

PODSTAWY BARWY, PIGMENTY CERAMICZNE

I. PROMIENIOWANIE CIEPLNE

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

MODELE KOLORÓW. Przygotował: Robert Bednarz

Widmo promieniowania

Zarządzanie barwą w fotografii

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Termowizja. Termografia. Termografia

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Teoria światła i barwy

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Pojęcie Barwy. Grafika Komputerowa modele kolorów. Terminologia BARWY W GRAFICE KOMPUTEROWEJ. Marek Pudełko

Współczesne metody badań instrumentalnych

Promieniowanie cieplne ciał.

- 1 - OPTYKA - ĆWICZENIA

ZDALNA REJESTRACJA POWIERZCHNI ZIEMI

Techniczne podstawy promienników

Kolorowy Wszechświat część I

Tajemnice koloru, część 1

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Do opisu kolorów używanych w grafice cyfrowej śluzą modele barw.

Pod wpływem enzymów forma trans- retinalu powraca do formy cis- i powoli, w ciemności, przez łączenie się z opsyną, następuje resynteza rodopsyny.

Fotometria i kolorymetria

Termowizja. Termografia. Termografia

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Dlaczego niebo jest niebieskie?

Analogowy zapis obrazu. Aparat analogowy

Kurs grafiki komputerowej Lekcja 2. Barwa i kolor

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

BARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ

OP6 WIDZENIE BARWNE I FIZYCZNE POCHODZENIE BARW W PRZYRODZIE

GRAFIKA RASTROWA GRAFIKA RASTROWA

Podręcznik produktowy CBL Lens

Jaki kolor widzisz? Doświadczenie pokazuje zjawisko męczenia się receptorów w oku oraz istnienie barw dopełniających. Zastosowanie/Słowa kluczowe

PDF stworzony przez wersję demonstracyjną pdffactory

Podstawy Geomatyki Wykład VI Teledetekcja 1

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

BARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ

Efekt cieplarniany i warstwa ozonowa

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU. Skąd biorą się kolory?.

Wyznaczanie charakterystyki widmowej kolorów z wykorzystaniem zapisu liczb o dowolnej precyzji

Budowa i zasada działania skanera

hurtowniakamer.com.pl

Fotogrametria. ćwiczenia. Uniwersytet Rolniczy Katedra Geodezji Rolnej, Katastru i Fotogrametrii

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Fotometria i kolorymetria

Efekt Dopplera. dr inż. Romuald Kędzierski

Dźwięk. Cechy dźwięku, natura światła

LABORATORIUM METROLOGII

Bosch Easy Line. Oświetlacze IR Bosch

Białość oznaczana jednostką CIE, oznacza wzrokowy odbiór białego papieru, do którego produkcji wykorzystano (lub nie) wybielacze optyczne (czyli

Przetwarzanie obrazów wykład 1. Adam Wojciechowski

Światłolecznictwo. Światłolecznictwo

Jak lepiej fotografowa - dlaczego fotografia kolorowa, a nie czarno-biała? Rozpoczynamy nowy cykl poradnikowy zatytułowany "Jak lepiej fotografowa

WYKŁAD 11. Kolor. fiolet, indygo, niebieski, zielony, żółty, pomarańczowy, czerwony

Wykład 17: Optyka falowa cz.2.

Spektroskopia ramanowska w badaniach powierzchni

Własności optyczne półprzewodników

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Dodatek B - Histogram

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego

Wstęp do astrofizyki I

Wstęp do fotografii. piątek, 15 października ggoralski.com

Mikroskopia fluorescencyjna

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Ultra COOL Pigment. Trwałość, ochrona, komfort.

Fotogrametria. ćwiczenia. Uniwersytet Rolniczy Katedra Geodezji Rolnej, Katastru i Fotogrametrii

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

Analiza spektralna widma gwiezdnego

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium

KP, Tele i foto, wykład 3 1

PIGMENTY I ŚWIATŁOTRWAŁOŚĆ

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Tworzenie obrazu w aparatach cyfrowych

Rys. 2. Porównanie charakterystyk widmowych czułości względnej przetwornika EXview HAD CCD oraz konwencjonalnego przetwornika CCD.

Wstęp do astrofizyki I

7. Wyznaczanie poziomu ekspozycji

Rozmycie pasma spektralnego

PL B1. INSTYTUT NISKICH TEMPERATUR I BADAŃ STRUKTURALNYCH IM. WŁODZIMIERZA TRZEBIATOWSKIEGO POLSKIEJ AKADEMII NAUK, Wrocław, PL

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 1 AiR III

KATALOG OSTATNICH BADAŃ

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017

Zmysły. Wzrok Węch Dotyk Smak Słuch Równowaga?

