TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Podobne dokumenty
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

deep learning for NLP (5 lectures)

TTIC 31190: Natural Language Processing

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 7: Structured Prediction 1

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

tum.de/fall2018/ in2357

Lecture 18 Review for Exam 1

Hard-Margin Support Vector Machines

OpenPoland.net API Documentation

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Previously on CSCI 4622

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech

Inverse problems - Introduction - Probabilistic approach

Gradient Coding using the Stochastic Block Model

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

archivist: Managing Data Analysis Results

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

Zarządzanie sieciami telekomunikacyjnymi

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Instrukcja obsługi User s manual

Tychy, plan miasta: Skala 1: (Polish Edition)

Agnostic Learning and VC dimension

Label-Noise Robust Generative Adversarial Networks

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Few-fermion thermometry

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Maximum A Posteriori Chris Piech CS109, Stanford University

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Projekt: Mikro zaprogramowane na sukces!

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach


Mixed-integer Convex Representability

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

The Lorenz System and Chaos in Nonlinear DEs

WYŁĄCZNIK CZASOWY OUTDOOR TIMER

DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system

No matter how much you have, it matters how much you need

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Maximum Ride Ostatnie Ostrzezenie Globalne Ocieplenie (Polska Wersja Jezykowa)


HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

Bayesian graph convolutional neural networks

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Revenue Maximization. Sept. 25, 2018

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

NOTES ABOUT AUTHORS Walter Rothholz Remigiusz Król Michał Wendland Wojciech Torzewski Krzysztof Przybyszewski Piotr Urbański Wojciech Majka

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a

SNP SNP Business Partner Data Checker. Prezentacja produktu

Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji

Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta

Knovel Math: Jakość produktu

First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language

PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Sargent Opens Sonairte Farmers' Market


Maximum Ride Ostatnie Ostrzezenie Globalne Ocieplenie (Polska Wersja Jezykowa)

Camspot 4.4 Camspot 4.5

The Overview of Civilian Applications of Airborne SAR Systems

Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Gaussian Elimination. Introduction. more sophisticated. Ui j = 0 for i > j, and. (iii) A = LU. Therefore the factorization takes the form

Remember to set your printer to omit this page when running off copies.using this document.

HAPPY K04 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! W5 W6 G1 T2 U1 U2 TZ1

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Convolution semigroups with linear Jacobi parameters

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Traceability. matrix

THE ADMISSION APPLICATION TO PRIVATE PRIMARY SCHOOL. PART I. Personal information about a child and his/her parents (guardians) Child s name...

Configuring and Testing Your Network

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

Change Notice/ Zmienić zawiadomienie BLS Instructor Manual / Podstawowe czynności resuscytacyjne Podrecznik Instruktora

Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski)

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Presented by. Dr. Morten Middelfart, CTO

****/ZN/2012. if you are pregnant or breast-feeding.

Transkrypt:

TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1

intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction (4 lectures) introducing/formalizing structured prediction, categories of structures inference: dynamic programming, greedy algorithms, beam search inference with non-local features learning in structured prediction generative models, latent variables, unsupervised learning, variational autoencoders (2 lectures) Bayesian methods in NLP (2 lectures) Bayesian nonparametrics in NLP (2 lectures) review & other topics (1 lecture) 2

Assignments Assignment 2 due Wednesday for the report, please use either pdf format or a Jupyter notebook (no plain text) 3

<latexit sha1_base64="u0xwf3yzhfhquldgyizfugbiywg=">aaa1bxicnvtbc922ezbtw6reknb61e6hrasjhuuqjhonmaseiwkrdiekqtpybqksaukchki8gqdpxqz7w/pp+tbx9qv/obsazyejgjiczdgigg8xi8xuynfrucrmyl29f91643vf/8epf/tmj9d/8tof/fwxb739yy9exvkqpg/zjodfbutqhgx0uwqyov8vnji0soixwevdbp9ysrlgexyifwu9s0mcsteliysq87dvpdvkkml04udembah2hjhizakhk9v+smre55wy4b6tj+loazm9bb+8owesllf8r54pufxsubn1al2p/a2fjypaubuhdzy1bityc5ph5e32pb6/na/u8+6zvepctdy/5lqemnrfwvhg59fdgw94901qvwjqwqqosuzmg0oxz9/a2nvd0/9epbhqpnywgt+js/ffu+wh+vhmdjmqkgfjvykevyrllmy0hrdlwutshhjynoknxljqtir1ptx3hburn445/avk56q7vjujbvikqaarb0isw0rxw2nprx/efaxrcglzuld0bhmpjl7aetexdhoivnabwk5a1m9cei4csvy3hqvmwjssris7w2lknquwzwt+ruxj8wehfn+bvomkvf81q8n8ynlypln/epxcnzltpzrkcwp5ursgzmahhglozaaof/bqd0macpe0xe3vruh/jbhrjcdqsfeheypl+weagiqxwuonfgakck+ulmwpvdhodynqu7sfp0ogzglzdhihpeqec5rsx3gkyydoa2rrmbhszzd/ezse8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkohbhoyixmuidjipkqkgwctqcj5ruz88jmvfmnbosnyegqpqp6hxyevcqyyhl1o8qd72amjl6ixmuxalq4eqmuktl0smjnxlbzrmwaumt/itekdwraqugglcwzwmla+mjhz1tuftutugcgysap+p9nbvm610lfmissyre1cfrjhmh1hyvq0fglowrf5x4wdvsanu+zdfjn8wnvp0dazbsrkotemvjcxfuy09rrzv1nsyets7nx0/pmu0seksefgaxi72n51zwhboqfl9p5s+z/feeg6zvnlwzht2aokob55cjyoooh4dxi0qvy/pr+mrzmlcvwdhpdtnjy3xkxgjak3hl8lqkuklwa6tculo4zlw3psfvsxh0jsmgl4eh0u7voo8eln7d5/tcbuxslivrueyv9odxebxvozlc6xwqui6evfpp8lzuqka2spnmzmrnhis2qqwwz9byriwf7lhuphzizdbig1+uuvbyoilnvfdtxl3miyusu22o8l23gswxqd5rjm+ha69sayjgfoebvxawgfvidda8ytcxtbp0buchjgugrgikuwtp19ud10i0fwhsmnciprbsqa4fopgojobft84ymos4ycxarcwydhbxkthlgoyuqlvzuo9rff3jofasg/cnbzwbksliyg04goyysuwc5t0ngk+cqb785z9akzrg4qlbxbwradd/bc+9bb35naiqmlpcl6ja7uw+rljhfpamgssunojeshham41w5rypexti3nuhx5xv7mkpfznaetf+hq3yxeftz3druy0ccegsw1lezealyrr54pf9a8/j2fhtxx25jc6zb+4i4kqvnkpx10b6qhfk1sfph9eccqxzephp42i4dvq3wxvohstueapnlvecadc61psle29wybq6y9shnr4fhs9n+txbmngsiezdjshftecverauldo6efc2kmhanbenbsxd2jhzzywclbobiscjjc4gyczksycvc2mkgwssifkesu1q/ugeaxsytar6n1itt6msydshdwc4jymexzct8cytisqd1axrlnkqdlsynpwboxccifu91ltcgip0/gxy/bqeowcamczkoo+psnzy+iihccsvink3zecdpgoxmdqynuqkte/rtryvkt6u8jmoscygmy5xktnhhqaud0e6iphystluv0f+cckxnwgknlyedvdw0jyhrflh/mw7k0b/zhewlsbymsaaegbbh+7ydw140gqqfq6gxlql4g5fn7bkthuy1x6yal1znkdg32avc6gzlhpkln97wo5fkiwb8pih3q486pwdtdc5pe8cw2bbkxt72gqzmej30o5hyjkijvjgtbxu7ydvur5tymujzcets1l7ln/3urtciazuhes2xguu1lk9ivnjh1klryldaq80kh4kchmelt1edxcr/h2qb+5um6w6tjr2f3hyflcyjqim3frppdw+eo381alzf08u0rv1vn6izmgzduxdowlg9ysncftb6ektmqpxtbmajgpponfssnvdmxl7b/gkq4sjfqyq1ojwqwps8ytgfvglhx1so6wqpf7vssrfyxpveefdms2vdfjmdmxpoqipfjoeyt2hgyj72mqdcjhhrxs5ncuc1u7ozhxbxnqmi0zadlm7sge3xhdqv3q7yag0h/lq2vjzc/10dzqfhgdnkcimdvgkvtyxzcikcruzedhjzeststparubedrrycm0b2xdaypty0sicdrma7i2pgj4n+6aqpu6jr8cfd3uigdzvkolpohcuo2gokbdckj0mk+z+rn8wqg/tn75ud5jwee9bt9wemacsq66egbtkizwf8zs/6cnzhaf+yy8kzhs5xre5kv1splxcr0yqxoswokohic/ezhk7tne78siqqn8a40ybn1swnyaohrk6rb0r7wx5uqzzmscztl2uegacaeywj+5ip3hpepj1bhp4luc8flxnixh9d3iavr0/vnrkjjgl8otq4p7jhnkochutgynlkeupj6lzuj0fckkzlqmdsj2fxszfcw8oew2jgda0jewxsj2ghxgd7ailo9corme8qwn0huqkr01sh+fqnxtayt8tvjsgqwwahgc0orhcidiziaxgjstzt6kq8fzebgaeelyjnqj76gm11dpxkab1nlcvdr9uosv6hjipfvuqsdixjmyrpolebjultse5usvtnl2mrjnikpu2djcxwd0b6ckrjdejderygllybnoqzqj/lfjcgmhwnsjrnteu6a19g9jvjbvij7lljkjbdobc3riw9iu2glwsh1cgkma5zbzukquho6r7aa/9y2guea1vdawybkgzh5jsovdvclzuih2g0diou9a3c1nlg5runklaodbjvadxopbr91eczlgjhc1qjrhce1v9rltwfbox0inxmrprj2vtmvde67urcdmdbxcz5z63fgnmbqyq2hqvmdrshea6e7cgkrsc8paj4awsax3h43og1bmi4bjordcq1itznmhrinhsfmdmmkjnoi/ystiwuc5tolzwrybuzyqhbmex1+0qeqmlpmu6iloietsmfodngip5pqvkgrjn1c9tulp45x0jvvuyxup6uxu8ptgxafpbn7klebgfq9xg9tbu47gdt1elgrjdun3dhqq3vzmnkexuewkkorluy3wjdmxttbvaa+pm9rneg6uspcadpr9nn8sd8ctdr7q3jqax8n4yejk1bam31mcptlf4lgpiekdvlfwvvbrgkxytjqh8zgo4mffagde2afshh1mfq20c5k+liw7eiyadictfzf2c2mzakjh0uer57knjsggkhw3qmwlcigqantsnb8+6gbfr3bwpcp52okfr7a6hh57sayvwdjfelnebj4rw+sdlicmi0uhcsjctcbwqxubjqgl9mkr5s0cvvv+yb6wg7qkniwk9rlep5koouvgzqnnjhuk9vr2uge2j/rt1sl/rantczst5/atwigpv2stwi+3hbuj3gaxftmhkkltrzrlngxng5lny2aam7hnvsupybhsot0ze5cqyirdphjunal6dgqtq5c2y5von9d7tz07glhkmpgozfegslp77tcq1toxjk8zj8lsjdjr8lqfivxogcaiiikiiqv1pmxx70oxrja28qwzj0orxlnp3p99a/cuzwkgazfqgompzrvu0xygzckvjtzq+2zc4b1qzvfbhs5r1chrt8t80f/wladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znzzccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/l+6lg0ylnefnnt06xui433e/z9wx8wv+zgbhhndcwre+djswbe583vic6w2c/crhuln0zmui6yuoo0w0cc4bwfbrgn7poxgvv6rszk60z8x5lr0cca7xa1g903klfeqr7my4sqb5y+rfqywkj+ktkf++pjo0r0we79mk09+nnyduyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdit3a9cd65++om38d/hyefwcnq1tnhb863anofbespzqhw4hd7pik7fez6aqsxvtmdup2sbu/v2ttajschvdl+i0yfdb56mnuf2dq9usaedky8dbe38ur5qhvvmxee6hupabiwe5xzsdeq4l1sreqlbpg7igexlobbzcml9xy/ievsfu5f9p48pqk1fmwdjhuaurvnxvvncazchc5hwasx98z2k1krxdnc9lfcymujcbbutjffpwpt3j3i2sum3lzuk8benoyv+dlp4twidk4c9xuhwr3okrfrpemtjdtlivwkq+2ly+yiruiuvk7sbpcvxtkonucrccyi/ww2/fdbcv4tgplymqt825+qusa54hibrboprbu/vfugaxvw9rfaypcb8yggiyxgc1rky+952809hwqhfefztqvldvyfnx6mg6h3nwq9w8lzihvrs6tom8qw67tt24ghoc7b2vuiah67qetce4rvtcztu5r4ek3b+2ce81ru9ulvmdocp2sp117y9wzv/kfnxze+rybgmm9/4rzmj809k7i8v7u2o9nzhf39/45m/n38+8+bab9b+shz7bbt2p7vp1p6sha89xwtv/fpwv2/959z/3//f/v/f/+3932nog7caml+t9x7uv/n/igns0g==</latexit> <latexit sha1_base64="lvj5f1yayqj0pimo0ef8s222bnc=">aaa1fxicnvtbc922ezz6tdvb0j72ha2kqr1lqo4tj5mknoliq3yniqracm6irafjhb5ivbkaz8um+wp7d/ov+tq+tlsazyejgjiczdgigg8xi8xuynfrucrmyp39f63/4ic/+vfpfvrwzzz+/otf/urxb7/zmy9fxvkqvgjzjodfb0tqhgx0hwqyov8xnji0sohxwdujbp9qsrlgexyqfwu9t0mcsteliysqi3fww+0skuyffeyfcrgcjreecelc+ma2nxi54wm1bkjv+fmaympe7+gpx06ojpvd76hnex6nzh5rlwr/e2/bz5mibk7vuy1vltsr5px2ehmlha/p73t2rvsw9ztlsks0bokvn7y3tne98cvlv/a73j2jyp8q5axewz6vaud5xsxbm/t7++rhsz9gzcfmwvnzcvhoe+t+lidlsjopdha22i/keuw4zgfc6w2/flqg4rwj6rl8zisl4rxs5lb721ateeocw79meqq2s1grvihfggasnslmnqx0tz2vcvzrecwyopq0c3vh4zlxzo6hbxkr46cfzaefjoqmzpxcceeklgcbg71ucraxybk8n5rk0rkm87to18acfbmwzvu1azlixvnzvzbmpyylzz71q8cp8c0z2a+lmd+ue0knzmgmyiym2mig/gij9pikkxtn393xvhzww4z73gwenxgtmqvelnscieecl6byrmmmcpvqtseuwt+d2pweoun7daimxiw2r4st3qviuutf9ofngb6etkyagr0lcq7zm0nvg0mpje5nrczavhdqiengejc1wrwqkww5zjdczozk3oedkvjocr6gho9wmcmqlymyykzkiojmeumjee7lqfkifh/jwdfbwhnkked9of4hfwmtshy+apgw+ssros2jm5pnqzqmhapqpk+8kpmy1juf0jhllzrcyk9iameuevaapgkfc5puvpo6wttvpk3rbomimleifkba33tgttkxtcfcsazuqx0srtifrmfxnrrgzfqyekona7wjjvdnxxuxfsn46rprocqo5towdvwqlbrhnfa0crwzb3pk7e5+fvlkvnhgiktgxbtyot54fm4jqzgfyq+ebfmcxrnjomz61ugx0dnrcak+fxo9kqkienx4papupb64oueapxfdhr73uf88scrpyoygtr6/cktnjc1gebtgcagp58bxy3/+qorbb5ka+gp8fo1qqfpw1d4/fe7h1ebiyluwbwfctxcwg1/5mpyvsvojietixkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4onvjlfgupi5baxpc05b1hmllgntmujtt1k8gsn+yrtfp0upyimeqj6hmy1anjhvulqgkwgxwzxbbwgsyroi4oqkflx+ffndcyfacx3irgmjaablmulyryodam5yfosgd0uog1xmrvic4wx7er2zjgemj7wxz1pv+odg0zfxkilyj201gynbymimoofkmbjgneu8dygtnemc/pacwzowreakqv0vkhg1fo8svo+8+d0bkdkywc+ro+xupusyybarjhgmlzyarriyqjcmc+uudxpnsd/yhf9fvozhqh6zwrmyfrmo2t3guwx3ulonhxfiembs387ikwc3e+dxfahn4zvzncvdu40tmg7tc+jefpypcnzf+6pysnuitr3tawmucnit6tfrow74tlp7zufkvnsitjb1ggm2onf2ihhva3o0nwdah18ch50stfsn2zlzkolgqcyrxbtnlrozfptqurnstjbiwp0qjg0n3dmzwgqthywyacilcsctbmomzeoglwhpi4ekeyp6huloaf3yvgf6fbci+dzak7sje8vabq9noy8gb8c0e/mnlioladqpujtzea20mdscaqava4twpnw5xioidp5k2p20btgegzmu5djsqevvwpogbgorlit7ps1dgdxnsfe1gjzqpk5m6lcfl5ddrvksdesmbdkovso7xr0hrxzheyoawkjyblvg/wsqmj0jjzs8ggz0asucoetxxf7hujfdf8wtfpxcwjakmrigwh4f2a4me9eeenwmhca6poinrja1ybywgtv8uwq+ddvd4txkrwqjsy0bzi58elfvrcotgvdtbt4eosgbuzudxbamnmoyox+8rrmjpbdnlvygkzicvsrbyeboyc1vc9ycplcmuhllfr+5z/9ru3wiao1itonccgltw6pjj52ovri66d3wqtnpn8jaoyhi3crg0qq/x/kaxsb5quo7swdbry2xvqsisijt5a6d47onyb/twowrvnf9my9b/dom5imnvnqaaly/widqtzwotlljkjcu4racdotdp37rn0qpkbew3zy0gksxcfedbgveji7fmk4xtwpov9yzmse6t81uolxcgl7rndxjnnlg3xzq7gzkeddratnms+hrkr+9irgaqt4gv1tttfxdxs6s50wmvndoheqw64uludnl13al9xo2adtb3wm9pa8xd/d32ubyrlzjnrjazwplu8tczbcxiamrm5ygrlllpzwkbmxg4y2qpsgtlt28j6wing4yme0ujogfdvqhezzsiq7bnw57oxs+7jcd6jp1rkbqd5as3cg8isnmf0befenu0de/13aqv3powe/xn5uirucshxoysis2h/g5pesr8kudfgmocc8aoscvusv9bqvcqqxok1yifqnkbiiv3gcaorvzovgrkkdcgongazzvv5wmqx6wuq4eku1ve7gn8zjhmk9ftnkcagdusyzsy6zyz3mtdm57ec5avxy8zcbz/xv5c1a8prt/biqwivhlavo+4h7tjhiwlhkhz5njjcej87o/bgljmpudhus9hsxtxnadk3smi4exnizsmug9houaa+yriaa3k6/apklgdyfknkrmbx3gazv6qwm8evc3pkgeg4uatqaq3ykwgcktyywowu+pk/fwxg5jhhi+odsr+uhrtnxr9zojdtsxlhqtvamkey2sdbbxkuk6lcrvq6sbrg2uje0luvmlbtw9jk2y4jgatnessfjdgekjqi7tcxxp2rqw2afwks+gfpzbwibqvjtcup7rlumefrnrv461sswwyyzdqnafwt66svsenig2kb1sh5bmumyd1jaeiagp+wip/gnhr3kova0ngaraml2z76jq7xbxviichthajbjrtwpb54gvvzsgwdowsfslcturavqza82yiixnusuyxrbuf61v1ny2odip8rm5uizlbzfvreu4q3m7gavzmesdtryl5gugkdp2ljg77b5aobcyh5aaafp2moktlwh84efxo9cqcomqaebukdcw2jtb6cfz7hxazdcozdin8lpsmrosbkjvvq6cvwsiow7bzbn/fdgmkpuw5foqizgnrrpbthvyhj2yu1zieitdxpxeij9pcti51lml16wkm7njuxotbzy5/slxmonbvmftuafvoho7chnrkiu5jn/zuub425t5bl1eszooejbttlixzcc2wvqfvd5uap/rovdc3ms4upbrflpcnuzyxap762ged+obislx25p+twmyshedxz4mpg9q3vr3wkulmsnruobmxzichxerhxhhh0hz9jlvnnauzppqmu5amalanbrcxnjnpwuciizjn0eeyzy6ihuocnwils3ciaqgbbn1/vq4g3wf28h3oodpjxyc2+os+u3bmrxiyrrbzhoreezsrxe4gjgulh0mihaxgcctbgswiczyi0wwtwj41vsl+8ju6cp6sijusxcfzqlkfbk1j5y7vijy79vjvtk+6rdbj/+xdrtn7uyc27dibt5eku1qvdwsbo56g8t25yrkjk290prxljvvslaumgfu4z75hqecrbdn9mxmqeiiew6r4lhxpooxqe0oxdosb6lfqo83du5g4jlb4km03xvc6u61w6hw61wwvme8jrovsg/a034kcjvlgcmijoqelntzmf89f12ywtrgl8w+dkv6zt1z//cn3lsyp4gkruibpj+2vrgtc4cspvq08qjv2wmbd0a5xwczoq9rh6zflfnf/ztthrz5btpmsv5qmreyj0lmngxdq5wsnjbme+wpoucwvj86hxgrrppnedqfgted3qqcucvzyufijxufm7iaanxqqqio7bfgqz+w9cyskrsnyvutx9ii5xjtte9nl7qpnn5p2pdtfcd8hhuxxq3xma/tny8lgxmdn1cnottmpwuz7rxemjnrumbcqdmma3gg1366xta6g15ohogxmzctg/edz0zfa2u2w9umdt9irnkj+tive6oewpoqackci/qpzbfsqyfuknehew/ctpbgz9s7nbfqmc4wjnvbqrrqug8/v6913u8/1znm9uyycowfxdoobnfiwmkmyq92vwrdvf7pj97gf48nn9vl6duyyw/nt2p7dm7pkwcb1ef2+cclop2j8nrmzxlzonmnjqvc3bevtulecnl3+bwndhx682ssobk3e3vdohhmerwgaoi39yxyqgfqctfxgac2ype452bnumk9pfrns9jycrahzcodtzhxsov7ehhx2y/yvrw8e3jybfmaarj3mhctyoqvyhlegamdw7qkkomp7ywljr22g5ulvjbjfbii2ggluxrworw/wbovlb9t2vkej2kilfqlmmk/fehyoezpqrj6nsnlpuqdwe6yqxarsopyz5krx4zelxxzod3kgyljgj3djrfkepwzbvjlwxh6jqq3twjq/by5v6emdcxjafxzb1x3z7/uq9io5uohsslsa+ydcxndxrcolpc993aafzrkqiic4jpwze+6om0+zgrv72joe7cc50uu1jjwnzwv59vjp7yhd3oeg7xzrqf8afxxgyyur51a2jeq9ycyhporduazruib2jw3a3zcvm645u3dqvn7nlpqfl8hw2dy/my/mhmzfyjjf3x5f2+0vzf6+/ubn/65+fozt9z+t/ahtttro7up1z5de7p2svzilvz/5/q/1/+z/t/3//dg+8hogz0n/cf6q/pbtd7pgw//d9gm8z4=</latexit> Modeling, Inference, Learning inference: solve _ modeling: define score function learning: choose _ Working definition of structured prediction: size of output space is exponential in size of input or is unbounded (e.g., machine translation) (we can t just enumerate all possible outputs) 4

