Prognozowanie rozgrywki grą planszową

Podobne dokumenty
Instrukcje podsumowanie. Proste: - przypisania - wejścia-wyjścia (read, readln, write, writeln) - pusta - po prostu ; (średnik) Strukturalne:

gra Chińczyk dla 6 osób

Procedury i funkcje. Przykład programu z procedurą. Definicja. Cechy procedury

1 Wielokrotne powtarzanie tych samych operacji

TEMAT: Podejmowanie decyzji w programie instrukcja warunkowa (IF).

KWIECIEŃ klasa 2 MATEMATYKA

25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I

PLANSZA. Plansza składa się z następujących pól:

OGÓLNA CHARAKTERYSTYKA GRY PLANSZA

WYŚCIG MATEMATYCZNY BIG. zawartość pudełka: 1) tabliczki - 96 szt. 2) pionek - 1 szt. 3) plansza 4) kostka 5) instrukcja INSTRUKCJA

33. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I

Wiek graczy: 8+ Liczba graczy: 2 4 Czas gry: 20 min INSTRUKCJA

Instrukcja gry w Chińczyka

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 3

INSTRUKCJA PUSTA. Nie składa się z żadnych znaków i symboli, niczego nie robi. for i := 1 to 10 do {tu nic nie ma};

Działania uczniów klasy 3a wg Scenariusza zajęć edukacyjnych z matematyki Wykorzystanie w edukacji matematycznej własnej gry planszowej

6. TWORZYMY OPOWIEŚĆ DO RZUTÓW KOSTKĄ CZYLI O UKŁADANIU OPOWIADAŃ

Pora na gry planszowe

AGENCI KARTY agenci 2013_ _v1.indd 8

Temat: Moja miejscowość, mój dom. - scenariusz zajęć z elementami kodowania

Gra planszowa stwarza jeszcze więcej możliwości!

Przykładowerozwiązania.

Manfred Ludwig ELEMENTY GRY

INSTRUKCJA. Zdobyte punkty gracz zaznacza na torze punktów (na swojej planszy gospodarstwa). Przesuwa do przodu pionek o tyle pól, ile zdobył punktów.

SCENARIUSZ LEKCJI. - pracować w sposób wytrwały i samodzielny, - pracować zgodnie z pozytywnymi postawami etycznymi, - dobrze organizować pracę,

#UczymyDzieciProgramować #ZadanieWprogramie

SPOOKIES Ekscytująca gra ryzyka dla 2 do 5 nieustraszonych graczy od 8 lat.

Rachunek prawdopodobieństwa w grach losowych.

3. Podstawowe funkcje mamematyczne. ZAPOZNAĆ SIĘ!!!

Runda 5: zmiana planszy: < < i 6 rzutów.

Informatyka 1. Przetwarzanie tekstów

MÓWIĘ POPRAWNIE INSTRUKCJA. Zawartość pudełka: 1) tabliczki z obrazkami - 96 szt. 2) plansza 3) pionki - 8 szt. 4) kostka do gry 5) instrukcja

BEZPIECZNE DZIECKO- PRZYJACIEL SZNUPKA DLA KLASY VI. CEL GŁÓWNY: Nabywanie umiejętności wyboru zachowań promujących zdrowie.

2 gry planszowe. rekomendowany wiek: od lat 4 dla 2 4 osób

SCENARIUSZE ZAJĘĆ KLASA 1 DIDASKO Ewa Kapczyńska, Krystyna Tomecka

Generator Gier Planszowych

QUIZ BIG WSZECHSWIAT. gra edukacyjna dla 2 4 osób. rekomendowany wiek: od lat 10

Zakres wykładu INFORMATYKA. dr inż. Michał Łanczont Wydział Elektrotechniki i Informatyki p. E419 tel

Podstawy programowania

34. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. II

TRI DOM. Gra zawiera następujące elementy:

35 żetonów Leukocyt, 35 żetonów Lekarstwa, 84 żetony Globinka, 30 żetonów Hemo, 4 detektory odpowiedzi, 4 karty przelicznik, instrukcja gry.