Podstawy fizyki wykład 8

Ocena trwałości powłok malarskich i wypraw tynkarskich elewacyjnych, czyli o prowadzeniu badań starzeniowych w Spektrochemie

PDF stworzony przez wersję demonstracyjną pdffactory

w13 54 Źródła światła Żarówka Żarówka halogenowa Świetlówka Lampa rtęciowa wysokoprężna Lampa sodowa wysokoprężna Lampa sodowa niskoprężna LED

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL

TESTER DO BANKNOTÓW. Glover IRD-2500 INSTRUKCJA OBSŁUGI

FOTOGRAFIA CYFROWA W DOKUMENTACJI NAUKOWO-TECHNICZNEJ ZAJĘCIA ORGANIZACYJNE.

Załącznik nr 1. Wytyczne do konstrukcji fotochromowych dozymetrów promieniowania nadfioletowego

pobrano z serwisu Fizyka Dla Każdego zadania z fizyki, wzory fizyczne, fizyka matura

Środki Wyrazu Twórczego

Przewodnik po soczewkach

Transkrypt:

Współczesne metody badań instrumentalnych Wykład V Reflektografia w podczerwieni Kolorowa podczerwień Badania w różnych pasmach promieniowania EM.

Widmo promieniowania IR Promieniowanie podczerwone zostało odkryte w 1800 r. przez Wiliama Herschela. Rozciąga się w zakresie długości fal od 0,78 µm do 1 mm. Energia promieniowania IR jest mniejsza od energii promieniowania widzialnego. VIS podczerwień (IR) mikrofale 0,78 µm = 780 nm 1 mm

Widmo promieniowania IR Promieniowanie podczerwone emituje każde ciało o temperaturze wyższej od zera bezwzględnego (-273 C bądź 0 K). Widmo takiego promieniowania jest ciągłe, maksimum przesuwa się w kierunku krótszych fal wraz z temperaturą (prawo Wiena). Prawo przesunięć Wiena

Widmo promieniowania IR Promieniowanie podczerwone emituje każde ciało o temperaturze wyższej od zera bezwzględnego (-273 C bądź 0 K). Widmo takiego promieniowania jest ciągłe, maksimum przesuwa się w kierunku krótszych fal wraz z temperaturą (prawo Wiena). Widmo ciała doskonale czarnego

Widmo promieniowania IR IR A IR B IR C (pasma termiczne IR) 0,78 µm1,4 µm 3 µm 1000 µm NIR intermid. far IR extreme IR 0,78 µm 3 µm 6 µm 15 µm 1000 µm NIR (near infrared) bliska podczerwień, powstaje wskutek inkandescencji gorących źródeł światła (słońca, żarówki); w obszarze do 1,4 µm możliwa jest rejestracja obrazów technikami fotograficznymi, powyżej (od 1,4 do 3 µm) wymagane jest stosowanie odpowiednich detektorów. Obszar ten jest wykorzystywany w badaniach obiektów zabytkowych.

Widmo promieniowania IR IR A IR B IR C (pasma termiczne IR) 0,78 µm1,4 µm 3 µm 1000 µm NIR intermed. far IR extreme IR 0,78 µm 3 µm 6 µm 15 µm 1000 µm Intermediate infrared pośrednia podczerwień, jest emitowana przez ciała w temperaturach od 200 do 400 C. Promieniowanie termiczne w tym obszarze pasma IR jest odczuwalne przez receptory w skórze jako ciepło. Woda i związki organiczne (np. spoiwa) silnie absorbują pośrednią podczerwień. Detektory czułe na bliską podczerwień są wykorzystywane w systemach zabezpieczeń.

Widmo promieniowania IR IR A IR B IR C (pasma termiczne IR) 0,78 µm1,4 µm 3 µm 1000 µm NIR intermed. far IR extreme IR 0,78 µm 3 µm 6 µm 15 µm 1000 µm Far infrared daleka podczerwień jest emitowana przez ciała w temperaturze pokojowej i nieco wyższej. Maksimum emisji ciała ludzkiego przypada nieco powyżej 9 µm. Ten obszar widma wykorzystywany jest w technikach termowizyjnych.