<latexit sha1_base64="u0xwf3yzhfhquldgyizfugbiywg=">aaa1bxicnvtbc922ezbtw6reknb61e6hrasjhuuqjhonmaseiwkrdiekqtpybqksaukchki8gqdpxqz7w/pp+tbx9qv/obsazyejgjiczdgigg8xi8xuynfrucrmyl29f91643vf/8epf/tmj9d/8tof/fwxb739yy9exvkqpg/zjodfbutqhgx0uwqyov8vnji0soixwevdbp9ysrlgexyifwu9s0mcsteliysq87dvpdvkkml04udembah2hjhizakhk9v+smre55wy4b6tj+loazm9bb+8owesllf8r54pufxsubn1al2p/a2fjypaubuhdzy1bityc5ph5e32pb6/na/u8+6zvepctdy/5lqemnrfwvhg59fdgw94901qvwjqwqqosuzmg0oxz9/a2nvd0/9epbhqpnywgt+js/ffu+wh+vhmdjmqkgfjvykevyrllmy0hrdlwutshhjynoknxljqtir1ptx3hburn445/avk56q7vjujbvikqaarb0isw0rxw2nprx/efaxrcglzuld0bhmpjl7aetexdhoivnabwk5a1m9cei4csvy3hqvmwjssris7w2lknquwzwt+ruxj8wehfn+bvomkvf81q8n8ynlypln/epxcnzltpzrkcwp5ursgzmahhglozaaof/bqd0macpe0xe3vruh/jbhrjcdqsfeheypl+weagiqxwuonfgakck+ulmwpvdhodynqu7sfp0ogzglzdhihpeqec5rsx3gkyydoa2rrmbhszzd/ezse8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkohbhoyixmuidjipkqkgwctqcj5ruz88jmvfmnbosnyegqpqp6hxyevcqyyhl1o8qd72amjl6ixmuxalq4eqmuktl0smjnxlbzrmwaumt/itekdwraqugglcwzwmla+mjhz1tuftutugcgysap+p9nbvm610lfmissyre1cfrjhmh1hyvq0fglowrf5x4wdvsanu+zdfjn8wnvp0dazbsrkotemvjcxfuy09rrzv1nsyets7nx0/pmu0seksefgaxi72n51zwhboqfl9p5s+z/feeg6zvnlwzht2aokob55cjyoooh4dxi0qvy/pr+mrzmlcvwdhpdtnjy3xkxgjak3hl8lqkuklwa6tculo4zlw3psfvsxh0jsmgl4eh0u7voo8eln7d5/tcbuxslivrueyv9odxebxvozlc6xwqui6evfpp8lzuqka2spnmzmrnhis2qqwwz9byriwf7lhuphzizdbig1+uuvbyoilnvfdtxl3miyusu22o8l23gswxqd5rjm+ha69sayjgfoebvxawgfvidda8ytcxtbp0buchjgugrgikuwtp19ud10i0fwhsmnciprbsqa4fopgojobft84ymos4ycxarcwydhbxkthlgoyuqlvzuo9rff3jofasg/cnbzwbksliyg04goyysuwc5t0ngk+cqb785z9akzrg4qlbxbwradd/bc+9bb35naiqmlpcl6ja7uw+rljhfpamgssunojeshham41w5rypexti3nuhx5xv7mkpfznaetf+hq3yxeftz3druy0ccegsw1lezealyrr54pf9a8/j2fhtxx25jc6zb+4i4kqvnkpx10b6qhfk1sfph9eccqxzephp42i4dvq3wxvohstueapnlvecadc61psle29wybq6y9shnr4fhs9n+txbmngsiezdjshftecverauldo6efc2kmhanbenbsxd2jhzzywclbobiscjjc4gyczksycvc2mkgwssifkesu1q/ugeaxsytar6n1itt6msydshdwc4jymexzct8cytisqd1axrlnkqdlsynpwboxccifu91ltcgip0/gxy/bqeowcamczkoo+psnzy+iihccsvink3zecdpgoxmdqynuqkte/rtryvkt6u8jmoscygmy5xktnhhqaud0e6iphystluv0f+cckxnwgknlyedvdw0jyhrflh/mw7k0b/zhewlsbymsaaegbbh+7ydw140gqqfq6gxlql4g5fn7bkthuy1x6yal1znkdg32avc6gzlhpkln97wo5fkiwb8pih3q486pwdtdc5pe8cw2bbkxt72gqzmej30o5hyjkijvjgtbxu7ydvur5tymujzcets1l7ln/3urtciazuhes2xguu1lk9ivnjh1klryldaq80kh4kchmelt1edxcr/h2qb+5um6w6tjr2f3hyflcyjqim3frppdw+eo381alzf08u0rv1vn6izmgzduxdowlg9ysncftb6ektmqpxtbmajgpponfssnvdmxl7b/gkq4sjfqyq1ojwqwps8ytgfvglhx1so6wqpf7vssrfyxpveefdms2vdfjmdmxpoqipfjoeyt2hgyj72mqdcjhhrxs5ncuc1u7ozhxbxnqmi0zadlm7sge3xhdqv3q7yag0h/lq2vjzc/10dzqfhgdnkcimdvgkvtyxzcikcruzedhjzeststparubedrrycm0b2xdaypty0sicdrma7i2pgj4n+6aqpu6jr8cfd3uigdzvkolpohcuo2gokbdckj0mk+z+rn8wqg/tn75ud5jwee9bt9wemacsq66egbtkizwf8zs/6cnzhaf+yy8kzhs5xre5kv1splxcr0yqxoswokohic/ezhk7tne78siqqn8a40ybn1swnyaohrk6rb0r7wx5uqzzmscztl2uegacaeywj+5ip3hpepj1bhp4luc8flxnixh9d3iavr0/vnrkjjgl8otq4p7jhnkochutgynlkeupj6lzuj0fckkzlqmdsj2fxszfcw8oew2jgda0jewxsj2ghxgd7ailo9corme8qwn0huqkr01sh+fqnxtayt8tvjsgqwwahgc0orhcidiziaxgjstzt6kq8fzebgaeelyjnqj76gm11dpxkab1nlcvdr9uosv6hjipfvuqsdixjmyrpolebjultse5usvtnl2mrjnikpu2djcxwd0b6ckrjdejderygllybnoqzqj/lfjcgmhwnsjrnteu6a19g9jvjbvij7lljkjbdobc3riw9iu2glwsh1cgkma5zbzukquho6r7aa/9y2guea1vdawybkgzh5jsovdvclzuih2g0diou9a3c1nlg5runklaodbjvadxopbr91eczlgjhc1qjrhce1v9rltwfbox0inxmrprj2vtmvde67urcdmdbxcz5z63fgnmbqyq2hqvmdrshea6e7cgkrsc8paj4awsax3h43og1bmi4bjordcq1itznmhrinhsfmdmmkjnoi/ystiwuc5tolzwrybuzyqhbmex1+0qeqmlpmu6iloietsmfodngip5pqvkgrjn1c9tulp45x0jvvuyxup6uxu8ptgxafpbn7klebgfq9xg9tbu47gdt1elgrjdun3dhqq3vzmnkexuewkkorluy3wjdmxttbvaa+pm9rneg6uspcadpr9nn8sd8ctdr7q3jqax8n4yejk1bam31mcptlf4lgpiekdvlfwvvbrgkxytjqh8zgo4mffagde2afshh1mfq20c5k+liw7eiyadictfzf2c2mzakjh0uer57knjsggkhw3qmwlcigqantsnb8+6gbfr3bwpcp52okfr7a6hh57sayvwdjfelnebj4rw+sdlicmi0uhcsjctcbwqxubjqgl9mkr5s0cvvv+yb6wg7qkniwk9rlep5koouvgzqnnjhuk9vr2uge2j/rt1sl/rantczst5/atwigpv2stwi+3hbuj3gaxftmhkkltrzrlngxng5lny2aam7hnvsupybhsot0ze5cqyirdphjunal6dgqtq5c2y5von9d7tz07glhkmpgozfegslp77tcq1toxjk8zj8lsjdjr8lqfivxogcaiiikiiqv1pmxx70oxrja28qwzj0orxlnp3p99a/cuzwkgazfqgompzrvu0xygzckvjtzq+2zc4b1qzvfbhs5r1chrt8t80f/wladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znzzccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/l+6lg0ylnefnnt06xui433e/z9wx8wv+zgbhhndcwre+djswbe583vic6w2c/crhuln0zmui6yuoo0w0cc4bwfbrgn7poxgvv6rszk60z8x5lr0cca7xa1g903klfeqr7my4sqb5y+rfqywkj+ktkf++pjo0r0we79mk09+nnyduyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdit3a9cd65++om38d/hyefwcnq1tnhb863anofbespzqhw4hd7pik7fez6aqsxvtmdup2sbu/v2ttajschvdl+i0yfdb56mnuf2dq9usaedky8dbe38ur5qhvvmxee6hupabiwe5xzsdeq4l1sreqlbpg7igexlobbzcml9xy/ievsfu5f9p48pqk1fmwdjhuaurvnxvvncazchc5hwasx98z2k1krxdnc9lfcymujcbbutjffpwpt3j3i2sum3lzuk8benoyv+dlp4twidk4c9xuhwr3okrfrpemtjdtlivwkq+2ly+yiruiuvk7sbpcvxtkonucrccyi/ww2/fdbcv4tgplymqt825+qusa54hibrboprbu/vfugaxvw9rfaypcb8yggiyxgc1rky+952809hwqhfefztqvldvyfnx6mg6h3nwq9w8lzihvrs6tom8qw67tt24ghoc7b2vuiah67qetce4rvtcztu5r4ek3b+2ce81ru9ulvmdocp2sp117y9wzv/kfnxze+rybgmm9/4rzmj809k7i8v7u2o9nzhf39/45m/n38+8+bab9b+shz7bbt2p7vp1p6sha89xwtv/fpwv2/959z/3//f/v/f/+3932nog7caml+t9x7uv/n/igns0g==</latexit> Inference with Structured Predictors inference: solve _ how do we efficiently search over the space of all structured outputs? this space may have size exponential in the size of the input, or be unbounded complexity of inference depends on parts function