INSTRUKCJE PĘTLI, INSTRUKCJA WYBORU. Instrukcja pętli For to do

Pogromcy duchów. Wstęp. Krok 1: Stwórz latającego ducha

APROKSYMACJA. Rys. 1. Funkcja aproksymująca zbiór punktów pomiarowych (1) (2) (3) (4) (5) (6) (7) ... Zmienna y

RZECZOWNIK (maxi) Gra edukacyjna w 2 wariantach dla 2 3 osób rekomendowany wiek: od 7 lat

XII. Warunek wielokrotnego wyboru switch... case

STAR BA ST TTLE AR BA 8+ BOARD GAME 1

UCZ SIĘ, ŻYJ I GRAJ Z MŁODZIEŻĄ IHF

Język programowania PASCAL

Konspekt udostępniamy na zasadach: zachowania informacji o autorstwie tylko niekomercyjnego wykorzystania

r., godz Czas trwania 60 minut. Przepisz tutaj Twój kod

WYPRAWA Z MARTYNĄ WOJCIECHOWSKĄ

Instrukcja. Jesteś przedstawicielem lokalnych władz. dla mieszkańca władz miasta prorodzinnego. Rozegraj miasto

Instrukcja warunkowa i złoŝona.

ZARZĄDZANIE CZASEM JAK DZIAŁAĆ EFEKTYWNIEJ I CZUĆ SIĘ BARDZIEJ SPEŁNIONYM

Władza i Wpływ cz.3. Mapa władzy i wpływu Jak określić skuteczność tych relacji, od których zależy nasz sukces i powodzenie zawodowe.

MAŁGORZATA PAMUŁA-BEHRENS, MARTA SZYMAŃSKA. Bo to było tak

BEZPIECZNE DZIECKO- PRZYJACIEL SZNUPKA DLA KLASY III. CEL GŁÓWNY: Nabywanie umiejętności wyboru zachowań promujących zdrowie

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel

Algorytmy i struktury danych

Jestem pewny, że Szymon i Jola. premię. (dostać) (ja) parasol, chyba będzie padać. (wziąć) Czy (ty).. mi pomalować mieszkanie?

2.Sprawdzanie czy podana liczba naturalna jest pierwsza Liczba pierwsza to liczba podzielna tylko przez 1 i przez siebie.

Informatyka 1. Wyrażenia i instrukcje, złożoność obliczeniowa

INSTRUKCJA ITERACYJNA REPEAT. repeat Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; until wyr ; INSTRUKCJA ITERACYJNA WHILE

INSTRUKCJA. gra edukacyjna dla 3 osób - od 8 lat

Nowa Era 2011 Young Digital Planet SA

ELEMENTY GRY CEL GRY

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu

Które z poniższych adresów są adresem hosta w podsieci o masce

REGULAMIN I MIĘDZYKLASOWEGO TURNIEJU W SCRABBLE 2016/2017

wykres funkcji pierwiastki

MODELOWANIE RZECZYWISTOŚCI

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.

KODOWANIE DLA KAŻDEGO pomysły na zajęcia

DOOKOŁA ŚWIATA Z MARTYNĄ WOJCIECHOWSKĄ

Gra TransEdu - instrukcja

Podstawy inżynierii oprogramowania

SAFARI. PODROZ po europie 2 GRY PLANSZOWE FOTOGRAFICZNE INSTRUKCJA. gry dla 2-4 osób rekomendowany wiek: od lat 4+

Organizacja czasu 1

Elementy gry. 1 pionek neutralny. 2 znaczniki czasu (limonkowy i żółty) 5 specjalnych kawałków materiału

Programowanie w Turbo Pascal

typ zakres sposob zapamietania shortint integer bajty (z bitem znaku) longint byte word

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Tak przygotowane pliki należy umieścić w głównym folderze naszego programu. Klub IKS

instrukcja do gry Gra planszowa dla dzieci od 7 lat (ale sześciolatki też mogą grać)

6 kafelków wielbłądów

Dni tygodnia. uczymy się bawimy się rozmawiamy odkrywamy ruszamy się

Najciekawsze gry i zabawy podczas przerw w szkole - opis zapomnianych gier

QUIZ O ŚWIECIE INSTRUKCJA WARIANT I

10 SEKRETÓW NAJLEPSZYCH OJCÓW 1. OKAZUJ SZACUNEK MATCE SWOICH DZIECI 2. DAJ DZIECIOM SWÓJ CZAS

INSTRUKCJA TWORZENIA I PRZESYŁANIA RAPORTÓW

Zadanie: A2 Kapitan Mambeks i gra w skoczki Plik źródłowy: A2.pas dla języka Pascal Dostępna pamięć: 64 MB A2.c dla języka C A2.