Oddziaływanie IR z materią obrazu Czynnikami decydującymi o przepuszczalności promieniowania IR przez warstwę malarską jest rozpraszanie i absorpcja. Ogólnie rzecz biorąc białe warstwy malarskie są bardziej przeźroczyste, jeżeli: większa jest długość fali padającej, mniejsza jest grubość warstwy, mniejsza jest liczba cząstek pigmentu w warstwie, istnieje mała różnica pomiędzy współczynnikiem załamania pigmentu i spoiwa.

Oddziaływanie IR z materią obrazu Dla wielu pigmentów maksimum transmisji przypada w obszarze długości fal pomiędzy 1,8 i 2,2 µm. Promieniowanie o większych długościach fal jest silnie absorbowane przez spoiwa organiczne, przez co uzyskuje się obrazy mniej kontrastowe. Fale elektromagnetyczne w obszarze 2 µm nie są rejestrowane na Fale elektromagnetyczne w obszarze 2 µm nie są rejestrowane na dostępnych emulsjach fotograficznych, lecz mogą być rejestrowane za pomocą kamer wideo z elektronicznymi konwerterami obrazu. Dzięki temu można rejestrować wcześniejsze szczegóły kompozycji obrazów.

Źródła oświetlenia IR Jako źródła oświetlenia stosuje się żarówki i lampy halogenowe. Efektywnym źródłem oświetlenia są również flesze aparatów fotograficznych. Po zastosowaniu odpowiednich filtrów dostarczają one promieniowania IR z obszaru A o dużym natężeniu. Do oświetlania małych obiektów można stosować diody Do oświetlania małych obiektów można stosować diody luminescencyjne emitujące w bliskiej podczerwieni (od 0,9 do 1,3 µm).

Filtry Większość urządzeń rejestrujących obrazy w IR jest również czuła na światło z obszaru widzialnego. W celu oddzielenia niepożądanej składowej światła widzialnego stosuje się filtry odcinające VIS. Wytwórca Oznaczenie Długość fali odcięcia [nm] Uwagi KODAK WRATTEN # 87 740 nm żelatyna KODAK WRATTEN # 87C 800 nm żelatyna KODAK WRATTEN # 88A 730 nm żelatyna SCHOTT RG 780 (3 mm) 780 nm szkło SCHOTT RG 1000 (3 mm) 1 µm szkło

Soczewki Zwykłe szkło przepuszcza promieniowanie podczerwone do 2,7 µm. Współczynnik załamania szkła jest mniejszy dla podczerwieni, wzrasta długość ogniskowej obiektywu aparatu, co psuje jakość uzyskiwanych obrazów. Jednakże w pobliżu pasma widzialnego (do 0,9 µm) ogniskowa zmienia się jedynie o 0,3 %, co nie wpływa na znacząco na jakość obrazu. By zmniejszyć rozmycie obrazu należy rejestrować zdjęcia przy możliwie najmniejszej przysłonie aparatu. Niektóre systemy do reflektografii IR mają wbudowane urządzenia do uśrednionej korekcji ogniskowej. W niektórych aparatach soczewki obiektywów pokryte są warstwą antyrefleksyjną, która ma eliminować odbicia światła widzialnego od powierzchni szkła soczewki. Rozwiązania takie, korzystne w obszarze widzialnym, w obszarze podczerwieni dają efekt odwrotny.

Czarno-biała podczerwień Do rejestracji czarno-białych obrazów w podczerwieni używa się błon fotograficznych KODAK High Sped Infrared Film Type 4143, których maksimum czułości przypada na 820 nm i sięga do obszaru 920 nm. Nieco gorsze są błony firmy KONIKA (Infrared 750 Black and White Film), które są czułe do 750 nm.

Czarno-biała podczerwień Fotografie w podczerwieni można wykonywać przy użyciu zwykłych aparatów fotograficznych. Istotne jest odpowiednie oświetlenie obiektu za pomocą lamp halogenowych. W technice tej można wykonywać fotografie w świetle przechodzącym. Ma to zastosowanie do papieru, pergaminu, drewna (do 5 mm), malarstwa sztalugowego. Obiekty te są częściowo przeźroczyste w podczerwieni.

Elektroniczne urządzenia rejestrujące Obszar maksymalnej transmitancji podczerwieni dla warstw malarskich przypada na ok. 2 µm (poza obszarem czułości błon fotograficznych). W obszarze tym pracują kamery wideo wyposażone w systemy widikonowe bądź matryce CCD. Systemy widikonowe są czułe w obszarze do 2,4 mm z maksimum przy 1,9 mm. Ich wadą jest niska zdolność rozdzielcza. Hamamatsu, C2741-03

Elektroniczne urządzenia rejestrujące Lepszą zdolność rozdzielczą osiągają systemy wyposażone w matryce CCD, jednakże ich czułość sięga do obszaru 1,3 1,4 µm.