<latexit sha1_base64="n9u9ohsed6elirzxrk0qrbtqcq0=">aaa7vnicxvtzdxy5debyssztwtzxy17kizlqfsmw5xgbrucmlslszmhorstslkopqgpddbe2ash2t0qvx5m/lx+te4hqrsjsjouxu2egbedd3xbxcbewqjim5phx/332ox//1v//zu/u/xt7z3/7d3//dz///b+/ewxny/omlrosfxcrqtnw0desyyx+v3fk8iij30zxj7h922vkbsul13jv0cucpawbszhiqjp+/pp/3snfvk3+8evqes7f9t6/hdmrc543edxuh1gzjwkvw69m1d4phgvhs5podo6ojg5w07owdupviyqxzwjooq0oiedbg6ymlgrf2bwftmj2e29nu/ewys7bg8dhjsxikwy0slhapusq6sdmklkkg3hkwyceedysiljk9dyjzhio51qsldyv1t9r59mraafcjjblaylyexyaido1q0n4yd2g0tpufbl4fdrew00lakv4mppltfnhmchtmgtnn1pgf4d/tntrrjm3u/k2lguv6comg5ph7f4ksj3vfz+vykzrycuzbkptmngz3f+t+lydegs5s+fyfucgqhkpyi8li8v0cl+xprhrh+r64cqar3ram48dht62hvbzvdze6zmjomhbkmjui/y22v/e3wi+rosdwgie3x/q1cjdstuarg2w0xr7lxaprucluewo/8iqol6zaputats2abrsi6geskgthljzcquoy8c+qop9wxrrsyn85tcqwbl+ab+vxajt5kpp3r/bt/zacypxrsfjazhyl2uobyl7sgz6l2utu+i/b6mqdxbhkhysdfleduboo/u6vl7twoqickzvhywohsoiqtjjjg4mlqxvh/wimmcmzbsgc1ritzcvqgs5zb1oqrhdkpejy1oi6/udzstoibbsthripj+goxpjnjy8cfagnnrrytvd9owjpct6ewdy4nz2+o8wme3fdtmhr5hv4zxidp7byvewdr5rvj39+c7x0bh6cdypsfexs9x9ne8///vnyvlgdu4lqss+mbxx8rkb9ylfgyxlsba0ivevsekffbykp+kyufleg+xbtrlmsg7/ftjqtcmedckftkhaoo7cbsnkx9tflwe/v4thr2oj8u8zmtvzimsak5mgyryskk3gg8scgaxbpcfgxrjsmg2dtuuysggk0lclkxqp4xiyf6m25asas3hp1uz1jhkvf2ztxf6zipvlyvbpcqbbf9kspta+lbnjlcrokmimrnpkgqkdab0wsxp2gf7qinhqwg8zhwulehqezmk1dyoyenazxakikheufqqjae4cxbcsvki1b0hoc7no1ngmpba2oobgfs8lgtyexmb+kbq30gt8ketlgj95/tbspbkylohygaug0jhj4howteuaeslcowsu3wweam7clkgt5yvfucipoiwrifcqgthbjfvfi4she7yi8jr7tkr/lgcgg7dmsfca+cg8qq4y2hqlfnhquxmstnbw0autrkguaidu0w2fef8zmw+bmkipkxo1ujgvrpcniwikqdsj4e7zjlrdr6u2oaz5o2xqhrysgtnthb/9xm6lmevxynaa0jakiszhuciqhqlorcvrt5uemdtyanxhvzxin+jtxkwuidkpqqpd0erztvgrwacne1weo5pg8pcr82exntu2vaoipphk2emrs0cywilifvpyv68hhmoo7z49s5h9mcpqh+c3oxkkqcdpb0bviuobwzjsik/b5umzgfr6msn+lmiebbx+im5ekryc/zwjj4q+xglf3fdv+xqu3rub9d3mufrdzc6n74/+j+r01uxmhfj1vrhg234bilp5fquvkliojpx6ubf0uxdbwuwi8blcbotux9utm6nldnjaiq2cil5ihdxqzpdllwr2tfjudn6gez4y70bq1o12qlsd+rvbyp1dtpez/xdtxc6qukhpinco6aqrsoiopthxfstkid1fefdltwj159vmgq8blhtadm1iqgty1hsvhzwuvhnh4gdp97jmqoq6h8esqlmhge+mfqypakqw42uenj2epn4rvktcnngxm7gsrcyw0hnjo8truih5hgnzuyq4+mouoynwjdavorapydvb0d1fbr8d2of4oujiauoecgnkwjcvczrpdundjsdgkskfeax6bizfhz5y998clewb9mjsvi2cabn+farfa6drfa9y24wdcuguwvlfj+lrfjpiixi2xehzddjtns2bbwzfdkspibdzcabc2radqsoxu4s89wwpjlhqwtu9hr/o9ybvp9vofqf81ubgsqwxhhx0ppwr8chuzmr3xlwffn324nzt2p9izh6tqnqcwgzlf91xk8sib2v06yvupasacy8eu/ad7mumvkvpbwswada3jj73ecjbkgscuurmewxu2bhhmpkc0vbtqwv0pu0r8g21zvnajo63cx4vsp5ado5pjuzpwbtrdla/0qmuxvpai92huwd0ymdriac6l+sqic6fll+/7geewwamczmlb+zsny49iixccsfjxl2xmubemdhiwgre66zbtddbz2ribjd5syelgwizxyavvcydb20oj0ctmjti2g41fv8vfzjoxhmax0egervrd1cm6cj/pczq87hmwfilz8gq5jowepbs1j3asbfnimhhugitsyreygrtw3vnovhn7zbn73znkdh32avc6gzlhdklnz4b8ckvfs346w5uhh519sd6evyfrybjswovi50ehve7im5nbnphbsmrkrizsjkp1kl1ti2xlzsdcmrg6zvz02tvhefu1ibonccfrs26pln5zodri66h3gattpn87bqxdfu4jrrprpl/urkwv+lyd/o60lhibtdaybke2nhnofvji6dvch51zlzfe4ppjpq/26doyrp1tugahbv6pjahrjz1jzxmhnihcibzdcado5skvvdmx95a/n1oj3e+hkq4yqmexnnnscyp4g0p+96zsf6qmq9okuldtvwcgkpkxljsjc7zegyeg2iwmjdcmj3swgliryiq7a5vm6u1kx6qzh87ewkubpua2glsaq7upae71oo+3/snyad0j+d3rbpi4f7v5iglcmfj5jc4gebtr3juuimx5huyl3leydzy5pj1nmyphxgyddh2sueuk5ly28mejzizo108ir8enyde8phu9cn/enw2+uhje3luxk89k6jaa+qenwrpsi75n5u3pzabmo73wq3yys4zm2z9ls3absqm1igipdpw4yt31dfgdx7wo1snpgsyhfeuvvs7l3inczhmpra9rpusrfn5zzr0auedxo9ranfjhhsn2frdczptogb12zxs1t8lcbsssiavgx6teqgialjhsrkphco9l13aurfguqanytmagcz117s7koltxcnlk4frhn82ow8v9zqwlln4tqgp20rspbldtqyoepjkkkcys63d6m463elk1we1oknhynvbah1wsgfyvxnbbzdehxlsxdpbl7t0ynrraf8b7qvn8urcpbfbi1gkbjafg2gmwikifs1nrmkmo27e21c5i3pg+ykyrojhwrs30c2do200d4x0w6/ospigi1kkbjks9bhj3tvit4nagunarvknstprjiytmuormvz3krfu3rnpi6jbpbpq0rn3yhea4kxcqp2idiar1arogqwyomour+5lhgkcz5nkyjdnxoqccoxchriyqtpav8hbv4+qdrrmhnsqdcgxbfskd/xt4a55hlqldrgeqjpdwr6iul26gy8rhsfo/ubcorcq1+ark1d0omg5mmhupxu7kwv0swvniotf3velvpwimv/sd6wudibdoyz7pcxqyzfvree4a3a7gav7mesdtryl9gugqfp2lng7bamgpahpikrgwlg9oxhrcxzfbxjcghqdhhuitcdqlgsxfzpg9jaldyogzjluyz1ghextof0rd9gqqdfbkrheuldg9om/vmhtyu1c82uqizgmvrpbqjg5qa72kfwsrnkwvz134s+zkgyo9vtjdynptw7knkbea8/ufsqvlzatpue2aid3hy298heipmhk0n/lkck852afqvdj6u1uccd3e6xpsno3w7ukecbu2j3x86ceu9fwonyj+w65o5+z6ya9czsph/faknsbby3jkqnxgwlw2mfgmadf1rnxqnqq3r09zcx9rcp4wbxzgvfugtthobojbnok2xmomw0ggafdjj0vmfnt6ykaoini0ihl2udhjamvnhuhukd4rbw0b3box58mg+8tn/ieltwfxiiz11xcvz1yh1cs2skihrgbf8s1+oakiomjmicccb8rcnzqrmanwok7wbrlj4bvvv9yl+zgrqlnq0q9balpiwpokvb3wnnohijj0x+p7faj2e6c/kc60ha3m2np3opv+hhfdqn1eku4mze2ip3lczvm2naloeos6n6q7f51cu7invkbp4ilsocm7exaqiitj3xfo655yxbobqrdvkxzrb8r7rcy9xdwywdruzy3vnjcvq4itwqdw6ewn+pje9ui9ak03uciv9cmy0tcrjwrlxoefqqhnmtsa9/4hrnhodhfec8y/guhd67sysb5lvga6y/ddw7xvlcynipohvv9nyhwdqjk+cbd5zxqkpxjol8mp9ry4m1vn2ho9fklizb9flkkct81vmljy8kyuznv5xzw6kexolfi1t3d0/nmrgn2j3dml8yhbse11hds6gp641nlfxbgv6d+hgyfywyzlkmkthx8w8dyquqsu8xadze6j7tet7j3bszgecun2oqw65gp7s7hkcc+zluqe509m8/krvugn0z2ui6yuoa0w0ba4lwfbngd7pyxgqf6rszk61z8x5fr0caz7xgzgsm3kklzq77m64yqb5yhrfqywqj+kjkeh+pvpfci3x79js7bah72gqflchjjciouwrqittn8+ll5ret/+qmezkpnwpqrloyaji2iqyiwdxvhrf9v6ohntz/xnv7pepk5tx5elrny675v2yuylogalga63a6ffgmn/yocnvjf2z3o7odkhbv7/ru2suil/m5jzmh14ncbj2vnkcbu1q8zyddl8ycgid/gc+vrz9qvbjbjpniipbosg59bcfesajwvycvhqryqqy7uyt5g3zdui7jefshu5ftls6fnbqgjghopu9eiboiqloetinaldkuakv74s6tuxw9kcluunxk5hoqinlpzqz61qnmf4dnkbti37kqot2gmlfrrgmi/vtixstjtxwtzokfkrpvgszwuvz1wluaxf8yunjcs9vb1hz4ml0ma0uqllolqgudpcmmvh01wxkjwuysg1w+bs3xk2dy8jwbqhsdupthutuiepfw9rfayy8d81sekvykeqjxk6nch3x86ykiogucan93vtnndfvwiqt7rxbqwipdvkdss1l50lzfn+adwgmcll8hb+woafrypm6azxwunhvzclq0ijuh8aob5qssmul/mdobp+spt37j9qun+sqztut83wtaydr/xj2ym9p/iub/fpdyahb9n/vvfd778j+7pz+5t/dpwp2/tb022frf15dbzrfotn1vxvz/dm9z74t7jyzcns5p8pntqh33w9fnflvfzsvx/6oq94a==</latexit> <latexit sha1_base64="cs6ponrgsr2an3paq41qcb5kuru=">aaa77nicxvtzd9w4dlzplngubtp5zasnkhj7lckqt2asjojzrmm7dk67nyqx3ks5dkiiwjc4gqbvvaazn5g3nlzmb+ul/yb3aqwisvdlveq+3skad3fdxcxfoqjkmjbhr//7xy9+7/f/4a9//ocptv/4t/70z/78j1/+xteirhlm38dlvvlviijoxgr6xjkz0e8qtkkezftb6ooztn97tblgzfforip6kzo0ydmwewlv0y9//d97pmiqyt/9kqgil2j772/cnmg5z5u8ah+guzklypxdr2bvpgqebmgzmk72dw8p91ft07anq9ujkpfnyk45dsij50ebrkyszexyho1pwnz7tvkxmkku2/3a4rk9dz+8kirmsjfmnlcxig3ivdn+mcwlfpvjynmocrjvrbbxyeltipjlum6pjfqun6p/os6nixjouu1sytdisck4nyxanundega9onlavhws+bxa3ltnjwpfejqt5brz4rgj7zhkzw9byl+p/7tu0ayzt1p5izrlfegqjhuar+3dfza6e/j9vcobryutzxkotmfgz/lhmss37zbyyfk6l2spuc1iaxucwyymk0ek9bfd/0txb8cbelht2nwekps57bca78x2xs8zxuhekhrzw+qpzcplo43gs0q+dozm+aohxo08mlqdsnqgg0239wlxras0imue8l8zatr3fqc+rydafkbdejgueam1hra3w2hvcrnyf1v9zesjemmezxwaejjdd+cjtqt1mnw2vftze2+vftd47xo8hhmp/7/mosbxd4ln/3ktdrf9h1qqagocg4odb0owf5053fh5twopqyoyvruwohoqiwthjjo4mbqwvb3ym8iamzjtgcxqitvdvgct5zt1ogvhdlhcjy5riawfdyj4nbeh2gw1ke1/dep1xjxtebzsdw30uswqu+jzr0qx9xlfsmxt7pdfqtcbxg45oa+yvegcslvshkvz1hle+fb0jzthh0fqj3a/jt3hzlb3czb98udfhekz1zktpjl4fhjuyysg1gswzxrw8frqisrxjkxn8fmqniqlruufbbahnukwkzn8v8ha1q57ncqxocebitokuw0rfw3ntzz94wumf1vlih+a0azoalkgmmwecenghwwfhytmdgqn4jkb75kq8mwbbcqsqcptliyqjarlgzeq6ri1ksfvnmvlszavm8l4utbr4/kafaksc7n6lgpdupbmlyxxozxialfgvxezydumc0waqeuaszqzt/rn+8ggan7l+dbygkdzye6uavcugydoie4qubmgtfadtxpn4lqqeeatpqhynpt1oo5mllw1xqe3qngp0bam8bzzuag9ksbgr1lawvjm8yew6phfdeheclwfly4zb9edos3siejhyigj7c4jvhmtdk5qos/5ihk+z2gmqlycyijzjqkqwiqmneatlsfzm1l9swezhlw1q4icza/mfxkv0ayo4ytwt5vjoiw2gi5ocq2ifdihmm74xmeaixnbhbfnwdgowcwsmilshrfqakizbxean6eaolq1zrhn22gd6rbgccyz5ujwf3yrxsyka4pwgiykswq5jkjwlrrazy1zu630gnmre6glr6ouv0gf9nxyazfotr0yhibkaopazqjtnoa82jkebwdfnb286kyxoviqcu8qpydvlxxhckcg+cmbxb0eea6jvvvi1gl2ay6oh17djeooop6/ublvk47vb+fiizxtmxenburrl474wyortnx6i7h5q/ik9moonhd6eakud8o3h2tqetcg0i8wr9epltlffdz895dtwbmzcujvvuuyb/ttiezlb6xwqui6kvdrquxq7ujsa5wlwksigyxsfvvpzkswm0hrhtqiknohexjfkcevvyjym2g52/mx7vl4vbupu7fbge524o8gi3uo2v5m9so1fztdqqe+gua7oiuskgk6+gbfvzaoi/yuqvyv1alvnx+axz4ewg4aobahcs1gwvnufvbqum0dir883eoao5lrhazlom4ezlwzvja8ohdbjjd5chpy8ux1ujek02dhzobksljysmckjxjh66lkeqxk5rli4a9t5gxakcbuinqmgu1sr/fhkvgcwd7hd0vcdhjyregjx7qsmnnjdxjvkjkbixqphgdqczmpovt+uv/mzghasket9kphdmj1fsguj4fguzzobtmoxcfrbet9p4rvwsyih+dzcgxnm8hmdbzstrev062mif5kxzkkz0n0qcrhtc3y3dm8kocqcw/3eva61wo+nvaj+bxyvqobybjecnrrlfjhxae7o5pdedd+8fxp67o1a9+tnd0mhegeha2wlrrjvohfd8ro0gupekg1514idu0h3ctmriqedhysagxustzvivc2idcecomy9hiosdhczcq5pe2hjxboy9oj4ntqzfkbtrxvfzxeldybhbzttmyfscjwhab+peddjpwbfrsppwdoxccie091ltchep0/wx5/3qm8gs0yf3iwd8ylahx7eauffy7hvb0uy4c8zbdftai8002dmgc2n9aq3w7ykgjlngqyjk0qe407dtocta4nnheqsn1qlp4rkjcdiec0voim9grxhqbm0ux+eeyg5mozsaqwzoihytvhiozpitubys+aqykpodbal1s8wcimturoqqoalzfnl75msjy77fvhdlblwuyft58nejhkihb8xqc3q486e2d9ck7piscx2b7kxy6djqgdrocmg7njgprifdkm2mwha6f625blfspbogkj9z35abj3wiaqakp0mumc12zdn6x858oordddbrnw20k+dooyhi3cro10vvn/kany33ssb30d6sjkthugzflcbbyz0p3m9yv3ol86m6uipcu0rv3fbvbnmd26pidawlo9ustdvs76kkpmq7xdbma5opponu2sxijzy28gfjna49lxgwhhozwqops8ytgfvo1h3zst1gts89vjjx3iqz4ty1szs5an0wuewsxjaw0w85jls4cdk03svusf3efdc7v2xqpv7gnnt8dvbrmqo41nwnwdj2dhetd3e/8e7idubpy+dvy83p/dhgub4tjz/ayna7ztfa8cd/ccve7mry442rrlxlkok/mxi062adto9sp1mhnro9mresdzp4th8xej89alhp+kpuxfjc9gp3x8qo6a651nbvv7gjzgruelyth/s/kmfhid0/0+uufe2tljhq2/skxbgjibglgkr9tqfowo+gz86qff2jrhwcpgukl0pd+9lguiwzqrhegxqmqhysp/pqfto+8k/lgtibsz3gjapuqk02zdaavb5qmy/l6a25cabawi9ouoqeaawd2wlx0svo657nlovqdpbwhqztyezkm/lu9airfnty6sbeyr/tdspfhuu1pqzui1iarse0nxzhtzmjpisjkphgestq6ru+lwcylxh9widh0hvwepdvgphwbftqs93xgv5kkvawdd7tkj6a0dfg20fztfe3h1jaenyjeqqbymopkiiyd2tzwrjtomuhfvq+uuzohnc8qyiodp0d5gnw+otthcmdjtvtojyrumzjg4yujsyyr5vypdjmpnjgkbyz8qaa8xmrzqjkdq2t9jxlj1z6spoaattqhlz96bxt6as3ib9yvsauzuk6ijlsqcdrseupcrpngctsqbxtyze3iofhibymiiaqndiqddpula6zpzuemyhms27ss88e+fu+z5uc00ybaaaq5keybc9epuver4hkp3g3hr3kpcm0doxtgbiufaifov1u1ertfvldqrehz3r5x4vijq/lu/sdrfmxspmuyvmqunxvqvneouwe0afuxlkg/wwizyfxik6tuxyo+wdydwiksbkbob4/ac4q0twhwv4hfj0huq1ihqgqhtrl30aylrq5y8qicy5vcfdrorfrxjdexcraui3gsrxbjd3ylzj/76ok0ln3hnr6ku4pj4zgylxeqcodhdvkkszcnc9cyjpy9lmjjwuyxfpaq3uslzmhilv7kvdewrs4x23qao87gnvt70rjkzwgv5drrhjpzt6drplu26ksju/2wj9kz26haxxwtny1e67nqql3r+fbuufz3xj3nmftdxvnab4p44egqtfbgpntbq4yxocxj40xayqtc69v9sc7o3rkmptyr/czarmdr9wday5zzhmn9bsy51a2g0awarpmeipi5qfsewfer8skuzayj45ibio8n0j1j/cikmjf7jy/ph8g3+du8d0tet6ibaeuuyr+e7aor1iyrraliwivigv1aruq00dlqaqrpiiqunwnwbqebxexkmoead96v+re2i1drc9xlxojetjc1jwioe6e88ajbuempx7z7roz3tn5t3wg7w5n0tk9favw8yrsuuv1lnbnymwq+5ctkpm07upzxlnrvshzveou3mu982nobutgzxnymycercye64phxfpgindafiz9i7klfipcb2xuiectwakjlg+osll7hrbq1tqht2fv1mcmthhphjtdryjx1wxjrmjelzgveh4wqoeea1jr3/iguceh2f95zzl8aqcpruxhihmvuydpj90nbtdwulkcik4e9x03ifaoqot4iepnneqq9fm6xww/2/lgzw+fyc70uoujkh0usqrxpzvuyuljytjtm1xnhnbqr5egswlvpcpt+cysy3yncoaxzicfitxwf2zqcnrju0svcgc/op5+bh/lbjowsypoffxdwpkq5bjtzeanl7qptn5pupdtjmb5y43y6pbrme/uzserwl7ow6otnt2bz8qu+6q3tpa6lphq5rtdqfrgtz9ucz3ulhcaj/pfjmtrvnzhkvhrwbntedocwzessvldvszrjkohlifewrlcon4qoqsh6m+qukjfhv4iztsafvacf8skgomig67bgqjnm3z4uxmt63/6qz5kqmfclcss7jomlyhdihz3fyet/1xowc1/e2/nd48rm3hl4te3lrvlxbw5iwgzosydrcdp8ucad/kwi1ukxznc48zmkkd/f9a22sker93cbikovaotdp1pojjd2rhzlaymrjauetv40xyqoeqsvcymz4sbflzyuhp4ms7ixval7dlo+docbthanfvmg+yagxcb39gt3lyzuxl5rdubma5x6nrkxz0fvzwj2i0cumq4cs/vidpnrdb2rwu5q3ermghag2wlmpnrwo2z/h2cpu2lfsqo7paqwt9gsywt9wolfk2fzpm6r8pgluaxnbrxpvavrrg/ya6em5l28hwfnizvsjrs5a0uivcc4m9wwy+ftnbeqnbtkwbvb5tldcrynjynygruw9tdp2pnsj6kxd1evpgjwpzswsrxkqsqnetw5/vdfzrkqiic4jo33e+2edd9nauq3tfcglckl1up1jlwnnevf83zonaaxyuvwdv5agb+tqkzobnfa6ce9lqvdqgm4fxqghmjkwxqv+yogm/7ym3fup2s6f6ypm263zfbmbh2v/gpzib2n8i4h988ozwchu7+7e93fv3p3z/nj6q62/3nq4ndn6h61fb73aott6vxu/oh5ahlw+udqujv/j+d+p/0tdf/rf1+cvt4yf4//+p9hqupo=</latexit> Parts and Score Functions given a parts function our score function is then defined: each part is a subcomponent of input/output pair score function decomposes additively across parts 6

