Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav

Podobne dokumenty
tum.de/fall2018/ in2357

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Hard-Margin Support Vector Machines

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Label-Noise Robust Generative Adversarial Networks

Podstawy grupowania danych w programie RapidMiner Michał Bereta

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

SPIDER + SPIDER + (260 x 255 x h220cm) (260 x 255 x h220cm) fungoo.eu

THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University

MATLAB Neural Network Toolbox przegląd

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Lecture 18 Review for Exam 1

UP&DOWN + UP&DOWN + (260 x 253 x h225cm) (260 x 253 x h225cm) fungoo.eu UP&DOWN _ _

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Gradient Coding using the Stochastic Block Model

4.3 Grupowanie według podobieństwa

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Previously on CSCI 4622

Agnostic Learning and VC dimension

The Lorenz System and Chaos in Nonlinear DEs

FUNNY 3 FUNNY 3. (290 x 73 x h210cm) (290 x 73 x h210cm) FUNNY 3 003_02815_ _02815_241114

(381 x 136 x h303cm) (381 x 136 x h303cm)

(381 x 136 x h303cm) (381 x 136 x h303cm)

Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia.

CAROL 1 CAROL 1. (121 x 310 x h290cm) (121 x 310 x h290cm) INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU OSTRZEŻENIA! WARNINGS!

(327 x 112 x h290cm) (327 x 112 x h290cm)

EN 71. (389 x 410 x h272cm) (389 x 410 x h272cm) fungoo.eu FLEPPI

deep learning for NLP (5 lectures)

Analiza skupień (Cluster analysis)

CAROL 2 CAROL 2. (285 x 395 x h290cm) (285 x 395 x h290cm) fungoo.eu CAROL 2 003_03020_ _03020_291014

WARNINGS! OSTRZEŻENIA!

FUNNY 2 FUNNY 2. (330 x 317 x h265cm) (330 x 317 x h265cm) FUNNY 2 003_02800_ _02800_

Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska

FUNNY3 ROOFI FUNNY3 ROOFI

Boosting. Sewoong Oh. CSE/STAT 416 University of Washington

3.7 Novelty & Diversity

Relaxation of the Cosmological Constant

Revenue Maximization. Sept. 25, 2018

TTIC 31190: Natural Language Processing

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM

IEEE Centronics

BULLETIN 2 II TRAINING CAMP POLISH OPEN MTBO CHAMPIONSHIPS MICHAŁOWO TRAINING CAMP WORLD MTB ORIENTEERING CHAMPIONSHIPS

CLUSTERING. Metody grupowania danych

Installation of EuroCert software for qualified electronic signature

P R A C A D Y P L O M O W A

Cracow University of Economics Poland

No matter how much you have, it matters how much you need

Planning and Cabling Networks

2 nd ClimMani EU COST Action Meeting Poznań, Poland September, 2015

Volcano MC-GM4 OPTICAL MOUSE USER S MANUAL MODECOM

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Knovel Math: Jakość produktu

Volcano MC-GMX4 OPTICAL MOUSE USER S MANUAL MODECOM


Maximum A Posteriori Chris Piech CS109, Stanford University

Configuring and Testing Your Network

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

YAKY, YAKYżo 0,6/1 kv. Kable elektroenergetyczne z izolacją PVC. Norma IEC :2004. Konstrukcja. Zastosowanie. Właściwości

MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r

ALA MA KOTA PRESCHOOL URSYNÓW WARSAW POLAND

Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle

II wariant dwie skale ocen II alternative two grading scales

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

Few-fermion thermometry

A Zadanie

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

CEE 111/211 Agenda Feb 17

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

Nauka Przyroda Technologie

Energetyczna ocena efektywności pracy elektrociepłowni gazowo-parowej z organicznym układem binarnym

MDK-Plus. Licencja Node-Locked 8260 EUR 5740 EUR 3340 EUR gratis 3300 EUR 2300 EUR 1330 EUR 650 EUR 3970 EUR 2760 EUR 1600 EUR

LIGHT ART SP. Z O.O Bezterminowo (without the date)

Ćwiczenia 2 IBM DB2 Data Studio

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

MS Visual Studio 2005 Team Suite - Performance Tool

Extraclass. Football Men. Season 2009/10 - Autumn round

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

Learning to find good correspondences

Macromolecular Chemistry

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

What our clients think about us? A summary od survey results

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

OpenPoland.net API Documentation

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Debugger/programator z interfejsem JTAG oraz SWD dla mikrokontrolerów ARM zgodny z KEIL ULINK 2. Gotronik

Klasyfikacja naiwny Bayes

Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech

LED PAR 56 7*10W RGBW 4in1 SLIM

Effective Governance of Education at the Local Level

Home Software Hardware Benchmarks Services Store Support Forums About Us

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Horicky TRUBADUR Horice Results. Page 1of 1

Grupa Pancerniki ARMADILLOS

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

KOMUNIKAT 2. The 44 th International Biometrical Colloquium and IV Polish-Portuguese Workshop on Biometry. Conference information:

Uczenie ze wzmocnieniem

Transkrypt:

Supervised Hierarchical Clustering with Exponential Linage Nishant Yadav Ari Kobren Nicholas Monath Andrew McCallum

At train time, learn A :2 X! Y Supervised Clustering

<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Supervised Clustering At train time, learn A :2 X! Y At test time, use on new set of points A<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit>

<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Supervised Clustering At train time, learn A :2 X! Y At test time, use on new set of points A<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit>