OPIS OCHRONNY PL WZORU UŻYTKOWEGO

LEKCJA 1. Diagram 1. Diagram 3

Gra planszowa dla 2 5 graczy w wieku powyżej 4 lat

Transkrypt:

Prognozowanie rozgrywki grą planszową - Cześć Anka! Co ty tam gryzmolisz? - Witaj dowcipasku. A ja po prostu projektuję grę planszową dla uczniów podstawówki. Nawet nie masz pojęcia Marku, jak są ciekawe przygód, które im, co tydzień w ten sposób zapewniam. - Rozumiem, że pomagasz mamie nauczycielce, ale dlaczego poświęcasz temu tyle pracy, a efekt plastyczny jest jednak znacznie słabszy niż gier z drukarni, których tyle jest na rynku? - Mama ma swój autorski program nauczania i chce żeby dzieci poznawały określone słowa, zwroty, sytuacje i żeby to było wplecione w zabawę. Nie ma takich gier na rynku. - A czy te dzieci dają radę nauczyć się co tydzień nowej gry? - Dostają szczegółową instrukcję, a gra jest typową grą z kostką i jednym pionkiem dla każdego gracza. Ale mam z nią inny problem. Okazuje się bowiem, że czas rozgrywki jest dla niektórych moich plansz zbyt długi przekraczając te czterdzieści minut, a dla innych zbyt krótki i dzieci są zawiedzione. Może ty jako matematyk mógłbyś mi pomóc tak projektować grę by trwała pomiędzy pół godziny a czterdzieści minut? - Na to nie ma gotowego wzoru, a poza tym wiele zależy od tego jak szybko sobie podają kostkę, rzucają i dodatkowo dyskutują. Ale jak widzę u ciebie pola są ponumerowane od 0 do pewnej liczby n, więc pewnie dużo zależy jaka to liczba. Można tu podać następujący wzór na średnią liczbę rzutów jakie musi wykonać jeden gracz by przejść od początku do końca: n/3,5. - To jest oczywiste, że im więcej pól tym gra dłużej trwa, ale miałam już kilka przypadków gier o równej liczbie pól i zupełnie różnych czasach rozgrywek dla nich. - Ach widzę, że jeszcze masz wiele pól z nagrodami i karami. - Zatrzymanie się na takim polu po rzucie kostką powoduje, że gracz jest zmuszany do przejścia na zupełnie inne pole planszy przez odliczenie pól kary lub nagrody. - To komplikuje obliczenia, ale mogę spróbować je zrobić dla tej twojej planszy. Wychodząc z pola zero prawdopodobieństwo zatrzymania się w jednym rzucie na polach od 1 do 6 wynosi po 1/6. Zróbmy więc tabelkę:

Rzut 1 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 Teraz możemy doliczyć prawdopodobieństwo z pola 1 do pola 6, bo tam zostanie automatycznie przeniesiony pionek jak zatrzyma się na polu 1.. Rzut 1 0 0 1/6 1/6 1/6 1/6 2/6 0 0 W kolejnym rzucie prawdopodobieństwa znowu się podzielą przez 6, a że rzuty będą następowały z pól 2,3,4,5,6 to będzie to tak wyglądało. Nie będzie rzutu z 1, bo tu pionek przeniesie się na 6 i z 6 będzie do podzielenia większe prawdopodobieństwo: Rzut 2 0 0 0 - A z 7 pradobodobieństwo przeniesie się na 2. +3/36 +4/36 +10/36 Rzut 2 0 0 0 +3/36 +4/36 +10/36 - I teraz znowu to prawdopodobieństwo powróciło na początkowe pola i trzeba będzie liczyć od nowa. Daj mi trochę czasu to ci to wszystko ze spokojem powyliczam. - Ale ładna tabelka. Tylko gdzie ja tu znajdę ile potrwa ta gra? Rzut/ 0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 0.0000 0.0000 0.1667 0.1667 0.1667 0.1667 0.3333 0.0000 0.0000 2 0.0000 0.0000 0.1667 0.0278 0.0556 0.0833 0.1111 0.0000 0.5556 3 0.0000 0.0000 0.0741 0.0278 0.0324 0.0417 0.0556 0.0000 0.2130 4 0.0000 0.0000 0.0386 0.0123 0.0170 0.0224 0.0293 0.0000 0.1119 5 0.0000 0.0000 0.0199 0.0064 0.0085 0.0113 0.0150 0.0000 0.0584 6 0.0000 0.0000 0.0102 0.0033 0.0044 0.0058 0.0077 0.0000 0.0298 7 0.0000 0.0000 0.0052 0.0017 0.0023 0.0030 0.0040 0.0000 0.0153 8 0.0000 0.0000 0.0027 0.0009 0.0012 0.0015 0.0020 0.0000 0.0079 9 0.0000 0.0000 0.0012 0.0004 0.0004 0.0006 0.0009 0.0000 0.0037 10 0.0000 0.0000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0000 0.0002 11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - Teraz wystarczy, że elementy ostatniej kolumny czyli prawdopodobieństwa dotarcia do ostatniego pola przemnożymy przez liczbę rzutów, liczbę osób uczestniczących w grze i czas na wykonanie pojedynczego rzutu, a wyjdzie nam średni czas trwania gry. Tutaj wyjdzie 14.4 minuty po przyjęciu, że uczestniczy sześciu graczy rzucających co pięćdziesiąt sekund.

- To trochę mało. - No to wystarczy, że zwiększysz liczę pól i dodasz trochę więcej kar. Ale ja już mam dosyć tego liczenia na piechotę, wolę ci napisać program, który to będzie sam robił. program GRA; const n=50; m=80; eps=0.001; var Los: array[0..n]of array[0..m]of extended; Uklad: array[0..n]of integer; z:boolean; nn,p,r:integer; function Rzut(P,R:integer):boolean; var i,j:integer; if Los[P,R]>eps then for i:=p+1 to P+6 do if i>nn then j:=nn else j:=i; Los[j,R+1]:=Los[j,R+1]+Los[P,R]/6; if Uklad[j]<>0 then Los[j+Uklad[j],R+1]:= Los[j+Uklad[j],R+1]+Los[P,R]/6; Los[j,R+1]:=0; Rzut:=true; end else Rzut:=false; procedure Drukuj; var i,j,g,k:integer; s:extended; write('rzut/pole'); for j:=0 to nn do write(j:3,' ':4); writeln; for i:=0 to r do write(i:3,' ':6); for j:=0 to nn do write(los[j,i]:0:4,' '); writeln; s:=0; for i:=0 to r do s:=s+los[nn,i]*i; writeln('podaj liczbe graczy:'); readln(g); writeln('podaj sredni czas rzutu kostka i ruchu w sekundach:'); readln(k); writeln('szacowany czas gry:',s*g*k/60:7:1,' minut.'); readln;

procedure Czytaj; var p,r,nast:integer; for p:=0 to n do for r:=0 to m do Los[p,r]:=0; writeln('podaj ukˆad p l planszy do gry kostk.'); nast:=-1; while(nast<>0)do write('podaj numer pola i przeskok z niego:'); readln(p,nast); Uklad[p]:=nast; nn:=p; Czytaj; r:=0; z:=true; Los[0,0]:=1; while z and (R<m) do z:= false; for p:=0 to nn-1 do z:= Rzut(p,r) or z; r:=r+1; Drukuj; end. - Spróbuję więc teraz skorzystać z twojego programu i wpiszę więcej pól: 45-40 30-20

20 20 50 0 I tyle co poprzednio graczy i czasu rzutu. - No widzisz teraz wyszło znacznie więcej niż potrzebujesz, bo aż 80.6 minut. Musisz jeszcze poeksperymentować, a na pewno z łatwością będziesz uzyskiwała oczekiwane wyniki. Napisał: Andrzej Przemysław Urbański, Politechnika Poznańska