<latexit sha1_base64="hhsevwvbrpxzaew00e9ejadzqzi=">aaag6nicrvvlb9qwee4lu5tl0raoxcyqrvurvkmfbkqkviklxyl1hepv5hi9u1adb7fdn7l8e7hwacgu/cju/bvg2aspxbotfeurx59nmt988thhkrhunvdrbv7w7ubzzsld1r37dx4uli0/2pdjnlg2rxorzichkuzwmo0prgq7tdngolcwg/d4jd0/+mgyyzn4vxup60zkepm+p0qbfcw3ndaoibqgft0ygukvubnksooh6dqlfowmcxjoteabvrdnwgoa0uo5ek622hfweecmbrnii0rke+iz5cayolcgwuipbisj6mkigkljnwskgnn5dx4fumur76hrmjmlhnlllc3bal8epdmmsfybcrjapqdipiglmzkbrfazmmmjagcfxdmxyatvor8uzkrvumnb4ofgank3chyclvsufr1esfdyz93kexumz7srigzcieanfwg3mtqhgapsqj43ky8fymlrftq1hncuhnfh8nf6yzqnk2fxvjupzw3uky/ipj0y7vi8tegbij1qsf5jxsg6ftfgz5c4sqta7tus88hwmro9ylvgtmguy63sp5md969vpd1ruxpr1lpg6kw6iwyz2c6bmdaz6zmhyxhiha6rssvhhmptuafuvrzgacvb98qbpg2/mlacauwesz9xl6f5xgjfbzhyypds1dxw2tkvzlrwlllk6dezscmwyxix2dxlvw1qg5ae6iczplfcjxo+qpni2vla01ytj/cs+ke9o1z1x3u1j9ncszioe/vzgvsc7l2pejxjvikcdeizdlwrhzkmuav/byucp1nytlg/se576/67fyvbw5ucc84t56ntcxznpbptvhv2nd2hngant40vja9n0fzc/nb8pnadn6tihjsxrvphb9l0asc=</latexit> <latexit sha1_base64="yz3htpnwmceleyr2zdoyxl9yqka=">aaahtxicrvvlbxmxen4wkpbwaathlhzvucrsardcalvfqssfeyps+kb1tpi6tmlv+2dtpyks/0eusnz4f1w4gbbivmm26yamlcxsyum55vpnnwqsk4vk77dw7+1u1kdwhxtu3uvfsplpzxhu7loesp26oxidgegmemt2ffechsypi2eg2efw/nruh3xkqerx1fldhlvd0ot4l1oiapjxkrsoq6l6qvcpjk/qk5qvudlgyrrfgowbazz4wq17zq2jsrcahrr6bp5rtfo5fac4kca01ckw0vj6bnkzbiisy7bqahtbldpygmkkseozryxpvaepivdfie+gwyhtewzvzfc2b61+cfdmmctzbyriypxsizmghkrkbtxqtwuooqccprbniseazppcd82a1vjjqakeykjso/q9nozbtsw6szlniz1by09smd7tbkxk80y0cnzoc5tjc5bhna0v8xbysabzonpglcsbtclxfq7x1g/tlcmhxvptwz8bqjnfks17mzqj+1bsaxa7fzl8x7yqdspihm4gcwlx1errwgahrwrme+v/gdmguyq3vj9mdt4/nzhx3clkvlkfktborr/zfskbbykcekbp+ixlibhar8awhxmetds89bfsxe983tj5hlkjtt3fwvh+8qq74eydtrve2fh1xmpxx/6cozhnqhypkoiur56bqlagm8wpykagm8ksqo9jjx2bgzgqybboxwod6ob0uddo4ysuythjce1cacsdt1u1lo9z8g97r5nqvmxrhiwzyhedjepmaqky2acfdxjkqbjdmahnoxbfte9sqhu8qfyer1zytlg/ueg5g96756s722m5fp3hzhon4xjoc2fheepsonsorxyqfkv8qpysfq5+r/6q/h65zs+nyx4558bcwh+oxy94</latexit> <latexit sha1_base64="f6upsv2ea2kjoks95b91mesmeuy=">aaahwxicrvvba9swfha7jem8w7s+7kwszktmdxyzbjqocnvzywe9jsoywvesufkys15jvp3jpqzg/soejjl2mzhr2q4tgj3z6rydtx86vpawyoxr/lxafvcw0wytplifp3n67pnq2osjhmcpjoc4znf6eibogi3ioacckzmkjsgmgdkozj6a9envjou0jg5enpbeiiyrhvcmhib8tubchieso2agx8ox4amoxcqkjlcdyifhodrnvhrbntp0qa0w85aub3tkpt2ewccavxwyhplfnctfxrldptsflagtkoifigz9nod6klcmiebkdb7oifxthshtg/gek6mn4rseqwu3r09emay4+qoycoyeq8atkkbu8b27/briwacas6ffmsow1ntn+7nanfpkyfa0zatuy3pfg2mx5edwjwv3ro88kcohgvbku5li9r1ovhjuu1njui1dwq1u8w7winoyulaldgwhmcfhbtjcwt+is6sedunp6/rcq53iiuyyi+fm7ltnd42yqzlkp9bvvecyjugcejd2ld3egjwlzukwtlfxf7hssntyk/ppyef9845t1y1mzpwtlnttvpwr6zeiuxrsei/l+yikbbcer0czy0eaqek6l/fgurvtly9mqy5uuxbbpbm7rkwekdtf3xc7bjhavogvxozvjn1/9tvsxzglssqwq5yfem4iellfmoozutbmoekqpkndcqrnciwe92txmijq1kgfdojuf5eabtqdivhiztl0pohi62sg/nvaasyg73usrkkmsiqnhqyzayig5pkbfzoslfiudyrtqrkcpeipwki/rkyer37keenou+u5xe/z24293vkofeul9crqwj71ztqzpln71qgfgz8av5unzrp5q7xuwmnzk9dlptjn3zozrfu/eoyrga==</latexit> <latexit sha1_base64="cs2rlstvqqvviaakpmv2nv3uyg0=">aaa6jhicxvtldxy7cea1e8vhhvz1ltkgizlqfslw5pghkzrhtkriovexpvw4lzy1b92n6yhylwfozrranb+rbbljr8kuj4ts8ltsbfrmdwmykvlg1lmxdecrqlwhucg8gjypl+r4+h8/+973/+ip7/zjd/50+8/+/c/+8oc/+vzhx8miehf7exvpib4jqwqpz9kbxvxkvikfo1mysq/dy8fy/vuve5ix+wtvl+wio0nozzyicqqmn9/z3qn5wk4e/iquvci5/xdbrtvcze1wtvtbwksxrdp41dttxfkibe09nrwchr0d1toa0cjailzboym8eio9gctkse8odnqxn8mana7b16qpcuiisjy2ltyxv2etg0+w3bkuaa/xfdf86aettvbwnvlmrucdwwlgz367vbe2f7306vfqqtuxyzbvzbiguztb9i8xu7zbyinswvupfnyaepzq0uppo7uuuhdv19u08eeldeaw0+dht62hzy0+/f9l7fm4qdfsuaz22r3zb7y7trwzeivedgzfo7q70adthpb5cwjwtnt/eivc8jy6mizujxiwgqwwtq3sbazqtgil0ywoiy2uli661qd70m7iuq3rwlkb000mcoayho8ap4eovcnsyfh66+hch8zk+v13jtajzuuax+uobqkkihrgp/cq11g/33lvwnac5hij0kwy4vonn02ummjgrbinzcsuib6q9idubvhyujodoijjgjgjwtfoaqq34egwsvtfm6gwuqsellc+c1npjejxjecah86kjs2pxdthcssqmuffypzdmfgzozry1wa/o0wuoyn7trixarbqpnip+v6+xbyby3d4f/dsls+m7ye/rkucqyu4uxftvii7zkqia2pz/aot461j/e/zh0hztb3c/z9poffhbervrllfda4vpjcakuglhiejsydjuojctpdektdg6foc2yvgj0qtwspaijyawq8f+uik4dujq0kzghayk6srsnk31t55wa/fichr+sfmq/09gssokqcc6bjoycrjdw8eejwufwes0pejechxj71e1ju1go82kksqpyukufljcj2ktqcs6j5bg2q1lfrbey10bffc8tvetj6lkgfktcjwszja8tvdglm7qknemrnl5g2gbae65yxj+wnxyqnqf8vterwycgczknv4zkbzfadokqkkkfy7kmhjs7a9efncjs7ufq82xcj6twxhnbwxzwuzuofbp2ddzhleyab2qx+fgafda+8+y+pxpodbqgsgzxqaujlsd1ygjzjkrkunkoml3ncfviddunlzoxomzuhagyixavpyrktknkkuuxryd4xdrj+piw/5zddadvtzghbpodeawqu9bkbxyx8lhzkltqlrmfy69albwnvnmnn3xfctlvmybkcc8bpbhnkniqcj5eqagypgzcad4eeuhy2tbhlguhdzpgwwoym83x0c/svozzliao2he0ohgsis0o7kqfauhsjgu3tr4wozikdcflmea36noety4g0umpa8pqhgnfukszmcyh52rnqg4pvzh7dtfzy80lp/ituzyevlpwhkgcgeqnl3fnekafjpru01orsw9zrh33/hpuzbd15on1qer3+oaghlmejw3z9hse+vkzi36ayartjf4yal7sriqs3tetqp8ogonu8op9burv2gd2huyo+qe259p3r/8acdzrdiyoq6oskrd6upme5lwgevuwq7wqui7e4mpqauutbtrwkha5lxe2wkz6qp7zmfvgia2vasrq8wuovaeadx75ruhkmgcu8t1dew8zga0sl+zqkb36ywcxzidbs8d0upyimsqu+hmytbt0hvulrgfvs1oydwfk7smcudktzgs+3zb3faiw3abyaenilsoyprl85+ggmzsw33nio0qgkqscbkugzh5kvdoec9xwsjitruzot04ev4anz4lpsgnmccvywsylu9jtxo7wesgycniqjctb76bcgbq8hqkqtk05byko735hly5/ihymgbq54iaeqmkpo7rizgm6ksfcysjxccqc/1pojqbyv6ziccyob5o0n7nncg5optoot3geet38tsmw7eoweis30/iq9bziih4nmyhuyzzkymwx638zqb1regxmqpua5nq3sgkzezwmazz3ggwdut3qz6/klxa76d1lhzc+2riwqmy2bb0ucc2h8rt3z3jrsbxpvpl6cvzlau/yns7dhjzscgblbm0r23xc56umqwxkjzq8q58ekqtb90b2eyzns+wlaaslml0byhqnmgxfhijslwy6dcxshxr0ow1r69b4hejz0cvq3wnbvyxpf2kajfiwliwthnxpwji3jfapubkkp8ew202dscaaaxa4topdw5xieitf5k+f1vd/ainuncqlk0mjeucexblrrwob736qqiapkkwxbtyvdana1iwrj9tilsdp2x5fiyizbxrfpzk9xxsozwcjrhmyoe7vzj9v8zielmngfrjwsgl7v2akwal/apxwr6phypjyvplbikxleowp6eubmy9qipjpgycq11sccbjgx6q+4snlr53br5na8zeucue9uyk225mhvhm2cdxqs2ogv/3chhouefpfb+bfdneedy/ednyg9jx9qoovnxb3phbrlvorknydmfrixqbvsuwygh4yin1nfm57h7jwyiojberdkucgxw1cnknz6mxnq97nzrtz3ki1himwzhnmodsc7/n7ka/u3x9ydwky5bbrsgkp7gzmy7c91vxjx9g/orm7mu2lpmypt/3qz9ftotaxocxvirr2j5so2sl4ninsq7raccozoz3hnm0gvlfuw1zn9tphjno6dsuu4njm4+t3hbag972lfohpwc9hx1ukkfcmrmxcau3gxln/hlhsbcywmdlvncqdgfhsvh2muqszvgbxo5csvd3ezrzp6a9u0teik2tcd61how63pa+61/anzadwj+2zorhu7/ro+yghccbh6nkwhe9ornjjt4qv4n8yi3onkky122jpp5srucba22ney562rjro1kzzc4mttdpiq/3jgpvednu9gn/ovns9ep3zwhn5rrtwcf1xuajojg4rnnmp+z8qyecoox+31wg7y2c8phtv7cfm0n4ipubkv6tk3gf+6or8hvpob3tk541ja4rih86xcv5qridjowuvyyxbiqrek/0zcpnxcsv68oxi0zbjrgu3upwlruaavb5pg2/h7bbqjhhofevakgegia7rgs7gohc89ll3buetwxyksyrriowny9uwur0z7fv7asgm34bbnzx3wm4ej1amklpnjmgt0wu71kfbkszuho6v0ag+nq43shj1qdfo0dfydvbgh1rraptqktnnxisxtyp5oyc5dre3wwf4wmsvwyin4vohbxrbyigblrjedcithkhrosnknjlqwrw1l9s4b54vamvqpsyw7w10/eayg80di91e1rljxwmki8v1rliei6nbgukmutsjkdti/ltjem0oyyvnekrm/j2mpnf3ruyiajdppl707b1yhga4lrzqvygcymgmkxzjqcjzkptivywyg8fzpflyzdnnqg6fwt6gsoyetigukansj5b2uuyc1nauizft+xip/bpprnkevasngaramknvhkjqvbprl5eex+j9rt44t0rx5qgtv3sg0dkwshwldturgfrlc83zmefdusw+lqibfzeprm53jt2jjnultkvryqqlznhx4hyac/yykqzrlrbscwxa9u1yshfyi4d0inqioqwcxu0jw1tbshhn8lirdatsograuh3ktys+ttf6qekqephzdpvbpxfbxjlol0ddtmqrdbcklth0lzh94m8u2nrye1xiipkijonvbddxnzxjd/aqlyqg6tbxpxpiz7ocdo71dml3kelnboqmjdqdt29/ypuvmc0+4tzogpcdjb3wezgapwxo7+0opklvzt6dlupes1rkx3d7re+ym5fgsge8me7kpdfzoks71/cg3kp5brk7m/ppunvnab4p44ehrdbbmnfpkbjkeiphpjzmdnddovdazq+yydftnrmpdqq/k9c78ni9kby4z9brwewhew6lsweei6dbsc9fzvxceiaa6jimersf6qmjsoekz41q1sm8okrwnzvnr0+gwfejg3xpc5enysgpay5p3h6swiuwbbhkyhsbf9s1+oalionjmmcccb8tcnz6rmafwok7worfj4bvs19yl+w2xuxp61k/balylivbkff3wnnohiljst8e2+2tcbtz8p+yqnvdzisfeytw4umv1axwqy3hzms0qexftuhk0ryry7jgefegzpeyu3ax98z3bjm8hj0nstmbbylmtikuj7rmzyhba3my0uzff/029h5j5x4gphksptryixxwd68drq1e5/ap7lx62mzwin0ct/eryouvxxgrc1mmtnbpwwl90hpfauubx3h3obtptfcsg7/p4otshgaalskdmpnyxen2bquvz5js5nhftxmc74akgq8ytf6jd1k/rvlf4kmtd9789hnmzcy1majzryflfvvtq5ecnjyuuz1ttc5hrx5scrrrrrpnecafmxwd3qqc+ixzyufig/ufm6oeanxqqqmo7bf0x13gy1ky46li6ftkhwjpykiotdgjhi59h2m9n3dv28aa5q03yvun1zef3j2pi4f9nbfujzp7dj+1xffbbjjsdv1yqc1ph4ekx2s/0+i63q0vne7mi0zi1q34jiojo4ez2tf6bidvjooignxzvcntdywdils0xqj5kjkeb/ovcvcinx/9lmpaaj975omyhi5xhefxsoiy0wwffq5f6/qffuonmfqzmbmac7umsqvi0jbhxcvr638venj900+8jf89nnzurybxyis9dd+67rvms6inc5got8mneszy30uiryovutoz/yzwulvvx2vtmjb67zy2dlkjhgbzzk05arr79umggex5pcboejf1hfloz+oan5gxhmzik1khwm+ghhtjvzpxsoutia7iviv6mw+qngjmim62x7b7oxn57gmzgxgg4nyburtr1nx1lvajtngshlvcyxz8xlia0ms7ufnka5lcquieg6200m9a9oxp8wxln+hbdjxhexzbc/sshvc3ju6savz0ev2/zlgq0awnwehzyx6rsxuxv0kvn3ca9pbvhzkml2msspgllolqgudpccovhk1wxkjw0ysgm2+bc33k2dyicwfqhsdupthux5astor+ikwxx4d5uyojlxmivcvi0u8puv9mlivqbme1a7rfbfo6+zixtl+jurjbslguhdrlwnvevv40z4paetwqraheluob+pg6bgrngv479baxujycybiulgeyl6ziborx3ahwsv+57ru3nztdx9a0tff7ohggw+43/thmxp4tgffjq/thk+ojye/+cefx/9t9+cwptv5662+39rcmw7/y+vxw862zrtdb0z33d/7tzr/f+y8h//ngvx7894p/mddvfdbr/nxw6ofb//0/vhkhjq==</latexit> Structured Prediction Tasks task output structure minimal parts multi-label classification set of N labels, each of which can be true or false set containing individual labels in label set sequence labeling label sequence with same length T as input sequence; each label is one of N possibilities set containing labels at positions in output sequence unlabeled dependency parsing tree over the words in the input sentence; each word has exactly one parent set containing indices of parent words for each word in sentence conditional generation sentence (or a paragraph, document, etc.) set containing each word in the output

<latexit sha1_base64="vjkavpghhaxnlamjo+ypm1+x77a=">aaa243icrvtbc922evbixll1lrspfwerasrxkqrjng4mrttvbdfuxffvx9ikorikkjg8seicbsbzmc3+gb51+tof1j/qf9ndgoeqbebjzlqztgjg28visbtyxbqwkzpq8pc/77x74xvf/na33/vo5ne/9/0f/pd9d370uesliojzikdcfbessvow0+ekqzr+uqhksjclfw0v7mh7x2dusmbzz2pz0lomjdmbsigoqdr/4n3/7orpmfr4k2mwbsypa6l4sbkthcqoee4/2dwpzqtxynnyljp4vc3renc8o5gqfvwe+vjwn4o7wbgqpd6v2n1r/aj60yvz1g/qonhdnrngnle4wj6p9uc/23shbwd7sydzhwghyncxckhvjnoel1libqj0nftfs18ae+s8mf3v6f5mv+xmv9blgi3qrvjxvzofgytsihqkcyjqhvkq+u0v5e/qequldza3rxyst5pobkx0bugoiodrzaprdvfsuwjezi7+f+j1pdt/f+vw4fd/bo7hqpny2mh+ts4/+pcdccyjmqo5ilii5enosfbnfrgkrsmtn8elpawjlkhct+ezjxmvz5v2ujrygzo4mhab/3iv6nouruuyiyidminqku02rps1nzzq8vfzxfkivdspteetmg0ud9cdg5gj0hs6ha8scqaybtgucbip8nxjcfschpc94bsovwfvgs6ncmghrtfi36tvmzkib4vf8b8rnle8xzfvuka75lrvq1fcaicqkoxrkglurewrxxhkmejdpgimbsnf3fxrdmgn8qogjmiog0mjizdxiescagcykqqjmlusbsqzvjgkiudgt7etq069fjmpywxb4ttnivsncfiu0dtzeis2oonay7shmo8zpnbltdd61o50quwvrw0betyhowtxkseivdovsyxmegstghnzjstblyuil2bmwrijctftjbjuvb85ihetyl6ii9r4o/5qoag7wmyfcc+kg9ui1twuucvmhxt/pnuenbtuc0n4eootpu1uyfffuyoa3bkwnc8kppbjvosqhlfikgaextcuy0rcz66mhrv4c0q7snmmdoyvcz6vdgi7uvtlrgbhrq96bjesekd6owqxokmgyjwb2pxwhekrgog18ucx7deort0zkj0hoaqjatky5qehjlbkfb1ijy3//05ofzo401l5zit+ryfpt0zbggcaqshz3zhguwtburmovbd46tzl5pefxvo8trmuxu/qexo0rd4/mreqr5lttvg+me6rohjvhpghg0nuoxufwezaukic44ifqjdhy3x09fltdobrtax4gpoh1qdt54dfd3sactamvkscqlgjchpztpwk/gklevsfoliatwlgadimasnndwfp/nxkbyylfqq1pmfw4zyymuvy+h5jcmuu1pnvjlfwupy5a5xlcm5a1hmlimltm+idv3k2vkkfgypn26kygqamsq2ehpyfapjbvwlbjur+i5cvniuwjiirsutfl8ud3yiubzhci+dylpdsua5vkvh4nublh85sgpsogd1attvuksdgcniome5qzzzrlmbm+c46oje4+dghrufokqguwjvhzr0cmk5lez6pyllak2agfx8ktz5kxahomrhhwfmvddd3czvakwnwegymgbv6h22c16igtjhcjdmeyqbagn5ameybjn2ika9n6kvrgjcd2kgrkzibo34zdfwnqyv5xzauyiq8iqlvp2fp8bdqchniyw0dzzxewtb7ptbmlma18ql7iqtiezlnqsk4dulbpmmz2wr9aob1pde9yoa76d1l7zy22rpqqm5gbbmbsltefeb9tbo+0b037w2fhjk5vpvyu7e05y2qjivgwk7rzlct6currwqoowukyff4kk7ar7o5plvowdbqtalclrtiva2ybmcoqsew0xugfjzl8jjsitx9y2qk+sfghfvmuadxtiwlsu0zylghjwtdmxf8kixbfa/qbfmq/rqitniygawjgw6mrtk8s1injkt5bdz1qar7aje1jnoo66di2jd2khsmkxukczhghkkusyyjf4zpo6mahfflxcdrvos3is2rdionap7ax3hltahx2maoygybtvwf0vqcr0jprs6aiy0itte4jszrf7n+bgdv2rpywupbngkdijdiq9pnidgpaikst4gaqtdunhg4xsagox0llodldfnlxzmkzk32qjem23jh9skn0x6k1qiff9ba+6eh0mdbwtudulzvomgzpz2l/szomnpbdnrvyoqyicvkr7yebokd1vc9actlc+ughlfr+45/9rt3wiao1iaynccfrtsknuykrb7wyfsi62g3xqvtjb+jqozhc7dra8q6/x9kafubpusorsmdhdx2dvqsjamndxa6pzx+8bz9q1gzltouzjd6f7dbn8u065qgqbfw6pfyfrj01pdemrvinsiattgyto7cz+mfmj/2euyvbyle+iiidaanexjnn6eyoic3lexlx2g9io2vtirpq54bnxjiyly2bigv8zbmhh0ysjxyofoudqzsyy9ckm2cf9xfyht3dbovo9sbl1c5ibinoedy2g7ydn2h/dlvga3qdcava2ffw/3f5vewei6rts8xmsdbvvhimqcvygtkxusaka2wzgxrgjkfo2bka7btzi9ci+tjbsn7ngbkrrt4bv5s0a+94gfx9a3+2ba3+uhddjmormeefvtvatkcg4whjmp8z8qbesgn+ub32g3yws8p6+n6u1u0nyj1uamdadh2md51z30nfukbv7thhgcnnemk7ku/wylxekftlevzyntjqvdcf6zhujuve78qccsncw40yfn1iwi67ggr6+qu1v5ognuqgausd8yvziahaoaey8o+5jr3xdrp506a5wi04jmva8xn18trsbl16e0zk4hrjf9uw7c194tmvlboxqg520wspbld1p0xkeisqrrowjkxlk83hityuwnydoyhyesoqzkxlpuyyf9njl1aeqxmsqwroytxiwjm6wbf69flmucjul6hrivylcswbywytqtfegkty0tjekpdi7fmch3jwpmfrvndr1+jry4unxyjo6mjpkuogiwps5rksbhmscqjjhvdjv0laqmkzsvjnyozq+llbmuuj9smvzoujfroybxbdzxo6kvp1odlhobtpof6oxeaitwsaiwlntmu6yf7gdfxjrnjjbdljkncdoxc3rqy9is0ga6qhvkpkha65hzukbqhka37ag/8e+muer5udq0ybecafcx3uah2ugsrkr7dao1gxulbhavz0mkrgldohbikutk6ncgm+omfznnmouaoeowudks/1tprpt0amrt5zf4p07k3moqic9zvur3agr1mis5aiwx7aomubtsw7b12dya9cnvdkioaebtp8dywnl4m8lgxaaikdqg0j/quaxttmmd0ufwebtczdcq3tipgeekyxr410sov18eqtstqt2d2ib+5ajtvskgtvfnbpf2wcuoznfhuwpkxqj026ueulen4ecdi71dml3kelnbnhge+kbp9c/5co4umvb3az18l6jscd+ikrylmp4vr2frls92wfqrzx4iqrp2g6l9ul24hlmdmdr42buuz4hjd29hgflhs03y93jlj2vu3eo5vewxr83wm9r+j2lycpddb772jg+qhfr3gsvlcgmr0szmh/rch5srhfghxsgldbn1thaujdtq+mka8ei6hbscpetp5ewcsaajn0enks2oiibqpdccjutwioqpg2zc/56vxt877vb95ilrbmljl11sfp2ybveswslioe9cdwnrty7xebmh5coe0t4medg1jcckxaw3mui5y0cvs1+yb2wg7qkni4l/rjkthnzcoqmmhpofscuhpbt8dbuh/xbnzp/xata5nym4e6twigpv1stwq+2hfuj3gaxftmhk0lbrzrjguxng5lti2aa27hnviwozdhsoqm7e1cqyerdphjuna16dgqbq5c25030g+j9ys49dhwywhy05ntdwn+9dhjvep0lj1emx2a2fuktelqprc5mdgnezgsrkqv+hobv59wk1co2pmfucsjsa+tzjh/awimlexpivqquyozje43btgeowezli4/+vp4qeafebt7imhmmr9s8oxx29sefdmt80wj2apxutipgpz0kh1dv1y0liyslwnmpzdwv3oakasu2qe4zl8ztj0di1w6pfmhwuhddyxbmocqpgppq44sf+ad/nynpiwvfe0qucxacsklhsmmigeln0fab2fco/b+odfftdiyyuuy167ox9havs6b6fpdhbsfpz23wuzyblxdcmkvqcdbpicr/1mi2t0v7zqodivmifbt+i7zoyobs5sr+sz7l6rjhkj+biou6ofwi4h0pilfs1tys54rp+qacw6c/brlnub/owedxyfdiwzdgmnvhcjmu7dz/vrxf/tt/0kuz8tpkjjydc0qkecerkoqtio/a9c9y9/+om38v/jyefoanqntnhb863bnojbbtpzqhw4ht7ky0f/lgm9uzlvtmd2m7le3x37wpvepfa3h1/rmmbhnk/wmqn6u1c/pipblmcdgizxvv8oj36mrnedj/fgq5zmuaa7gxlujfvqxskwt4a4ifmz6sw8qtrx2czizvsfu5ejjw8fvntjwwcme5i7ewxnv2cjb8gelmbajztmx9es0pbe2shvul7kzayjewy0uq6ftwjvt/fszxvctmxrwvs0ghb6guzhnwt0la57uoisx+covensifaq/klf6tig9g/pxx1gkha+qjbu8oqkcy2f4jiijqj+ddf86u4i/rkcm14xqhnbzpupy12jjatx3apx3tus+5astor+ikwxh4c542diiwqc1qpy8ofe889ewqhfefyzqvldv8+aj1nj9tuasx6selzgui9p9wltevaddgp78igldtyulh3wvxvdd5psvhzqyy91uqfbjfxcddbpteup1k65hed9tnltn2+/whceqb5rv83vy2aydjvfm+fvb43sp5fxpz6/fta6pbj95vdbv/9t8+cz7238zonng7sbo41fb/x+49hgycbzjejg4y3pb5zf+nsdeucfd/55518g+u47dc2pn3o/d/79py6rdrk=</latexit> Hidden Markov Model (HMM) transition parameters: emission parameters: each word-label pair forms a part, and each label bigram forms a part note: define score as log-probability to make score function decompose additively over parts 8