<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Supervised Clustering At train time, learn A :2 X! Y At test time, use on new set of points A<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Select a clustering algorithm Learn a dissimilarity function

<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Supervised Clustering At train time, learn A :2 X! Y At test time, use on new set of points A<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Select a clustering algorithm Learn a dissimilarity function Clustering Algorithm Mismatch leads to poor Training Procedure generalization

Hierarchical Agglomerative Clustering!3

Hierarchical Agglomerative Clustering!3

Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3

Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3

Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3

Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3

Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3

Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3

Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3

Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3

Linage Function Inter-Cluster distance given by Linage Function!4

Linage Function Single Linage (Minimum Pairwise Dissimilarity) Inter-Cluster distance given by Linage Function!4

Linage Function Average Linage (Average Pairwise Dissimilarity) Single Linage!5

Linage Function Complete Linage (Maximum Pairwise Dissimilarity) Single Linage Average Linage!6

Linage Function Best linage function for a dataset is, a priori, unnown Single Linage Average Linage!7 Complete Linage

In this wor: 1. Exponential Linage: Learnable family of linage functions 2. Training objective to jointly optimize linage & dissimilarity function!8

Exponential Linage Single Linage Average Linage Complete Linage!9

Exponential Linage Single Linage Average Linage Complete Linage 0 Weight 1 Weighted Average with Learnable Parameter!9

Exponential Linage Single Linage J(, ) = n 0 X i=1 X C u,v 2P (i) max n o 0, (C u0,v 0) (C u,v) Average Linage Complete Linage Algorithm 1 train ExpLin(X, C?,T, 1, 2) Init:, for t =1,..., T do J 0 T (0) j {x j } 8 x j 2 X for round i =1,...,n 0 do {T (i) }l i HAC-Round({T {C (i) } l i C (i) {C (i) } l i {lvst (i) }l i (i 1) } l i 1 ) P (i) {C u,v 2 C (i) C (i) : C u 6= C v } P (i) + {C u,v 2 P (i) : 9C j? s.t. C u,c v C j?} P (i) P (i) \P (i) + C u 0,v 0 arg min C u,v 2P (i) for C u,v 2 P (i) J 1 @J @ (C u,v ) 0 + Weight 1 J + max n do 0, (C u0,v 0) (C u,v ) Weighted Average with Learnable Parameter 2 @J @!9 o

Experimental Setup Entity Resolution REXA AMINER UMIST Faces Noun Phrase Coreference!10

Experimental Setup Entity Resolution REXA AMINER UMIST Faces Noun Phrase Coreference Four Linage Functions Single Linage Average Linage Complete Linage Exponential Linage!10

Experimental Setup Entity Resolution REXA AMINER UMIST Faces Noun Phrase Coreference Four Linage Functions Single Linage Average Linage Complete Linage Exponential Linage Evaluated using Dendrogram Purity Averaged across 50 different train/test/dev splits!10

Results Dataset: Rexa 90.0 89.1 Dendrogram Purity 86.3 82.5 78.8 81.7 84.6 80.1 75.0 Single Average Complete Exponential Linage Function

Results Dataset: Rexa 90.0 89.1 Dendrogram Purity 86.3 82.5 78.8 81.7 84.6 80.1 75.0 Single Average Complete Exponential Linage Function

Summary!12

Summary Exponential Linage: Learnable family of linage functions!12

Summary Exponential Linage: Learnable family of linage functions X J(, ) = n 0 i=1 X C u,v2p (i) max n o 0, (C u0,v 0) (C u,v) Algorithm 1 train ExpLin(X, C?,T, 1, 2) Init:, for t =1,..., T do J 0 T (0) j {x j } 8 x j 2 X for round i =1,...,n 0 do {T (i) }li {C (i) } li C (i) (i 1) HAC-Round({T } li 1 (i) {lvst }li {C (i) } li ) P (i) {C u,v 2 C (i) C (i) : C u 6= C v } P (i) + {C u,v 2 P (i) : 9C j? s.t. C u,c v C j?} P (i) P (i) \P (i) + C u 0,v 0 arg min C u,v2p (C (i) u,v ) + for C u,v 2 P (i) n do o J J + max 0, (C u0,v 0) (C u,v ) 1 @J @ 2 @J @ Training Objective & Algorithm: Jointly Optimizing Dissimilarity & Linage Function!12

Summary Exponential Linage: Learnable family of linage functions X J(, ) = n 0 i=1 X C u,v2p (i) max n o 0, (C u0,v 0) (C u,v) Algorithm 1 train ExpLin(X, C?,T, 1, 2) Init:, for t =1,..., T do J 0 T (0) j {x j } 8 x j 2 X for round i =1,...,n 0 do {T (i) }li {C (i) } li C (i) (i 1) HAC-Round({T } li 1 (i) {lvst }li {C (i) } li ) P (i) {C u,v 2 C (i) C (i) : C u 6= C v } P (i) + {C u,v 2 P (i) : 9C j? s.t. C u,c v C j?} P (i) P (i) \P (i) + C u 0,v 0 arg min C u,v2p (C (i) u,v ) + for C u,v 2 P (i) n do o J J + max 0, (C u0,v 0) (C u,v ) 1 @J @ 2 @J @ Training Objective & Algorithm: Jointly Optimizing Dissimilarity & Linage Function Effective Empirical Results!12

Single Linage Average Linage Thans for listening! Chec out our poster #196 today at 6:30pm in Pacific Ballroom! Complete Linage Exponential Linage Paper: Code: Train Test!13