Zastosowania -malarstwo Określanie zakresu ingerencji konserwatorskich i zmian w oryginalnej warstwie malarskiej. Ponieważ podczerwień penetruje warstwy werniksu, mogą się na obrazach IR uwidocznić stare retusze. Kolejnym zastosowaniem jest uwidocznienie rysunku w celu określenia formy i kompozycji działa. Na podstawie oceny rysunku pod warstwą malarską można często dokonywać atrybucji dzieła.

Przykłady Bliska podczerwień: 750 1500 nm

Przykłady

Przykłady

Reflektografia w podczerwieni 2 2,5 µm

Reflektografia w podczerwieni

Reflektografia w podczerwieni

Reflektografia w podczerwieni

Reflektografia w podczerwieni

IR światło przechodzące

Plaża w Nicei J. K. Ajwazowskiego (?) Obraz reflektografii w bliskiej podczerwieni wskazuje na brak rysunku przygotowawczego.

Ewangelistarz Gnieźnieński Codex Aureus Gnesnensis Św. Mateusz Ewangelista, karta 1v. W refrektografii w podczerwieni uwidoczniły się linie rysunku wykonanego czernią węglową (1). Silną absorpcję wykazuje farba zawierająca zieleń miedziową (2).

IR światło przechodzące Światło widzialne Rentgenografia jest nieskuteczna, zbyt duża zawartość bieli ołowiowej w zaprawie IR światło przechodzące

A B C D Atramenty anilinowe E F A - czerń anilinowa B czerwień anilinowa C zieleń anilinowa D błękit indygowy E błękit anilinowy F fiolet anilinowy A. Kłos, Non-invasive methods in the identification of selected writing fluids from late 19th and early 20th century, http://ceroart.revues.org/3950

Atramenty na naturalnych składnikach VIS A B C D IR-refl. A -alizarynowy z indygokarminem, B atrament Leonardiego C kampeszowo-galusowy D kampeszowo-chromowy. A. Kłos, Non-invasive methods in the identification of selected writing fluids from late 19th and early 20th century, http://ceroart.revues.org/3950

Reflektografia w podczerwieni

Kolorowa podczerwień Żółcień Błękit Zieleń Czerwień Promieniowanie świetlne postrzegane przez oko ludzkie (promieniowanie widzialne) 400 500 600 700 800 900 nm (nanometry) Żółty filtr Zieleń Czerwień Podczerwień Promieniowanie świetlne rejestrowane przez film kolorowy czuły na IR

Kolorowa podczerwień Dołożenie składowej podczerwonej powoduje, że pigmenty o zbliżonej chromatyce w świetle widzialnym są rozróżniane jako inne barwy, o ile wykazują one inne widmo absorpcji lub odbicia w obszarze bliskiej podczerwieni. Obrazy w technice fałszywych kolorów rejestrowane są na błonach KODAK Ektachrome Infrared Type 2236. Technika ta początkowo była wykorzystywana w celach militarnych do wykrywania z powietrza zamaskowanych obiektów wojskowych.

Zieleń miedziowa Błękit Błękit Zieleń kobaltowa Zieleń Zieleń Czerwień Czerwień Podczerwień Podczerwień Filtr żółty Podczerwień Zieleń Czerwień Cyjan Żółcień Magenta Cyjan Żółcień Magenta Obraz utajony zarejestrowany w warstwach filmu czułych na poszczególne zakresy promieniowania. Pierwszy etap wywołania w procesie diapozytywowym E-6 Drugi etap - wywoływanie barwne Podczerwień Zieleń Czerwień Cyjan Żółcien Magenta Cyjan Żółcien Magenta Cyjan Magenta Barwniki powstałe po procesie wybielania w warstwach wywołanego filmu Magenta Błękit Kolory uzyskane na odbitce barwnej Magenta

Tablica fałszywych kolorów Kolor obiektu Fałszywy kolor (bez odbicia składowej IR) czerwony zielony żółty zielony niebieski magenta żółty cyjan biały niebieski czarny czerwony Fałszywy kolor (z odbiciem składowej IR) podczerwony czerwony