<latexit sha1_base64="v3dlba9vvjf35p6agesc4csvc7u=">aaa4gxicxvtldx25cebysmizd88ky2zaitkslzlmlwplzxzlmjyuywc0tkzhegbyfa+6g7cvxh4jqn+hwp1fkg2yya/jlifbrpjrkiqg7+3go0nkm1bnhg3gq0khufuopbhvgrpy+ph/pvne92/9yz/+2q9+up3nf/gxf/wjtz/7669fwfoyvo7lrotfretqjbx0twqyo99unji8yugfosuh2p6hoewclcuruaroeu7sgk1ztcruxxz2/f/dk7jq8ssvznl+glptveqicamys8qqh19nscvp2zthtusmywzbsss2chowbkqk5w1wj9r9imzovbloy0uqtjmjm3v7xnaf7dis4qebwxc/vrk934zfwdr5rpn2bpcridh0bda5jwwzrj7qawhcfp4gcalpc7i0r7nqqfgvrceuwpfjcke07jqmtz+kyshjrxqwluso0kwusvmhn4p/bdvvrs6ad0oczfsb+6t4mvw07mgkfeo2b/5ovhdsw5mdtocnfwkxpy7t9+rc+3xm9oh+zfkmyvvqejvtdn+oob3pj46obozx3w0v/ed/z+gld9c7q9shwer27f0wpcrkdkzv27c1y9v7lipsvjfaxsgnk+120po50raxlzoq677kfg/gx8dgxcwnpo0b3c4+3tk+oly/gfsx6t52trqf5xef/eytmcnjoqefvjkety4red4qllmc0xy7rawtshxjunognwxjqthvvkhqgz2osyjpyeg/qgaqdkjrkfzgeacjmgq7dst9bwe1np7yvgffvutaxlqjaz0fsgww7guj4zd6baufjoymza3igyfajse6bhvdvcsd6fiuxlaa9oo4zcuznuwkmrf4adbmdsyzhekzni7nrehlwzjv01zqqgfuujbtyomkfmecwzevvm2ywlucrh0wsxp2nv7kinhwwg8zhwulehqwzmicbkuzccagcykiygwlhsi01z2d/agaye+cnovmnaijkuvt0ekeg1w8lkhye3igs5fqtkktskmslwf+zvk9a+ir1emcibwycg46zhxmd6a2scmihsuhjlkbzfdntdgzqews5ctk+aghoqlxciijzqukqmirmdscl1seza9j9u+fbekw1gwzcla/qffivuabooqvwj1ofhw00fbqbs3mieqbdtv00yfe1uzmyfmmamqkrk1ue2ykgoueevaaphkfc5o1ozo6wrxnmc3byymiwlaefky5pvq53qordg6rhbwtaq1jkshyhivdtvcamwvj2m01dvconebdefml+a3jac8m53ojvqrflncvttqcsnoat2jshh4zfpn5x32thwkyj4sc6njy/phweipyd5yyvdkln0plou3cenvmfvz4j67unvqiqi6thjq1g16vh1nt3sik/b5vgpgfrqisn+lmiebfx4rdy8ihkfqzsztgh9vasou+hldzumetcg0hfgo2ihsp2p3x39c8jptnmzokzqqikmq+kuuvcrukbydvyrixh9sph8ubgexaftbzwlwssigyxwfvxpzoswsyiuhtqykn4hefjascevvyhimbdcjb6rke+ok5e6dckondmhnwyw5rxmagbszqiebcbud/qnmghhxgqrstka+ujboozylok4kqtfqz/fnhd9cndcahjoqxjawlkmuhzn4acaoxbfecjjmvnb/o4lgm5eknapkxjumkqw5wuenj6cphwwvksi/atxzwbksljyg85gi5m4oy5knsfavi4hdn53wzxjkxjwhahtmofq+n5zbr+c5f4ifbk54dfnhbbfjpgsmeokcczjjsegkskfeazj3dhfhz5y03c2ebzdqlw4ezl/ga7fxuyqi7u5rcabocskyknvz/evypcm8hs5gubpnexbat9tyyumw01bvmikmxxohuhqvy6pwus5z3ogt1cob1m9fnapa76dvqp5mbjva4fjsl5w9p4n7rhxwe7ozhfetb9/dfrs+dq0p5kdpsef6ase3beuuvnwieupyujsc6l6sdxjxgis9ppu7uysip4pfiwakzlesx4czrsyj5blxlthqiwnewzhklpavrlngd6lpqk+rdysh+jesxbb40xje8jbmc3e/amlyk0a9smudtfgay02daca6mxaohds7xirkdp1l2p+8bhsgmjas5jqfqujwopoifwgrh4l7oyxgglxlskc0gr3tticay7ac1zlebvktakg2bjgotys5xx0gbw8nrhoyoerzbjdx/igpmz+izjs8ha73ctscou3yxfzxxuv5yziyphbngsdindiq9pxedgpaigst4gaqtdunfg4xscgyx0llovbtfnbxzmkzl32qja623jh9skn0h6k0qiff9xbzdcjdgbyp4prawewbhagcrffbr1to4joza5mjglsilvkm2bth6yf6m1bllsob+gijdp3/s3gmdofabotccf7hwk3yak6z5xodri66h3wattpn8jioyhi3cro0qq/x/laxsb7qub7sodbry2w1qsiyhnt5z6h7z7pfr9k9ozapou5jgqp+7deosplvxfas6sfap1lkqlbo+pjlzeo8uaxcgxqrzz5olf8r82cuyvx2leoujimiznepinh2ezjwc3rawbx2h9ykuvzqppa95ox1ijctz2bixvszdmhl0omfivnjputix0srerltybg+ay7uphqpmx3e2a66uc0akgnpa1y0dsot6qput3we7ooua37boiof7v6ujlcaci5tdywsat63iqwmoxpdxylziesnby5nl1jeyp3beydzg28ieukzmym0jezpizk67eab+atqpvebxv/qn/tw4n/rh4w45qq5xnhvu7qfyghufjyth/m/km1liduzze+8geaxnjbm6/tiwbqnibmpkid3ahsax7qxvwg894lf2mpcsyxjd6eu/eynxekftrbsix6ishsgr/5mgtu28tvyujha3prjrge3vjafzpgesbpshsvt7aw5dahawitaxwygaaib7lcv7wkjcc9mlnxsbngvqojyugchsf729asvent07txiyxfhns3cu9pqtml14yqs80kxzprzwuoqukstovix1kpyxwzmvzdyh3damqmhsn3dfkpyaxgaptqiuj1yqswt6pyoyc5crhtwwf42oxe0brpxnxtpsrbyigalshedyishkhrgsnkzih1i96gy02ma88xlgzvh6zgex1dptlarznhsddrduqsvyjjyngvkqrhsfkmsrpo1e5j0lasp1xsvmnkbnumj9s0vzomperosb9bdzxoqevp3odfayczcgh1i9ibrlszogmwyoiosy/cywhtoc4mlcaum4wjorqkexvkyghpa10hb6qeie10ztmoirlcylv3fr74p8jd8zyofhowcia0h7i8rkh64w6srhgmo7cbca1vva7oiyev6ecrc2cqqurrdilx6bcwmhuji7ujsnweedw/bvxwflyz0snyub1szrwxmkqic9w1ub3agr1m8sfaiwx7aonuftsw7b22araehdqquing3h5rvlufja8cpg4mogjhhqitidrl2kwbjhg9zmmdcphzblvypxfhuttgv8rdtcrqtbbkldhulzh94q8v2lrye9d8tnur58r3nliots6wb3vkkkmibjirpnfiz5osdi71vml3kelnbsqcpsqdz25+ypwx4byfcrs0wpuoxp75isgpshlg7+0oirzvzt6drplus1qjx3z7re+y5y7bxau8ezd3z/u8kohuntwo92i+w+6ez9jfpnvnab4p49xlp822xuwpa1mzyvdyx8ayanwtc69v9scbhc1lzhysi/hptdmbv+6bneef2uqd7uk2d2xtaqqjontjz0vm/vx6jodomjg8yll20rhzqixnrqjuer5rbe2bnfpxr8pg+8gnvqclzwex4nrvl9bvd9bhfuu2cgjhroafcbu+4aji+rgmmcdcxwqct7orwiow4c4wrdkj4fvvl9wlu7gr6nmqui9bqlqimlnk1j1whjqh4ni0x2o7fwk2oyf/qq603e1mwrq3yhu+xpfdar3eeu5mja1i/3jcjzo2xmnoocu6nys7l90ad3hpfjdtwrlycwz2jiahkynhspgoa9yydfqbw5c2klvon9l7tz17gphkspgozrtd2ny9dhi1ap2lptemx2a2eekjelqprc7ndgnewksvkzv6hhaqz51rvmvb+jq5x6fir6xngf64gwex9jsqvmoowpth7ga3aw9qspykth71ftmh8a6o5pggq+c16pd1wzpfdd/y8udnb59htvvsi4mqfrsyphhvgqrkplfkmslp1tmhtfrrjyxyddu9w9p5zltr7ebgzc+zdwtcaqwv2nqvuontsxvwyl8ah/qxbdblmarovmfpa5zxjzeyygzqutr9ppv+wr1vmwhla27evtdcx7x3dz6obpz13lkd6ozz/azsuvd6w2sv64ijpu47dkqfxvvpftfornmhcajfzek2bsv3nbkvdzzzjjczohwjmzq15mu8zqh6yblcpcurloqnkknwqp78aix6xdhp47wn4gcvelysogocyrhrsizo1qwffm5e6/qffqonmeqzmoukc7umsqvikijfxcvr638venj100+8jf8jnnzuradxy4s9dd+q7sw4zaccbvsh2+gtiuh0tgjutbvldzpzjycr3n33r7vjqiq5p/6krgcovxmy1hxp7f79kaegux4pcjr4dx2hpoqzusimadjvg6ltnygzrwl6lw8xq2fbzeaznqsc3mddkgov7e9fyldi8nl548bnzdzqcme5y7fmxdv2ujh8gelmfabzt0xx8lpsa9soprpbysyrwsithozav61qk8p8ozld2wb9lvhi9odc30k5jc31xowcxs6wkyez0jzanko1hoisseq0qj2n9kl48ysxv4ukk7yquspjr5gusilcd4m9zwywct9esibmrfopptc6logdugpxg45gg47sfxa0lyjoxqiblchapmfw4muuwhuk0hrz876p7turzceqtxvol+t82r7unmupwo5tyavbyssqgwtpasqzxvng9qdxhc8hksna8g4iebogoaubx26mhpvnmayblolweyf7rcapvr7gd4qk/c9s3bt5ru72japvt9fqydyfd7++ltnyn9jzlux9f3jibhr5pf//3or3/b/fnmd7b+duvvtu5stbbub/166+nw863xw/gt6a1/ufwvt/7t/r/f/4/7/3n/vzt0e590nh+zzfzc/+//a5ok+ro=</latexit> Inference in HMMs since the output is a sequence, this argmax requires iterating over an exponentially-large set we can use dynamic programming (DP) to solve these problems exactly for HMMs (and other sequence models), the algorithm for solving this is the Viterbi algorithm 9

<latexit sha1_base64="qaqdf3ra9risitu3aaknjgbtmxi=">aaa5qxicrvtbd9w4ctbsziyb5biz2cfkgylao9ja0qi92c3ae+es1nbspenrvl7tjevzbytrbfi8gqc7m6azv5dflz+s51qb7cyjgjlse51jiwc+khqkvyxcrugrmcgpj//ns5/89c8+/+ivf/zx23/9n3/7dz//8qu/fyxykof0zzgnof8hiiimlkmvjzmj/ahglkrbqv8cxn7h9j8vkbcsz17iqqdnkykznmmhkvb18dxn/72bjcx0d3fnaeotmkq8ynu7v3y1nz3wqn3vnldc1h6qj5gouvhv+1ssptlbxuw9p2urypy7fkasejcvrvhqt4i6upjs1v8m/r1p9v0sz8o0onz3vwdp25mfktvfxx3t+szdgpyhjkmfni3nj3qm9/xvx8rj1+j418ltfy0iq5+homsvgyczec47mbz34znlec2kt5xttr2jywwtjwlpzqknjohymj8dcicgwui9haq0ofiesqxojt6if+goayxghtksm5l9ashl+td+v6d6ccbhkg2m5yrhjvqzjs9q+qylkoc5i0e2v4pspwd3uk8zpuqtvldpcbho9qez3in6rdbwzkpfnkuoh27mtyai+7brplot6ftlz3t3e9gerentg727vgcjznp48d/vfpxrq8jy5qdm/avkk/9elgri1x7fuxrb3wbvrjxe2do6ojgwpidqfaoqclgwm0fs0un9j/hj04muk80l0fqp50v2y/l+gvwfbovlg31nnhm8efpzr9a0fr9tzowwulj7j+bsdupebvyybj/0+8nntvxbfyucuuxhy5c3x0rh48+2pafuxstt9pl7769wd+lidlcr4tjksis+lxic9rieostgiz7zecfis8jde9g8+mpfsc12rpalxdqim8wc7hh/iqqu1t1cqvocjayvwqzhtwutrosjn73xnnsqjej9ydzcrek7mh65axmq5tkftwquloqfyvnbnoqlicxpagm4iksfpl+waonsotznniwbtzusxzubrwpmuigc+xw9owxzciwhk2rj6lwlfm5lcwwsxrtiq1ompauzgjozza4tono/zgsu3ze/qra2/dab9leasbkyvzb04w1mtytwaxiomfvc4plbxiofr3mnmka3nqmjmg5+mwtptbjmxmahhcb1u8l6jyifamuwmh7zrgyedjnmp8zbxtado9mlerwycg46zbxmd6y2iwmihs2hdjkbzfdjh7azusp5zitk+aghoqlxmiidzqqkkgbbywgez6k8se6t4j8ywftgrqkyfkb+uk+qvulrlicvwtyrv/uaamvokmylecvdh6rb6rpvsibmdxg4jvlwq8mtfbvkkqqugkle0gtftr0tmvqypk2/qreswqq+ux8f/czshtu5jrw6aazqn0srzmdr2fudbrizlqzzvuma70gj1pmxryzfmj7mbhqu442ahjqa9ajhnfo0crwzb2fqhr5+9/treaundzemii/kcnry/nwshnakkp88m+icgxcy9cndu6oz93nevx58nsqiihrw8gpuqxp8eu2pnevjpn54okb9/8gsp4kxgjz6/cksn5g0gftagieepp4dx4n//f0jg56yapoofbttuknz4buj//i5ndu7u4tvwrsectxdwqx+5ctyvsfqjsquzxff9coghvnau1v5mnmywgadvvfvmrtys1kw5kiogcp+phhyqlhbl7cosbmx1ca+pslvjzormrbjdjxzozsm0ua0j2gypjstcaladcmp+gqgzchyyvwjmuhynpegiaalik5isthozzf1lrccnnedhjoqsjphwvncxjs4qoawxwshevhyhkramnjalwa4u15eyuvbcncnvbnpu+/05ot+e68gbev3btwdkchkygw6gy1lzi06y3kaalu5gjj4+ojzk5zf4apbu2ok1pkf3dghb7u/akvgfvhnvcf2mzgsillemmccvhicgslicmewzo1ttoidnx1re37t5oiznsglj+ea2xnim7nbqangnjgkcgcp72bxbwb3b+dzqolm2d7qonq321jfdotqecey4eyfsz7av5vjqhzp6pge2heohzep7j/pxghfvuug+ymy1qecm3w94ohkge0r8d5kzzozme2h358+ebo27y9kz85jjlobyyuti/a8zwlzgrk6ckkkdllmurocpn2kozstvdbxwyibifkscn5bogxcfitbtxahgqoti4ydsu5p8+a2axoxdwj4nlqttkcty9ofd5c5jyahxzqt8ycsijub1i9qlnkydbsynjwcobmdi1y81blci4h0/mty/aidoasbms7kloyps9vy+iagcissi3u+yeoapgdxsgwgl3rtlyym209lyg43eumgjrmcgccmlv3gjopwh9ojku0tjgy3aqp/igpmz8i5ds8ha72cmboukl7y/ww3cuipeckiulglhiqlwkdy0xpbgwevmkccj6hqwjduvmhijucqi62frjw/3ts/dtvd4txmrwqjsy0bzi58cu1gki0a8bctfbh6ih3mlhuzqmrnhho2o1c52ldey9qmovnhb3plbcmrkrinydmxrihqbvmuuyglyymn2rf8c9i9fqzxoczerzk2ck3w9anldy6mwnqd7dzrtznki1hamgzhnmqewox/oyxgf9n23ao1pkoq226akiurnfhwqvehjw9fon+1alzf08u0rv1vn6izmhzduxdowlg9ysnckmt9isuzic4pauacjunnzkowtihzy69g/nau4q2lgghrccohsfz5knekecfrqc1gls/mqlki7khfajma7mzsvg+dihy+bqgqalec7lkmkmlupszucfsfcmvlyb4qfqdnvnomb1nqmi0zgdvjd2wlbrhu2pbgdsgbyd/thykx7u/66osocwjgx+hzeb3rskx5y5oefoi3mir4xsjwu2w8vi3ngri9uatsn7bbvzegsa2emri7pdxthwf6n+6aspu6jr8c/gvdenh3fiuxw9ckygag+qetwopcip5n9g3hrdbja0v/d2kfd6ttha19+zom1abiaaguihnofxnt3rg/bbb/itosy8a+gdv+su9lutcg2xok1yitqmkhmivhcfaejuzune70occwoggw3yvf1ymmx6woqmvqe0v+vhnsrjhss8ftg/ufm1so+lyj1xbdq56+g5apxy2zqbzpxx2xuw4s3z7xmjgvgm39q7txx3mgaus3dncdmbtgi8gv01wzfisjkpholy6jfunxvdnazsmvqjy2gz2woqegyvggpsq4mg1yuvwdypye2p5czetg8d4gszekfjpbfxrylqcqylawxbibotytbewsmyubkbujfibbjcxdjwfefpvvux1gino6snr+tobinpoqpwsfikjrksrlksdchj3lrj14nakkmasnknstpqbhlbmccjnw3vjggxujpsr1a9pxpq0rmzyhea4crfqv0yt4ab1axohku8o33si/syyqgca5nkyjdnxotsc4w99wuzcgkcbsf7pa4hzxtnoqghcujcu/cfhvjhwl7zhkgggjaigdshmj9eobrhbqxeoayjsxtxrw8vts4dk69oqyf1yjcosun2itxozwaazrel26nkmlogqp/yqkz5bgequ+rzc6vmysfiqorwcvfvdgal5jlje2stfswldfj07vgwd9gdghag5aahnqlm7qhfw1vqeoxhcapxegjjeghj1cnxbg2aypsqofckygyyvgacrvhzarldfrbrkis3wsoyxfc3yoajv75ou8lnwpif1uwce9fzyky6ocmezckrjamsfq761io/j/bd1+zyt5vcl5lo5czpauwc8otmp1xpdm7xebdbpbzraoyjm4islmlh/m6oask73swz6ckknusfsgy3w7oke2otlftag+iw9rmeayxsvyydzr/nt8vd0zm72hrvhc3jybx6iltz1gx7ssbu+hg89jexq4dq1rrxkjqqsy6wmmy+xhh8rnjswav7qjqjz2yigxyh04eswq+ceddupomizm4uhrnateygjcdter2ucf40ao7baouqxtmq3z1wf94pvadr6nou97seduvpfqbw/w4rvlpghioyjas2jrvccfxhrx6tfbhisjbg51i7agycfellk8q8c33i/zf3zjv9hzqlavqxyaizjtznsecb5aoeb4ai/hzvt02g6d/mc60paf09on/ur5i0qt11vcnelgg9i9nfdjpklxmjlosvynyesyheae98y3obusgj2nz2ycehkzciwuj7rm9ybby3lo02z5g/1ger+2cwcdlwwgh6x5wra2d689ro1a54lznemxmw1e+gie9iorywxdgbexusskus/d9bpqnau1bbxi9neo0ivrwfn/1mk9s3masfokfgd6y7lbtcwbspzs0cqjvm8mbn4b5rwfzoi8rh2yfljni/4hux68+e0yzjleajermo9cvjtsxeovrdswrbllqtrnmfy/uoirq67az3g6n5m1nd0inlglc2fbsi11bzuyagp8aqkcduwx4em/lvvmljeujcr7xmnpkxojkaanpkvdrxrvj+z7tifgdc2nwhxndcx7e+djswbe563uic6u2u9l1r3xgyzzxrdmkhwaysdo8nppt9hgd80ljrp9ihoydso+48yoagdndrizwf4bysgviv/mzulva0sfii2pskifsvbbvvpzgjtot0e/cdpgg59d7+gqgi5xhvhvdtyqrzr+w8/na13300/1jfm9e6zcywhxng1ahbkwsk04atyvqg+vfvqjt/gf8orzdz29wibsrf1wbc/blt3llka63a6fzbgnxwtpzvswt6czeympchffvdymesnk/vgrgh049objwhpkypfqhvqwmpi4qnder+sl5vhp1bwu5zeobmdiwc7bzqcee0m1mpew5emgdshubmoxr5hw9/uirrdfshs5efboyt3xnqmw7nhuwpqnx5ulfaqtuojpfvdsh58kpsa9soprpbysyqisithojbl61qk8p8gzlynftuwu4qmaqgv9hqbwpwt0rbz2dchzvm6rslaluswn2wwhvavr7b+sywemxb18xahd5bmjyxo9wyurshd89v8q3zuix0jwuysg1w+bc3xk2nq8dsa1d8b1d46bissnyq4eiivmmwb+a2giyxgc1rpy9oud9p+oshckilimdfu7qv+0h2ecqnc05wnywfmif2pja87ayvp6aa92aa9znoo186ohvr+pg0atitdoheyjkg8gmitzyx7mma4yglo1twd80fvuu+btvxjoy8gjmrr9frumg2h7e/viy52p+scy9ser20ft46ppn/5l5/d/bp985mdb/7d1z1t7w9otf936/dbjradbl7fcz//3i3/8yvelx965dedpd36481pdf/jzs/olrchpnfd/alhvclm=</latexit> Viterbi Algorithm for HMMs recursive equations + memoization: base case: returns probability of sequence starting with label y for first word recursive case: computes probability of max-probability label sequence that ends with label y at position m final value is in: 10

Backpointers in Viterbi Viterbi only gives us the probability of the max-probability label sequence how do we get the actual label sequence? contains label that achieved max probability in max-prob label sequence that ends with label y at position m 11

<latexit sha1_base64="qaqdf3ra9risitu3aaknjgbtmxi=">aaa5qxicrvtbd9w4ctbsziyb5biz2cfkgylao9ja0qi92c3ae+es1nbspenrvl7tjevzbytrbfi8gqc7m6azv5dflz+s51qb7cyjgjlse51jiwc+khqkvyxcrugrmcgpj//ns5/89c8+/+ivf/zx23/9n3/7dz//8qu/fyxykof0zzgnof8hiiimlkmvjzmj/ahglkrbqv8cxn7h9j8vkbcsz17iqqdnkykznmmhkvb18dxn/72bjcx0d3fnaeotmkq8ynu7v3y1nz3wqn3vnldc1h6qj5gouvhv+1ssptlbxuw9p2urypy7fkasejcvrvhqt4i6upjs1v8m/r1p9v0sz8o0onz3vwdp25mfktvfxx3t+szdgpyhjkmfni3nj3qm9/xvx8rj1+j418ltfy0iq5+homsvgyczec47mbz34znlec2kt5xttr2jywwtjwlpzqknjohymj8dcicgwui9haq0ofiesqxojt6if+goayxghtksm5l9ashl+td+v6d6ccbhkg2m5yrhjvqzjs9q+qylkoc5i0e2v4pspwd3uk8zpuqtvldpcbho9qez3in6rdbwzkpfnkuoh27mtyai+7brplot6ftlz3t3e9gerentg727vgcjznp48d/vfpxrq8jy5qdm/avkk/9elgri1x7fuxrb3wbvrjxe2do6ojgwpidqfaoqclgwm0fs0un9j/hj04muk80l0fqp50v2y/l+gvwfbovlg31nnhm8efpzr9a0fr9tzowwulj7j+bsdupebvyybj/0+8nntvxbfyucuuxhy5c3x0rh48+2pafuxstt9pl7769wd+lidlcr4tjksis+lxic9rieostgiz7zecfis8jde9g8+mpfsc12rpalxdqim8wc7hh/iqqu1t1cqvocjayvwqzhtwutrosjn73xnnsqjej9ydzcrek7mh65axmq5tkftwquloqfyvnbnoqlicxpagm4iksfpl+waonsotznniwbtzusxzubrwpmuigc+xw9owxzciwhk2rj6lwlfm5lcwwsxrtiq1ompauzgjozza4tono/zgsu3ze/qra2/dab9leasbkyvzb04w1mtytwaxiomfvc4plbxiofr3mnmka3nqmjmg5+mwtptbjmxmahhcb1u8l6jyifamuwmh7zrgyedjnmp8zbxtado9mlerwycg46zbxmd6y2iwmihs2hdjkbzfdjh7azusp5zitk+aghoqlxmiidzqqkkgbbywgez6k8se6t4j8ywftgrqkyfkb+uk+qvulrlicvwtyrv/uaamvokmylecvdh6rb6rpvsibmdxg4jvlwq8mtfbvkkqqugkle0gtftr0tmvqypk2/qreswqq+ux8f/czshtu5jrw6aazqn0srzmdr2fudbrizlqzzvuma70gj1pmxryzfmj7mbhqu442ahjqa9ajhnfo0crwzb2fqhr5+9/treaundzemii/kcnry/nwshnakkp88m+icgxcy9cndu6oz93nevx58nsqiihrw8gpuqxp8eu2pnevjpn54okb9/8gsp4kxgjz6/cksn5g0gftagieepp4dx4n//f0jg56yapoofbttuknz4buj//i5ndu7u4tvwrsectxdwqx+5ctyvsfqjsquzxff9coghvnau1v5mnmywgadvvfvmrtys1kw5kiogcp+phhyqlhbl7cosbmx1ca+pslvjzormrbjdjxzozsm0ua0j2gypjstcaladcmp+gqgzchyyvwjmuhynpegiaalik5isthozzf1lrccnnedhjoqsjphwvncxjs4qoawxwshevhyhkramnjalwa4u15eyuvbcncnvbnpu+/05ot+e68gbev3btwdkchkygw6gy1lzi06y3kaalu5gjj4+ojzk5zf4apbu2ok1pkf3dghb7u/akvgfvhnvcf2mzgsillemmccvhicgslicmewzo1ttoidnx1re37t5oiznsglj+ea2xnim7nbqangnjgkcgcp72bxbwb3b+dzqolm2d7qonq321jfdotqecey4eyfsz7av5vjqhzp6pge2heohzep7j/pxghfvuug+ymy1qecm3w94ohkge0r8d5kzzozme2h358+ebo27y9kz85jjlobyyuti/a8zwlzgrk6ckkkdllmurocpn2kozstvdbxwyibifkscn5bogxcfitbtxahgqoti4ydsu5p8+a2axoxdwj4nlqttkcty9ofd5c5jyahxzqt8ycsijub1i9qlnkydbsynjwcobmdi1y81blci4h0/mty/aidoasbms7kloyps9vy+iagcissi3u+yeoapgdxsgwgl3rtlyym209lyg43eumgjrmcgccmlv3gjopwh9ojku0tjgy3aqp/igpmz8i5ds8ha72cmboukl7y/ww3cuipeckiulglhiqlwkdy0xpbgwevmkccj6hqwjduvmhijucqi62frjw/3ts/dtvd4txmrwqjsy0bzi58cu1gki0a8bctfbh6ih3mlhuzqmrnhho2o1c52ldey9qmovnhb3plbcmrkrinydmxrihqbvmuuyglyymn2rf8c9i9fqzxoczerzk2ck3w9anldy6mwnqd7dzrtznki1hamgzhnmqewox/oyxgf9n23ao1pkoq226akiurnfhwqvehjw9fon+1alzf08u0rv1vn6izmhzduxdowlg9ysnckmt9isuzic4pauacjunnzkowtihzy69g/nau4q2lgghrccohsfz5knekecfrqc1gls/mqlki7khfajma7mzsvg+dihy+bqgqalec7lkmkmlupszucfsfcmvlyb4qfqdnvnomb1nqmi0zgdvjd2wlbrhu2pbgdsgbyd/thykx7u/66osocwjgx+hzeb3rskx5y5oefoi3mir4xsjwu2w8vi3ngri9uatsn7bbvzegsa2emri7pdxthwf6n+6aspu6jr8c/gvdenh3fiuxw9ckygag+qetwopcip5n9g3hrdbja0v/d2kfd6ttha19+zom1abiaaguihnofxnt3rg/bbb/itosy8a+gdv+su9lutcg2xok1yitqmkhmivhcfaejuzune70occwoggw3yvf1ymmx6woqmvqe0v+vhnsrjhss8ftg/ufm1so+lyj1xbdq56+g5apxy2zqbzpxx2xuw4s3z7xmjgvgm39q7txx3mgaus3dncdmbtgi8gv01wzfisjkpholy6jfunxvdnazsmvqjy2gz2woqegyvggpsq4mg1yuvwdypye2p5czetg8d4gszekfjpbfxrylqcqylawxbibotytbewsmyubkbujfibbjcxdjwfefpvvux1gino6snr+tobinpoqpwsfikjrksrlksdchj3lrj14nakkmasnknstpqbhlbmccjnw3vjggxujpsr1a9pxpq0rmzyhea4crfqv0yt4ab1axohku8o33si/syyqgca5nkyjdnxotsc4w99wuzcgkcbsf7pa4hzxtnoqghcujcu/cfhvjhwl7zhkgggjaigdshmj9eobrhbqxeoayjsxtxrw8vts4dk69oqyf1yjcosun2itxozwaazrel26nkmlogqp/yqkz5bgequ+rzc6vmysfiqorwcvfvdgal5jlje2stfswldfj07vgwd9gdghag5aahnqlm7qhfw1vqeoxhcapxegjjeghj1cnxbg2aypsqofckygyyvgacrvhzarldfrbrkis3wsoyxfc3yoajv75ou8lnwpif1uwce9fzyky6ocmezckrjamsfq761io/j/bd1+zyt5vcl5lo5czpauwc8otmp1xpdm7xebdbpbzraoyjm4islmlh/m6oask73swz6ckknusfsgy3w7oke2otlftag+iw9rmeayxsvyydzr/nt8vd0zm72hrvhc3jybx6iltz1gx7ssbu+hg89jexq4dq1rrxkjqqsy6wmmy+xhh8rnjswav7qjqjz2yigxyh04eswq+ceddupomizm4uhrnateygjcdter2ucf40ao7baouqxtmq3z1wf94pvadr6nou97seduvpfqbw/w4rvlpghioyjas2jrvccfxhrx6tfbhisjbg51i7agycfellk8q8c33i/zf3zjv9hzqlavqxyaizjtznsecb5aoeb4ai/hzvt02g6d/mc60paf09on/ur5i0qt11vcnelgg9i9nfdjpklxmjlosvynyesyheae98y3obusgj2nz2ycehkzciwuj7rm9ybby3lo02z5g/1ger+2cwcdlwwgh6x5wra2d689ro1a54lznemxmw1e+gie9iorywxdgbexusskus/d9bpqnau1bbxi9neo0ivrwfn/1mk9s3masfokfgd6y7lbtcwbspzs0cqjvm8mbn4b5rwfzoi8rh2yfljni/4hux68+e0yzjleajermo9cvjtsxeovrdswrbllqtrnmfy/uoirq67az3g6n5m1nd0inlglc2fbsi11bzuyagp8aqkcduwx4em/lvvmljeujcr7xmnpkxojkaanpkvdrxrvj+z7tifgdc2nwhxndcx7e+djswbe563uic6u2u9l1r3xgyzzxrdmkhwaysdo8nppt9hgd80ljrp9ihoydso+48yoagdndrizwf4bysgviv/mzulva0sfii2pskifsvbbvvpzgjtot0e/cdpgg59d7+gqgi5xhvhvdtyqrzr+w8/na13300/1jfm9e6zcywhxng1ahbkwsk04atyvqg+vfvqjt/gf8orzdz29wibsrf1wbc/blt3llka63a6fzbgnxwtpzvswt6czeympchffvdymesnk/vgrgh049objwhpkypfqhvqwmpi4qnder+sl5vhp1bwu5zeobmdiwc7bzqcee0m1mpew5emgdshubmoxr5hw9/uirrdfshs5efboyt3xnqmw7nhuwpqnx5ulfaqtuojpfvdsh58kpsa9soprpbysyqisithojbl61qk8p8gzlynftuwu4qmaqgv9hqbwpwt0rbz2dchzvm6rslaluswn2wwhvavr7b+sywemxb18xahd5bmjyxo9wyurshd89v8q3zuix0jwuysg1w+bc3xk2nq8dsa1d8b1d46bissnyq4eiivmmwb+a2giyxgc1rpy9oud9p+oshckilimdfu7qv+0h2ecqnc05wnywfmif2pja87ayvp6aa92aa9znoo186ohvr+pg0atitdoheyjkg8gmitzyx7mma4yglo1twd80fvuu+btvxjoy8gjmrr9frumg2h7e/viy52p+scy9ser20ft46ppn/5l5/d/bp985mdb/7d1z1t7w9otf936/dbjradbl7fcz//3i3/8yvelx965dedpd36481pdf/jzs/olrchpnfd/alhvclm=</latexit> Backpointers in Viterbi Viterbi only gives us the probability of the max-probability label sequence how do we get the actual label sequence? similar modification for final label: 12