Tablica prawdziwych kolorów biel madżenta żółcień cyjan

Tablica fałszywych kolorów

Tablica fałszywych kolorów -zielenie

Tablica fałszywych kolorów -zielenie

Tablica fałszywych kolorów -czerwienie

Tablica fałszywych kolorów -czerwienie

Tablica fałszywych kolorów -błękity

Tablica fałszywych kolorów -błękity

Tablica fałszywych kolorów -żółcienie

Tablica fałszywych kolorów -żółcienie

Tablica fałszywych kolorów -purpury

Tablica fałszywych kolorów -czernie

Fałszywe kolory czarnych pigmentów

Fałszywe kolory pigmentów Pigment Fałszywy kolor Błękit kobaltowy jasnoczerwony Błękit lawendowy Ultramaryna ciemnopurpurowy Zieleń chromowa purpurowy Zieleń ziemna jasnoniebieski Zieleń szmaragdowa jasnopurpurowy Madera żółty Grynszpan ciemnoniebieski

Przykłady

Plaża w Nicei J. K. Ajwazowskiego (?) VIS NIR fałszywe kolory Badanie obrazu w kolorowej podczerwieni wykazało obecność w warstwach malarskich dużej ilości bieli ołowiowej. Kolor oranżowy wody (przy horyzoncie) wskazuje na zawartość ultramaryny, kolor fioletowy indygo.

Apoteoza księcia Filipa II, Pancratius Reinike, 1608, Muzeum Narodowe w Szczecinie VIS W kolorowej podczerwieni żółty kolor rejestrowany jest w obrębie laserunków wykonanych czerwienią organiczną (1). Barwa błękitna świadczy o występowaniu azurytu lokalnie rozjaśnianego bielą ołowiową (2). Różne odcienie koloru brunatnozielonego wskazują na obecność laserunków wykonanych farbą zawierającą umbrę naturalną (3). Obszary o bardziej zółtym zabarwieniu zawierają dodatek czerwieni organicznej (4).

Przykłady Fragment XIX wiecznego malowidła ze sklepienia kopuły Kaplicy Królewskiej w Gdańsku. Uwidoczniono retusze wykonane farbami na bazie błękitu kobaltowego (kolor czerwony) oraz błękitu pruskiego (kolor ciemnoniebieski), które odbiegają chromatyką od warstwy pierwotnej, zawierającej ultramarynę sztuczną

CODEX AUREUS GNESNENSIS Barwa zielonkawa odzwierciedla zakresy występowania proszku mosiężnego (1). Kolor błękitny z podtonami fioletu identyfikuje zieleń miedziową (2). Odcienie barwy różowej świadczą o występowaniu ultramaryny naturalnej (3). Kolor brunatnozielony wskazuje na obecność czerwieni żelazowej (4). Barwa żółtozielona jest charakterystyczna dla farby uzyskanej z minii z niewielkim dodatkiem czerwieni żelazowej (5)

Ikona Matka Boska z Dzieciątkim VIS NIR false color Obszary jasnożółtozielonej w obrębie ubytków warstwy malarskiej wskazują ochrę i żółcień organiczną (1). Szarozielone zabarwienie z podtonami fioletu -bieli ołowiowa z dodatkiem umbry naturalnej, czerni węglowej i miedzianki (2). Widoczny kolor szarobłękitnofioletowy -farbę o podobnym składzie, która jednak zawiera większy dodatek miedzianki (3). Różne odcienie barwy żółtej określają miejsca występowania farby na bazie czerwieni organicznej zawierającej niewielki dodatek czerni węglowej (4). Barwa brunatnozielona wskazuje na dość duŝą zawartość w czerwieni organicznej umbry i czerni węglowej, możliwy dodatek miedzianki (5, 6).

Retabulum Ołtarza Czterech Dziewic, kościół w Parsku Awers lewego skrzydła nastawy. W kolorowej podczerwieni obszary o zabarwieniu żółtozielonym odzwierciedlają zakres występowania minii (1). Kolor błękitny z podtonami fioletu wskazuje na obecność zieleni malachitowej (2). Zabarwienie fioletowe tła z podtonami purpury opracowano farbą zawierającą mieszaninę pigmentów z domieszką smalty (3). Fragmenty kompozycji namalowane błękitną farbą uzyskaną zesmalty mają barwę purpurową (4).