<latexit sha1_base64="bfar6w1md5lmeltbtvgce/tciqq=">aabfdhiczvxbdxw3cqy3tw1zwywpyqm2jffkiury6owmkaycpsvgtkztjetjttjkllohmwoybwlqnbm1ov8tpyo/ik/js55tbfrmdwmyxqyz60jhygp4ufuofaqfaugwj7lue3v/+cmpfu/3/+ap/+jhf7z6j3/6z3/+fz958jdvzfaiil2osjgt34zuspin7lxikmbf5olrjizzn+hvm2z/5pojybp0vm1ydp7qucqhpkikqvophrzdogmc9/7xmqmh22qqskmujqlnb2wgsjysyichapzl8dpmpuu6fkfro+vhelvvxbjmzfwjaswmsqnym/lpdox5yl8wub75jcqkink78ieis3ggz4cly2n14tejts1fcrszbjpzfvnzuxjqmqj5+uxsiql4srssey3lo6rcdjebqk3okvflnr2akvpvm9m+mev4aikfjx2qogwazjxk4rza3mwmo71txrb8nfzbqzqlrriyeqsrwziqclb1s1v26mnenvl49nuvzgaqpssklpmsbf3dmmvzi22pqczbjpjrv5yr5je/ocomtdx8ojdky8v3digwstxw3/9o/mrm7sg9o8j/raqwkj9+tcgxqll+x2megztlouccqwmubny+2dtcwxfp/k4n7fpnffj3i1l/9hytbhxalxpjk/j4wf3bqrzykkq2idbfcjqoynybk3eoeln92olv1cupdekcf4lpie5zrgbd7mic5fqo+rgsajuipnrlklyzqlzjuzyr9fsuqay5ers76/ccoztgdq8yjbexi09rzfdhilsstqt7wve8ftn7iuqex+disv9rcszrz32orer+qffv7mj852ps0zsdh03ifiugjhr3kehecgyiire73tpapytfht0jcu95uitudcz5l/ncrtal27u7u9uz/vfc07gqjmmmgge0gpmk9ytrr9zb7vks5nsxrq0ath9a3c55gt82atxvin5ysz7+bvpyotfiy6dyme6liw+o//9b8a/kco9brnaugowyww4tovsoylobzufl9vp9vxzjf4mefwet64u5gpny7c6aqoymo8l3yzavyqbik8a/onwnwv8tjve+xmzfrupwwi6rvrrabzuykq5kloswzwkpk83v+qptvtibkqba1ffotekbqk2sjinr6dhnsaf7nfks+r0tzfqjxb9v6sktas7oaw1t3f9d/fxjdd/zhbupxdfbcu3htsgx5ez0ayh4fjgpskd5vnuev6kgqmhbwnlcyby53jeepve2yojxr4dizgiutwhq2aiyscogfmlabchkzvqy1vxa+swhbtnsyeya6vohgrbn+gg8nzeheitoeejevitvsnr5fdyisv1q6tcqqifexftytxwx8w9aqzukoosm7alpszyv1eh6ymswkensqam6mdheuguebenbi9g8ykpqjjxtty/kcwythmsclk+b1rtpmzgriajf7kdnhulwwy0nhsvusj6ctwqzh21xvvbpftwhg9yha6rums7gu7qsp9sdxdzodv/ukgh/ss0jbavbvz8kt1abg3b/j2t7u3v6d3e/evxh2kr956t/4ngkewfqlllzb4rlexq/ms9gsexaxadqrjchpd0re7g8+ujkyelzolvjenqbmqysbgv1qrxdvuudje4oieji5r2m1y6ws7k9twh85h+vncgf8zjizftfrgmkveblyafuizfnbicjcvrgmk1qwykksdnjmnqejp1hlkiue8kipytfm7ejqf82jaru2kwhe45nvro+wa4l6vpd3qyqj0i1r1axnmdxnumysymoocsqt2mme0hiyacmus/p79fjsskoc3inbjbaqdkzg9zncehambjtamd5mamjbqjl11j2c610yelt0japx062qrdvnihi1oekdkzaov2wweyvzqgmtka7cjejtb/iytfwvoocv0quumtauhhxebpgdtm45cqqqrhwrju8xqibqwm1qocszmjiptaxme4qvuhdxwsz6zdmdrcf4xdra/o/k/p7dcwvpjjchb/abeqwyxk9mmvlj+thxc6qqjs69blbqxvflpn3xxcdmuyibki56wenixkssjeykgaerjbuy0lgm9dsyvyj2wvo0g3whcb7bmyr3dx9qtdkmoaqyqdjsgg4hklqoqvqufglorrfrtjk+v8hf+w3iqs965yy7oasjduga4qiexyifnzk1hdna+phlxbqdguyrvsex44nw5iwwvdcq/elnesr+shx5bzn6pefx2i5tra4ao54c3owrn8futhfmajkry8lid+uqfi348qg9amfhlqhxjk5ydd7gb4ppebhtxg1fvchj0ug1g72cnoh1qdr6+2/33qlbhudzzsbv5trmommoigqklrnzc4j4yenetinn2w9zwnkm9hldbitvuncs61bioya1uhykaxkcl2tzk8msvcvyc8mtt/mj0fls8gy1gbrcd023h3w026wsivbjbd/de7awbhf4eatwssckumqi6wceuhjg1lwji8rjaqwr8vcgf+rcgurzkx4ymwarbmqby1knbn9ck3nq6r4uq1elyqeswna2ieic85xibi8lqzak5pjh4dkrymmmy7kgztal2fmvqmu3cgtpqnbnjbgtvfpzg2z53ji0dwfiiqxiztzxdzrn5qocc44ciiqcmcskekcu6zljtyxry3lujchpjr+ccyzylrvgjt+f9f5mffsmf9qql1jmq6/tqsb8bjtj9lnhqbildwxc2+mywtyuminvg4xqgzuoite203g3jm25au4j4kbng2p210yguxkzqmsse6yeavy94u9ezo2yc8o20dpqptk12ebgsmw3hppbrhhfp1td660tm+/cr46otuwnfk5w9j6msbyqdlim685bksqok2dqlyrtiphzechztjt3ltm7shg4wlaacbmk0bibqtihxfgkjiduyqhcuzbumlgcsuti3qo9gdqk+rdy4aenesxypokkmbhcdy5ij8rmw5bwd1c/puatl+kcl3ucwadriynhxpyawqxedez9zdn/dadycdbmqahi11kvrhh1qc4uvjsw9us4iglzicms0cjyappzp6lyffxddluksfes2bckorsh7jscovu70dnssczbw3cot/jmmmzyjxiy6ggj0at2eofjtrf6yjtdrmyv5ojdohqhoneug7pgbu4dhlbpdgi+u0nqxtl9bz6ap6s5go5svf82xvmyinovovwnmtoxc7i3p5aa8sk1fc35aw7uur+ceedod81wegdbf1rhye1ittz3oumtg7jggo0p7tg5s6invul1qy2ul5sacsvh7zvrssnfcia7uhpg9xwxo1drc13owetp1kfvs1xaqj51cjm4lj1flouv4fykjon/urft9hekyxlyloolxgnl4z6p7/ojwdawfymg166k9xaxg/+s26fxmva9pclcwdo+rzsezz38zkw5dvfmewdeak4mduys9uo7h3kd8cmmps18pkp3b6ydeoecplhjgbqv7zlmwxpber04o6up2zzpyrpw7zpkyutxdmht0ymbynanv7wh7yi72kmts7nbrxs1ncuc3+9jzc3b22wletssw4ozoc7bm3er7nx8b1kb3ax5xotsenv9u9rkacixsfiorad62ii8cc/ccvebmrs4xsjmwu2qdi/njlxjzamwb2reukxwxtpf9scti3oxigfjp0nxobs9fir7bny5fjx748gw5vf2nnh1unwesigeffztb+m+km0yqg3tn773r5lwey97r9ze2aasq76cwdkrb28p40p31bfjsa760x4s5hla6ivof342uc4jdnm6kbdc6zcgy3j/tmkgddxg/kyj4jseenobqdsvyvoca1vx5vgt/g+axhhdcu2le2bijdgdpwfb0mdgx57qoozci5guyyyzzaiozx5d3icwqs/1zk4drhc/ktx1nfcrsjng0j4subsijzixoq+4yfatjtc1hrmwyzncbwy2k3dhmloyhjusoqzkxzpqy4fxnjbtdetngstmvwl3u0ombown8luyv2qgz4vphncrbiigblcjemjewqexrgsnk1lhqqrwflbsyb+yxtgy1j65ggx3dpdlgr2nhsbf1qpwkblcsreimjsmpktrdlxsbqlwslk0kf6hkrkytsevjtkkze6cxh+k7i5ocai06qs89gwow2wcoswnutzihgdjdig2wlkws3xxxvyzoksc5pfi4zdnlqrafqm5twtpc2kbxyfzxj5b2uoykamimkmjwfy4j/5f09zwpqoigdaigzy7kdlcozrglk5eew2jsrt66tnjx56etv9sg0ekyxlrsup1idpqlhebpged1qhlfsotlv5ghvmdrvfprk71txkvnm9vfj93vuh3agr1nitzeiwx7aopmttsw7bn2bya9cnvbkioaexvo8nywnd4jmg4kdqdpjyemvge51tgmkxoplqmsazhlofirgxgkhwn0avr7q7ryokubjya+bbmz/uaitqc3usgumsninphyg6lmcoyc7cnlfq3jdqx64viffxltpfv0yxcp6q1usosnqace3z3llwswlo5xg9tc+1jjr/5ojkzxbup3mgqpaljzoeh8mpj2yqvjuw3wj9mj2+fao7wu7trn63lq0j1refbuar7e7k7gvl9g76tmmrmvf+9hcazpcorbvnoytpvymc5as3xutfigzhdhs1lmplykfpgvtuc5m5awugyw3sasixsnxcmwbd2gy6shiod+kg0rqnreujsytdxeeclahedgqggqhlela5qd/ovztvn97jrf40wklv9w7kplmrchc/ekjvseoel44al1td6iaml6qlsiimjhbby3vhgyg7dgbhzp1idg25yx3au7zvfr41mux4ieljwfyeioznduok5gr2upe3z7r9vuzp5hxthwtzojzl0vy/hxiqpd6/mrck3xosa2lyd0mgnrlsvc8lr+q7j+vq9whc/mjwstfabntmjhagocmwhzv0x1jcsogcqm0o6bzrx3w8l9vuyeaj4zldpa850hlo5ew4qqvc/hu9gbx2mtw4h0d5rui5gra44+ysblhtozfh4w6ieec1jz23jd3xqo9tfwmw1+wspjlt0nnmljbjdzsb7ardsdvdxhspzhf99nclwdygq+ydbxju6yfpjhi8ehwx68+w0izkhzajeqslmhuxy1s0oxndcwtmo9uk3mye1+baoj1qzqz3gmnhnwzo4ejv2s+bagpmh6ne2rq298aqkddpwx9k884wnzmusxymhu5beej3kmfiayre+xvo+03k+4921dwpswg7hzldcx792tjyobfz031rmddzvpzk57bw5m9r4uudtqtn3akmvrp9pigt0tlzqozitminyt/44zo72bm9vrygbbbyqhwqhxsihiph9ybubp6qyl5qlkgxzo32xhix61+8soqqj82sch0xwy4wzdwmkcylttfvi5ek3rf/qpn2tqz8jmacycmnoviendhtuvu5x/vejozu8/8tb+ezz53jhpr5ejudxfuu0vleuifwuodo/db+lasies6jlkszo7s5nqgz7um9fadebz/xsbs6bcoa5zell2hnu5vfohlqygpb4qninbeke8+pm6xrvwjacb8tewe2bnumkzpn7nczjycrahzcpcvzmx2dcizczujl9wejl4+ekwxa8mafy/gsylbkrz0nvrwj2isclmq4ss+fheupqunzk4xcobivxdqaqhrtjtz1r06o8xt7ienc3ruunzfkel+wqm8oscf1ygz7qill7nkfxq0lksoolvg9wlpdjp46vnni4a+lzcljoxddrig5e4juijnd/ha7962sn1cc5n7xjmvg3odjaxksuohkw5dut3e6/qqplbsoihybqzb5hfozjb1qgc1ryy++l2/z/xsuckwlkmzf2zkk/rjzpj9dua8w4sf1mesb2lvwd15xl50qrtwknmzgdtytycp1vudaaxw2unbnakyx0ibuhiqov5aso6ogbpbqgfn5wrvnn7evn/zk1v1j9vgqezrh/il8307f+rct/e7o/29nz7//z3a7/+rp71mr+v/pxk365srvrw/n7l1ytfrjysvf6jhvzhg/968n8p/uf5/x7+zeha4yab/uitus9frxt+ho7+h0to3pm=</latexit> <latexit sha1_base64="udndqd9a8cf2zszwahnidkhxc=">aabghhiczvzzexw3cqc3ye6goxztp+yfg5ewusk5hcrejjk139i6e9m0i1hywsznmt2ygzb9qyhmzkjv+r/zml8kr6kcerobx/cwvsqrfrybwk8ofaqfwkepsoglubv73x/97c/+8q9+/otf/vxq3/zt3/39r3798sdvrfrkixsdplgafzeggku8ya8llxh7lsszjqcr+3zw8rjbv71kuebpcizngtun6tjhix5scvx9jz85x6djlpx+9qezanlqklbpmmyxtyzlinnsujvbtoukzednij2va1ccrw2vddaqqjlhihvvjqokm0kpyy/ehxwy88b+p3hrpfifiukqsbfkftbio6gyazaqz9x7byty0n/jwua8reab5lnhjkd5gbtql/o7joajucqgncopqgojijasg0cs9csuv4bjwlubsz4ii/kqmquphjckbydmnetujkdebmtbvs1vypl4ijedje2kemdyifhddyzulvoqx9rkvx+iq1bdzzftm1uoupoqwlhsalqqwuvmkoock0fevffb6vpni84ct5qeo9k0lmfbvqridzaot0id3rwcvlfdytbptsskj0o2s7nj2lblu3o53+fwv0tvomsv9zrovs66hbue6y4rjja9qpdx70faoh/600e6zfndu4tx2xtxhkvhjnls5e99shw5ybeqbjjuv1dvr5x7h6xkhe4nfqw2t0cbzqqyqgqeq+tfbvq2uvcmvf+vg/blxh78+4gip3i8vtf3geri8io8akr/v9vznuz5oivaknoajcn2bhn9axptvydzv50dqycehnuidnargroyf9siixnnpyawoajyufrl0nwifdcnouv5pyaidciljdjyeb8x5kojyt0wlwjrofk4rgyvdtluskpdz6z6ont/ahv1wde12fsgprb18z5husw/16tqcwtx8whpqywsw5p5jeoqr4ub6hbrawzhkdlk1/zwjelxb49jzbmef7e7gnfmsl6ycizkc9acrxn/sle0totphowmmbpoybudo+h8k3e3ej6p+vfcawca6x9x10tu8idagdsnxe/ryyf/l55clpz4pkh8rnuu073dp38p/olc4wenfc5ueggas+tummsbldaw+ci9fqp+iilul9gwn9vm+vlcjuxmemnlvaubhvl9ssulsrn4b3ahv93pdl85vvmqvyaz0ylzoql89w2sa6isusxqnyz4hv0cb3fdn1kpgojhct6uy8zvft1wvwz9j18khm5iauj5aifm9tix5o1+/pevkqqlbzwjsl9zeqntdylfe0cte1oiopocnevvms3jhtnorpehmpgm2tzw6/son5fqszlpikhc3fniascdmhyx8ychq3vqc4rohcvkbdwjwueknmkygutsk8ltkxr1rbeesb0wojfobqeoimp4b3fy5u98tzyd3aa8uvxrsyj3tuyp/khaostpdq9c/xwjfp/4bvvw2ae6njd0lx5gltdjdwxrjq6pakrlwfqy6gyiikgou0hmudhqpgwq5dxujecjhijxz8eqk8zn3e9okeicrypzotjire7atxmkjc8ng8o5v+6ibqxjxv8jcsw5smqlpjp9ti6yqebrm2uf4c/t0mo/55vxl6illv7yq3v9undv/xd3z3dtuf4n706o87k/wfo/7h9z8khmlyxcyrsuot3m4mt0tyl3gyswo1katlahhbx+wephmam3faqloxiqxdzzcm0hz+syrrtv2kksycjyqgsy/cbsnkx9tjiuf/cgrdnxus4p8wncoiilocr2xkyhowqjshdxrmhhql4yscd0mwi1vdteyjknmsgl0pcysxppcbgrxjngyths7m2riijidtnlkbppeq98o0mathmfatemnwmhgfllpjlm7okmikrnrhfi8lodeesxbzd+y3w6thgn8y3cftuhrcjvsswx4snmw0xdr8wosusuqrmuaowxuvwt6o7egqk9ise8vgxmd2b3hajao8lwhye3icp6rceymbgh9f4xtgzxlvwv0fweknvmzbvbdtic/b9wbok/gasuhqiqfrtuaoye3ycs3kjm3njozboywrqjdqoec2sbkmjuootvckyf3omc2ejtddwvsjzcja/gbeiecrk5muvlj2qhxi6knyllyckgloqliepvg24gjslcgajxlsqshfrbc3toiaajcngljtpazu0lgskndzxhubfmgud2holls7n9utdlooharubjsgw6fml6nqvauf6lpwrfo1d5mvsjf+q3+qk96pph1rw1aooojhr0zeg4eckds9sr391dhzu/tioqhillwo91+dosrqnihm+y/xoscva08plwhvjoj64cxvqcfd1jonv6mkjfh1nrjzeo+r8umhgfr6uan+nmyiwun+i7b8seomqwyxgrd68hq4rgwv3hbq6tubwn7cheu/voz8+nbnp4ocjco7pydvkwwu51w7dzfjeybvsklcr4b5zadicfphwyudjl5g2gcxaqtazia3menak6tbupelqjbbig1++vvbyigpxej7mvlecjjajf2ybu227sedxtqgbc8y6xdtrwjiknqnmkiw9bvwlwflnjomdbbre4ogloskvlrbz7pyng8blutatm3ikcwwrckup3g4qoaaxq8e8rdi86rznqosdgcdmt4rtzheaakyytoyho7vpz4ggc0wdxbmdk4ek4vv6yjgg6ht6ytn4xdyyhnewr/63bm0zahtyvcvehjb892yk/ce9jl+kdjywjanqhq5jgtohsjnsjxu5hqskowhbem/m0lro7cw9m3jqr/kj3rvweimyovtoct3geez3ittm3buoymblpxtkb7jtz8bhs3m0dyczfrny2ybn3pdairirwy5v+gsiw5u5tjtizj2da8kugrc21spd9p+wlftajqfkf81ejgs6wvhh+2jpykern3prs1x7adfhx4clvz7luzsmulersbsshtrhbdetftqxgzesnzcsknuhsbpo+heywkethywyafgc0vdsqubsg25pjblhkzfqivztw0kkjlj1dmebxo7bhhwbbvgcccmjrelpjym+rbycewzmx/colgqqp0siijzrgmtnk3oancqguunnupcrkymdf5k+f1lc/aonuk5kkowyy5v49idwiiscdzu1wuaauqvhy2mxebyn3vigtl+web22+qlczzscgqctsp7itsovm73dnosdpcw3sot+xmmmj0jjyy8gaz0ys0eoejxrfl4tkdmyxrxysgcbupss8pb2cn9dwldxjscbb9dobuuqxidku1t1z2frjwfn83nvmzinovsvwf0tuxc7ivpnw14kcqkfvy4hpuhr5098hyef2cr4nh8s+vid0nn1a6ie1paxhfbrqwkbazs5invul1q62ur5sactdh6zvw0xtthedtqq/sa4wixzm3vaz0yteh62dvrtz3ki9gay9jcbdqsypx/l2ub+5tadifw0y5bbtsajy+gzmy7c92xb09fv+rpkdkzktpttgpuv26dooup1zufarhw6jg2pgturc9jyw2id4gaoefn0rmzydil5x7sfczpl1kc+yiocdqnehjnnyd5zgbve9j3zot1gtr8dvjjh7kv58qyrtxly5fx5r7g3gmddratnjcmhr0rtezfgamb4ky8wljitmr2ibmn4py6cyheyybg/mytsbbdof3epwfrodsbv6+cfq/3f1dhwua4tja5wskab3vfc8cdvccvk3mrs5xsgeuuw8fj/nglttaabsd74tqzibwd7musj3oni6fjx0vnore8fcr6on+8fdb64csn5fjzhxtwuluhiclufj7tgpm/k28aq25gut87n8gro0fcspvxtmonibuojr1p0xy3vnjhvqgfe8dndp/wrkfzxjh60u9wywxeerqlqrqyvbiqaey/09cpnxcsvy0oxi0rbjrgu3wrs6irgnvv+uhzf53gnorwwhoi3xwtaqea91hw9jfvueestjvxcz4lmjkofgxkqr/ob8aqr072tq0erje+k+/ske5jlrcchwtgynlmmsat0vll9kfckszkesfs92f+sz5cw8rtw3xjh2pgbh+k7snc9qh21vsw642xyz6u8apdchmirrco8nx0xraxnoirh+jobiufalzgec1ewayr1njg1mwwaqnew+umzohnc8qysozp0dzgvw+otthemdj1vlwr5bvgslhczstpmzk8qzguu7u2krsn5e+vtncygvs2wsm17e804mn1z6spodqttqhlz9abxraao3qk9dpuaq6yzswgweot1ixdcs8jtom4m1qku2y6tmmuuiitq4uhpa10leyqeps00zxnoizgcalt22d44d8w7prnqvxqgeeatnmw6tyq1xa38rlhcyzwb8s1cytzbt5w8ooanhaodcjvad1oxbr90klzzmjd+qgs30omyn/td6xo7vtqr032shkvxmkqis5xv+d2aav2mpl31los2bcyngvbswdvsa2a8cckgzaaaep2hogtlvh8tvc4kdqewjoemlj1yrwgpk0xesg0jxkwsxwqsu4jgqrwnc4j62ivfe2wglpqqfsw+8rfx7sp5cys8kumizgmvrpbrak5qqn2kgwsdqjurnrkxj/nke0c66ms71lsm9ykmrttdzy6+slxnmk0umvtuafvoxo78bmxmkqp9n8raedzvpp9bp0nx16itdi+22j9mh25bjcq4jm4s/dcz4ms7l7dg3kp5uvl7mjc+41452ged+pv7z002xptugsu0sxgsy+nmqfkrhovlbugmxw9zzn7wefwo6zzgwfugxsoc6ajbnok2xmognuggafdis0xmfjzazkaomzi8kht2uzhzamvnhuhokv4vbwsbxbox590g+8tn/gepnnciqwhrrmefnuwck9ysluquymct6lr9q4xuhpcmeet4meljvjcachav3sujsfghfer/kxtgtu4qezdp1eirgishyhozqe85tjxtsmv64a7f3zhbn5h+sa219ozno3vuxdb+vydq1xmwj7/smdwl7ckilk7zdwcxzntrvsnyu6g6u4z75xs4eh8kek9izgirejlxgikddk9jgunkcurrjwke/jdkvfe5h4b4qmsb3shuxvtmkruoodpya/sj82suekwpn1hihexhgpekissonp1pcxqdz0xrba+8ya7x6fir7xnfvymhpmlexhoneumyppjrcgt2r2upgai1kd930wjvankc3yqofmadcj6fpevbu9tffdmt80wr3qpxutipgqzsbcdgqrkplf0fqmzqnmoa/vjm+ixelu/w9p5zkgwdinw5nfmhwulndyxbiomqpgppqo4sf9qv/kej2xjieesovor3xeez2kumcukarjufat1fsk9bzmbs2tuxobxxme8c3c+jgb2dd5mneis23lmdt07vwgy13xbhtknhqbgcv776rbx6a55obgvx2rctm7fdxwzfq2c0q6beey+krymbetlerex9caygehl51jutyw74ed9pj9q9pudz8o4ivbnntydzsayrxj6shyqbzruw8/mta7/6ad6kqmecbncywhx1ktahtrgyv2xu/lfhw5f/fqtb+n/xj9cxwap1qwv2t2l7btcrqsodpcdu8nwxzdlcqnvjjwp/obmr0jrv79ru2hdjm/d7gkihxgunvnqw1rxq7vz+kg8guxwocpvw6waipeqaucj0z48eo+hiu5ubnumk9pfrnc9jy5aao6fqm1gjeim0q6evcb79g97l/8vntci3qdpd/7rcuu1al4auyhfswytmyvgel/fgjtnskvwq4xssrmvxcqgqbrshvz1ru7i/wbgutafvwfoetfkil+xqg8jsmj1yke7qqnq9zpcxvask2p8lfi1wlpdgvo4snni5b+kjct5oxddxmw5e4jeijgj/hdb981mn5ccfnrrhmv21o1sljvebjauznlzi6w7uvcymh41w9rfayxcd83seml8yqqbaqnftb9x86ykioguaal/xpqjyup04eu+9otg1ylqdzktssvp3ulafluafwgidpnok35/mo+hftz0ajhtdolexalq0ijuh5rqfzulcyohbn7qcftjwrvnh7bvn/zk1v1j+vgmewrh/il8307f+rct/e7o30dnd6//fpd/74rf3rm79c+yevf1zzwomt/kh1derbytvf4jp/mvt/7n05v3r282dbz+4/+1xdf/zrtfppivhn2r/+fwd/ob8=</latexit> <latexit sha1_base64="hgddodk6gjezjepiyhior0kee0y=">aaaew3icnvnbb9mwfm6yaimm2ea88xje1a1fa2k6jnc0oql4qgkiixuxvfer67pttnywt1ajk3+kxwmmcv4bendw22wguoohwff5ety3sqea7edvvbirlauxb9xtpn69b67tt3nzbvncowfoyfsnalxfmasu65at9bfz1+hglo/yhhzwyxr7l1s89csdcmuphevo/tcecoxezrp5xn822tswtsowjec8cqoyomqm8oe19/fmejr5qm9y8acabjbvpdizqx09rr9h6mdatmwz5kqvwtdpea7mweokrjdiqn2doaqsxyp1nhjdta3ecruzww6qmjnm0jsxxm/kd/nlum2vsuk8yalbsq7yagnnaxae/kkyamyn/absfwjuwoqir1uv9xzcyi6mlut/guedx+e/kiw5e9u7kzwnzb2lo4z5ogk5rnvbdpp7rjrxl5dm78g90p0naee8hiza6ywq1wuqsllujjt8tflbmvgyvyoivwpwx2nqrtvjsfsbzyrva1inhsbpwiw5dfpg+qevtknt2osk+oqjd5plvilhle2qud854oa+pz2vf5qu+hpjndgivcvwfcni0zfpvltm0amw2rvlqwjf+21otx9lyv3cckkqdszjskpcaqsiseq1dwhl6ia8qeq2sfnqgcmtqxzskvuf4xwd9p3fcrfxrd8vgvjy1vxve3yr7amoxgtnoy2y37w9pq4cuiawvgq+orutds45lxalwxjo0tg5lfzk/md/pn6vfkaswqrm+g5krbuw9cgpuhvwgsrmyj</latexit> Following Backpointers in Viterbi full backpointer-following procedure (after Viterbi): 13