A B C D Atramenty anilinowe E F A - czerń anilinowa B czerwień anilinowa C zieleń anilinowa D błękit indygowy E błękit anilinowy F fiolet anilinowy A. Kłos, Non-invasive methods in the identification of selected writing fluids from late 19th and early 20th century, http://ceroart.revues.org/3950

Atramenty na naturalnych składnikach VIS IRC A B C D A -alizarynowy z indygokarminem, B atrament Leonardiego C kampeszowo-galusowy D kampeszowo-chromowy. A. Kłos, Non-invasive methods in the identification of selected writing fluids from late 19th and early 20th century, http://ceroart.revues.org/3950

VIS IR reflect. Dokument z końca XIX w. w różnych pasmach promieniowania. Biblioteka Cypriana K. Norwida w Elblągu UV fluores. IRC A B C A. Kłos, Non-invasive methods in the identification of selected writing fluids from late 19th and early 20th century, http://ceroart.revues.org/3950

Badania w różnych pasmach, Ostropa Fragment sceny Sądu Ostatecznego. (a) Obraz w świetle widzialnym. (b) Obraz reflektografii w podczerwieni. (c) Obraz w kolorowej podczerwieni. (d) Obraz reflektografii w ultrafiolecie. Obszary występowania czerwieni żelazowej oznaczono przez FeR, smalty przez Sm, malachitu przez Mal

Badania w różnych pasmach Fragment sceny Sądu Ostatecznego przedstawiający potępionych. (a) Obraz w świetle widzialnym. (b) Obraz reflektografii w podczerwieni. (c) Obraz w kolorowej podczerwieni. (d) Obraz fluorescencji wzbudzanej UV. Obszary występowania czerwieni żelazowej oznaczono przez FeR, czerni węglowej przez CB, minii przez RL, bieli ołowiowej przez LW

Badania w różnych pasmach Fragment sceny Sądu Ostatecznego przedstawiający zbawionych. (a) Obraz w świetle widzialnym. (b) Obraz reflektografii w podczerwieni. (c) Obraz w kolorowej podczerwieni. (d) Obraz fluorescencji wzbudzanej UV. Obszary występowania czerwieni żelazowej oznaczono przez FeR, czerni węglowej przez CB, ultramaryny sztucznej przez Ults, ochry zółtej przez Och, bieli ołowiowej przez LW, bieli cynkowej przez ZnW, gipsu przez Gy

Badania w różnych pasmach Fragment pierwszy sceny z Chrystusem Zmartwychwstałym w wieczerniku. (a) Obraz w świetle widzialnym. (b) Obraz reflektografii w podczerwieni. (c) Obraz w kolorowej podczerwieni. (d) Obraz fluorescencji wzbudzanej UV. Obszary występowania czerwieni żelazowej oznaczono przez FeR, czerni węglowej przez CB, bieli ołowiowej przez LW, ochry żółtej przez Och, ugru przez Ugr, smalty przez Sm, ultramaryny sztucznej przez Ults, ultramaryny zielonej przez UltG, bieli cynkowej przez ZnW, gipsu przez Gy

Badania w różnych pasmach Fragment pierwszy sceny z Chrystusem Zmartwychwstałym w wieczerniku. (a) Obraz w świetle widzialnym. (b) Obraz reflektografii w podczerwieni. (c) Obraz w kolorowej podczerwieni. (d) Obraz fluorescencji wzbudzanej UV. Obszary występowania czerwieni żelazowej oznaczono przez FeR, czerni węglowej przez CB, bieli ołowiowej przez LW, ochry przez Och, ugru przez Ugr, ultramaryny sztucznej przez Ults, ultramaryny zielonej przez UltG, bieli cynkowej przez ZnW, gipsu przez Gy

Badania w różnych pasmach Postać kardynała. (a) Obraz w świetle widzialnym. (b) Obraz reflektografii w podczerwieni. (c) Obraz w kolorowej podczerwieni. (d) Obraz fluorescencji wzbudzanej UV. Obszary występowania czerwieni żelazowej oznaczono przez FeR, czerni węglowej przez CB, ochry przez Och, ultramaryny sztucznej przez Ults, bieli cynkowej przez ZnW, pobiały wapiennej przez Lim

Badania w różnych pasmach Postać muzykanta. (a) Obraz w świetle widzialnym. (b) Obraz reflektografii w podczerwieni. (c) Obraz w kolorowej podczerwieni. (d) Obraz fluorescencji wzbudzanej UV. Obszary występowania czerwieni żelazowej oznaczono przez FeR, czerni węglowej przez CB, minii przez LR, ultramaryny sztucznej przez Ults, ultramaryny zielonej przez UltG, bieli cynkowej przez ZnW, pobiały wapiennej przez Lim