<latexit sha1_base64="w3k9brscurijmdsmgaj7qrnnjqy=">aaa2t3icnvtdd9041c6u77wvmaox3bismc1nqk6hawsoi9cwljwdupoxzeyczsm2jo8a23il+xzuy37j+2vew7jhkl/chyu9jz9jw5ktlkzvxpkevbw1tffw1keimmnshr39870bx/nq177+jw9+a/t//vfb3/nu+x9871pjkxhtlzhpupgsipjmrkavfvmz/awulorrrv8sxdzh9r/mqzcmfy/uqqrnouklnmuxuvb1/sgnu3tfvk5++atgzpsm+fzewnbfzpocfekdrmpgfwnqmi/4eoo8s3kizsfuqbt2myyackh7nhman6etm4owk6dmgb6oomm9m2mabiiwkpiaohs0uykkql42++zjzt7qrxmrube0n69cxuttmhoonfjw+tklfvbves48gbwcl6o8ogi+eybljkykwmu02p7xpzcn+yvnzks4imxikwa01ywis6vu/rv52wbavqhqjfvbzd8wjcb+gclffmn3ev6vpgxzobuisvy/azowo1n186pog9wh/u7yxifb7qd6oib+vx/ecgvlzwpgwp5vll5obgzx2ghlwuvfg5auy7c+eko23g6fzfn7o0ehr/oncd8m7cfovvvz9pydn70xjjyuclqoocnsnk6osnvwe6fynnfmo6wklul8qvj6cp8fyak8q7wbn8ee1ctblav4v6ha1/ypapjltdraoptsbsnkx9tppaa/pktzuvakfrhpafplaagfvsvimidhzyv4ilfgigsqz4ggsqkf2h50u5imfkrgg6huacxggewwnhwknlf4oaznq0wxwrfd2pjpwzeqxgyrpznwrqo1rkvg3vqqrs3ooldykq3azierbkydmevz9pb+zd/ycmbvfr8gcxb0fszinayfdyqqgzhbrnwc0kitdtwdg/1axikaexlulb/wysqastqelu74oepwhyodak8x4enjyzqbo8psdvmzy+9yq4+sthdersbucnaxe2b6mlvfghelxtlulf1nhioxhj2sss24wfei9gxmeyhxebuxwyvlsyueore8p+o4u0/kpxsqdsfam2qoqf2gxh2f6oldfy3v1b8oiibijkbfheqp0khqdvrkm4rjgutrikasqpxk1hbailgeeaefyjprmkdzheqpo2vth9g86tdoggvlwgfqo8o7diueq5wi6kazqeosjiqpo7crbgowzinzs709wgsuyhs/ytxm+tcua9nqr1lfcvttwcgnoa12jshbwcdph5212thwkyh8ry4nx8/phgeirglnffxs1wruimdwdx+ewj29nshqi8exoxkkqacpl0dvusexv/riizxt6ocna9qnjxzxsxqjagpgl+p6gcllwpcdculoexw47obp31qw6f0bqn+aj6idanu+fhp4v1juzujuiauyjezo6dyrvqhs9qqrtzc48iri3qsi2txm1hzfff5g2gcx6qo6zknuostiltwaoeyxeqn2nrv88ouclanlxelbhvl2obmpupfswjad+mkgpch5qrmh3yxasabiwid1jzborsykq0rsdnougkqzsv0ecwvwycz8vqpv+xcgur7kwiyktibltxp5wsnbn7csvvcqx5xaqbzjhy7bcpache5zwta3lcfu8dw4ot6+/yqosunfr1w1gynbyminoop0n3fgxxcrx8bwlseofnhonekrencfqkkxc2r53lwfxwblwynqzosax9u32a1mjgtfhcjdme6qbagnfcmeybjnxila9p6avrujsm1qdm/svcqcczm/c4finvcoi9u5rcaeocskyknvzvgftu374olybc3tm0vign02tmkmdsiif1kkpsnzhx3qyjfvyzz3ta8kydrhbar7t7pxwlftomh+om11gmas2sw49k5pz7i7ytozl58nrt2u/izp6tqrycmlwbojtvhvx0oiwuvzcyg5qz4yugatfp3s7kquj4ymecekviposgulyhcwk5rew7dftygdnssalkm1d3lncbtepat9wa5t2donyurbzgioechnnmzj+wknceud9curvjnnbi0wgkge4mldrx1orylsix+znl9/mo4bfsyoru07inll3j6inykkxwlo75nmcaec7snfgmxpimxkwytp9ukn1u8picszyemo5nkjvhhqetdyahe5o7snhu1vb/kyoxnylnnl6adpri156gtf/qe4kun/5bllkuksgirmcqnht45db4a9aayjpozca13s8qyjmz4icrya3fx60/za1wyjc5u9aozjtlyyvfczwxovumvrgr9o4cpqow8awomccibhs32di/06ajnaqxq27gdmmcalske2awzqgzvqvw3lzqvlibyxufuofw67d8igdtsgmdxhba7vuj7p+cyh0yuuh91mrbatfcskgiyt3eaneov8f5qf7g/arnu0jnquctsnulesotbeweh+/+ths/svvs26aluywej/3qz9ftouaxocxvirr2pzympzx1lfbih3iga4q2myufoqprfk/nhlml8epxjtoydsgzxosjx9nmkcat62sm8dh/wctl86qaqpew58yowrc9mymb7mw5h5dgdacsafgllysxkivyiotale1rdruzzqzb7ubadcxewasdtmgktro2dbdy/2c78dtkdxat9vnbup93+xr1laoey2u8tiag9bxwphhlwgr5f5ksngtsyyl61jzh7sijftwlarpxanbii1jezxijg57uiz+itrp/scx13rn/gx497oh4875ki6xnhwul0hyalufb6rhpm/k29kitcymt9bn8hrpwdsooupbde2idzajqykq9vd+nid9q34tqf82h4tnjx0jiu4l/3upfxdne4zlmwh0sulwuv/myzj7bxo/kyiedemungatdwfonmmb6xu6nta+3sbbkmcfraimnehgyqaghssk/ty6nxz2aadewgec9cat9cmfddfr6/bsjsnd86sbeyzflxv3nhcu1pqwei1i+rsm0nxzhtzdmegiemmaqrjzcawut4yrmdljme1moawktsgzcaw0moaftwr9grllzgnlazpkvyhijmta3xtri9piifi+s4xlwcxkmawfgi6krzdplwmesubkhuj3obldywdzxe0znufq412orp8coyozo6srqjqlaquuzlf4jilky+s1hwvdjworzkursr/qmsszpcxltm8ujp2tjkw6jsjcwtvczqplz07a5b7am74auox3afg1lciczz4qfukh+5lxfa5ziavwc6bjanzfwp768syenigukl2sd1c2umac1bdmotetu5lbppbvmevanngaqagkofd9aobrhbqxeegyjsxt5pw+vrs4jj69oqzfzyjdpsut2ijfozxaafqlr33vobwjr/ufzpof0z2js5dn7pcyqwwkqi85xv+92aav2mil6ay0w7asmunbtwlb32aoa9cduakemaubtacvbw9d4ksdjxqalknyh0ilou65dtgmc0unxeztazdkowjqncivkmboibqnvuw2cvwkjow/b7bn/c9gmk5u4ennqijgnvrpbqndyij3yu1yqemx9xpwpe38ecdi71tml36wkn7nhou2jb55d/5qr5+aw73ab1mp7jsae+ikoktio4/d2fbhr9wafqzdj6iuqpwo7hdyn2voxyk4d3ha3d8/1pcjp7ju8kpdovl3uns7y+az752ged+obiak225phtxmysh+dxz42zgjq3tr3wmuhssnrusbmxzqcn5abhxjphkgl9jlnndauzptqnu1bmak6nxrc5ntppwmcijbjkafnqouoyayqpddcvyfwicpp1+ycvz7ob98hbva94slvxyitv13svd1yh1cs2slixsacl4ir9r4xehpcceet4melj1jcaahav3ssh4h4bvs19yl+zgrqjnq1k/balpistbkvf7wnnghikjot0e2e2tybtz8p+aqnvezqtcvrur8fgkalpr9zzwzzlyihyvj3qyaeuv5kywon1dsnvrdnax98y3bzusgt1nygccchkzeiwuj7pm9ybby3po0xa8jx4jvv/zuyebtwalj9b8yaibu9ceo0avc9h0ivhyzdyivq95hixzxhjog/xzvps9es1rbxkxopq5few88y/geldy7sasb5mvgamy/ddw7xhqbiozwtr7eklghrax+cdd5dx6kpxldb4yfmnlgze/xyy5nuuteuo8papz0rhzdv1y0liyzlsnmpzdwv3oekasu2qf4zl8pnu3fa1w5pfmhwuhddyxbkosqpgppq44sf+ad/nynpiytfe0qucnactllhsmmigeln0fab2fco/bhodlftdiqyuuy966ox9havs6b6lpdpbsflz23vuzyblxdcmkvqcdbticr/1mi2t0v7zqodyvmifbt+i7zoyobs5sx5sz7l+rthgf+bkomqofwiyqackki+apzb8c6kf7knfhh3fjvangzy94ucyhy5xhgguwhhjv9b9+bl7r+p9+6iez+pkwfrolu6zja+kqimvtxwhjfxv6cpntt7yn/y+efo6tp9fihl2137rtobhloj0fvifb4emiefrdgeizknh7onmzjyvc3xevtulcsnvr/bvn9+chdlpm1wd36of0mjjyeedqjk7qc+xrz9ttp4/wycowtrkao4ms7ix1al7blk+aocbtfenfvebamdslunl+we7l+nmjh/vuabiacy9zn6js+oos4r2y0cvmq4ss+fivpdskl3zwtzsxmpldqgqbryzrzy3a+zm8w9knu5zdtfiaxtbcp4ep/fojjsvhtxetzescpwpdgsukulx0wf0axf4+u3jasnrb1xxgtz6rnkxjm1wsoqtbn+ggx92bof9ccnmrbjvvm7k+zwxqkubgmvvguvthzrcsj6nqd5e15ggwhzmy5ckfqlwghp5sv/1noiyeigiued3+buox7cepppodzdkahn9ewqve0prttvksftqrhcbjljhyu1j1wpc3dqnorvhaqym90eubbjnwcdhdpdmva1c35vaad7rkbd+8/qtdeqp5rfo3vy+dytbsf2+fv78zsf9exv349m7h5ohw8uef7/zuj+2fz3xz6wdbp9q6utxz+sxw77yebz3derkv3/i/g/9/4283/n73h3f/dfffh7xqg++1h9/fgvx89k3/ahglqoo=</latexit> Viterbi Algorithm for Sequence Models (with tag bigram features) score function for label bigram <y, y> ending at position m in x could be anything! linear model, feedforward network, LSTM, etc. 14

Approximate Inference exact inference limits us to small parts functions e.g., Viterbi requires parts with only two consecutive labels, and takes time O( x L 2 ) time complexity of exact DP algorithms is exponential in the size of the parts we want to use bigger parts without exponential increase in runtime so, we consider algorithms for approximate inference even when using small parts, approximate inference can help us to speed up inference with little loss in accuracy 15

tag set: N: noun V: verb Example: HMM POS Tagging D: determiner J: adjective example sentence: V D N Lower the lights 16

Greedy Left-to-Right Inference build a label sequence one word at a time from left to right at each position, choose the tag for a word greedily to maximize a local scoring function 17

Greedy Inference Lower the lights <s> starting tag 18

<latexit sha1_base64="pkzxjez09gfztrywto6qwaybiyy=">aabbq3iczvt7cxw3cqcvrwst+87jn6lk4siylk4kj6vlxrljsh1puqsukvqrkd/eifewm9hdkpmsgohuajt5dvl4+sb5m93a7m7gsxw4lxkksjuafuhunbqnbga7klmu1f7+f33ykz/64z/50z/76z9v/svffvrzz37++v99i4tkxoxtxksf+g5ejut5zt4qrll2xskyzuyp+3z08qtbv71kqviip1alkp1mdjlzmy+pgqrh55/+5zbn03lwzw/ji5cvczvtrezzzpszwvxkgc2topkfbooogxxzoljsrpsqv5t/0jsndwmb2k9a3jsqetemb+qxiaiyzhq+rbcrz6omqmlm0/qwaui0g3/lyr2nijsrcycvallfm+auofuhpxwwmya++alagu/i4p6pv7qc/miaupz7m9ub2weaeiv5qx6uwh4hrasftbuvopgr6ck4zscpo6s/rkdfnb93b01zdry5tsr7t1i6ql1psf7ku7ikjrvkptzc1h1evusyinutan7skh550dxdndrrqrkrf7sydikhm3aincmu3fmg6ruyodtcxssff3tnjdevbjibhfviqp/ldylosxq46san5/0ltsyplfh2qqpaaxtr4kxyge8as4iqy3vmauv6xb7drr6ll8efiezdznwzx5m5ivnuelimbkdvb29nyww6ovpnhjzkzmmmjopcun6gkxxb2/mwhzza9i2hoaap+4uz7zcn9kbljdrpy4lnz0f2nj9dkiz6mmzlrnrh8e/f+34b/jfr71xofsbbkxgl0ngl2o1br3hc3xl/rfwwxdnriohutskjzi8jzcthpnkqelplduuwlckiejwgpa3f4m1dr99+vv/mukho3ratnuz5eqsmkqukpznoktfui9uvv9upwtshzjbvqbmnkxursk8w3tj2z226wf6gakgd1ohbbdwt3n+pfb/8duk0cenj3x2tu4v24+ni3w8d1duztwhostad51rt6r787vrqsfi/i+szqn9/rjqhvecd3iablxgg8uh0jc8rhimhhocvddwidqggeqvwad6ctqqitmfujeryvfy6wnxxzqpvca2ukjq+oweoj4d3lybujusjbd0fm1tbrbzcapfzcz8q9wopq0pidhlb9uvr6ybjv+sm1sjgxbryi9jnedqqw/evlyxwxqwcunvhzryh1gijxolgshnavlxijyad+ki+yjddqszp8hxozye8gxojyvdlyxrrkwr9r+fe45rkycelnmzmo++qv+ppokdk28ksooom4+w8pc96vmpp4np2+hexjifnfu5ok3zvmxndg1sqyktsxmtm8od39vf29r/ifwzajzsb7z9xw89//umufhgvsvxpiu8g+6u6rwg/4hhkip2qjctpfeen7aq+c5oxevrr5leh21ctkheh4l9cev3b71httokcbcsoubptwblqo6nu+j9oyfrlsoh/m4zgvupuqtatjqkxoiv0ar80fhxkjfgugnupyfc3ltyltsffzqtrkdummzb9lnbtrnbyyuo5xztvqekq5tm1cxejca8qcrt6nahdkld2lyp5yyiq5lbgu5fj6dqmm8zeydsek5bxd+yxo2rfab9vvedmioiutoklg3wsejyayxg+ymrgwk472urowhqhmx817isoawbxywo05hn3tdjhvpuofcrwbp7gyyi01sgsskn0usd8tlmhztbhdtmzlqswfrx0zawyhkxtphlrjx051ci9yqxvwoad0epnc7fgvowimcmql6dqxf2vlcxle45g8iapg/qjlf81hxuo1poiqqnqb/vktuhznrfwxcrh9spsnmmw/bjeyxfb1e30yfcvl9omjkzswvnaty5ghzg6iqikqdrlye7totjtx8qm3mdz02/qhwy8gtvt7+/9xm1lgeujynby0igmisrwo5bvawuys5gs2btpzi7kcx7dejqtwak5n9htui/siugoxsqoh5yqowoyu/vvq+en7glptuutqrwdvdn1hkgcgeqhr7d6xy9bz44czh+mihr34mpuwhd19nnvqepzfhsnr5znk6z+dmshxj73xe8n6eebm34z169pvnlwis4qxj8ogojw9oz9bypecghspaxrteotzmfv9/4jemxc3xl4pkqypfw0xrqijuomq7wqui8k4rjxstz9clvvzpigiwxwshvvhtgbwsyhrjxkiqjprvsqhu0gv8kiym+ez37n+6bn/fxdadxxu+2abrvhbrbzzxdtpxy/3huxmwqu+hmingvgcrtk0tghjtkdpdrdiogr0wppqvhzrl4fqodmepbdf5kwhly1tevdgijubkm8c3spk4gdxmywwilhbepeo+y5x3nfscaiymjrwcgtq1lsesngt81gsrczoinoatzkvfhnhchiikvm4affdbk3axkcs2hu1hhy29k9uyafceq5ysgs8saqj0iyua7lgnudtif1xzwgojf8ai4yxrlafc16z9l/dbiwrpnjqxowexnyersk+x2guef3m1exhoaarbftelxw1gxh3wel6a5jfepizattv4gptww5agshrcu7m+otkv61qtsywwprdg6gxv9npy2i0dvr1wq/lq26qfwgdzbdjmcghteffk685ga41pp3t5dphqadq3jofoss5bashbmkv/3ni560apmwchzqcppyiiwa7dpaezyuxe0cgca4dklsbtdgjlf3jjizaiwyebchcjbuzkmnacpxba7ycdar6d1jtr6cszdiniwsesimexzmt4cyty2qhq1/so8nv9omxtixgaojgw6plte8u1imtet47dx3aaggbjlqqaxz116rpph9rbyyvncw8uixggbzikma6by9pu8wl2+1ef0e0qlsmx5eig4lifspeycbb6d7a3yjmhhhsrdvgvmmrwjp6y+aii0istd4jstrf54zgbxo9fypnkehugopeug7bhb/4chlw0hqafxagzl2l/g55np+rerqobz1fn56fmcjzb6fvjtltlw9ynz5wnbjfaiw78uixbrkefpfbubpdnewdyfefhyo9is9r1olobwdqzquav9mwwbbycnvc96crlcuuhplfr+976tnl7bhah6klmnumdl2rt7msdgl3pbsit9mo3ymdoi45uc9oonz11/l+wboq3letex086brhtcqh4mjax7210vz989hbxv6tmxxsxmmho//sn+iym3dc0bfg4u8feszcft79mfhchwskc4bsnyctonskgliexvxa/x9vjpnsdsm9woidx8jzfbqo8a2hfews2cnlr1qslq8ihwrprqhkflf9hlwci84aodfhoc6hshq6vtlexiybddmf1xdiud3vzij27abfxludstg4blm68afvwvb7fhxdgc/qx4pent+nh/ne1lwwez2ttk4wm8k5vvpdmiqgkglkqucbilljuk/wmlixdy2qrsgtkl3wjs7gukb1yy2t+cgkm/hjtogyc1y/f0ocp16/gmhz9glyrrupadqpzgixiovcczhj/oxhtbgid2/w++e5e6znllq6/ckvbgbifwjoqdu0o4yt/1lfg8wd43b0tnjx0jiukupjdsbmeeeztqsooo0sooijdzxomtasu4vcvbb8xxkqdkqolwdivb6xu6sda+9se0xdccc+jezphjdgazlgc6gomy895g3zuezwxykqylwmownyd34cuae4endobjcz8vt95oklpwm4ej5eekljlziino/pghoocijmpnyyvgcpizmo4hpq/hswambse/deom4afhgpk1vsy65vxypxu8qbx5saduekd4gs1eskmecku31oiehwsesicqgwt6rdevo4xomswulfirajcxdjwfefrvvowndrp6orjmtqaekq6rlerjhwfkhwsvyljbzskbqqk60rtlarcjyvdjwm1vsrwtvfizdg7tfle3xmzi6jeopp60rmzylkd4lsyqf2s8iajzkixbetfzvpd9/zlcfs5xpjkicum64tsc4xc+rjyqrpax8he14cqbrjmhdtqfcgxq/ssd/wn0t/zaqgggtajgds7qthfobrhrqxebgyjsxt57doqfz2pvliiby28a4nuvzq3e5lbv3bqpe943b5v4lujuf1v5ohvyz1b+6jj3sntytpmdde77urddmdb3szfb6/fgnubqcuuhqtuhm0bzachliqycji3pwxvbuhjc4lhjattij1dobnvp1xbanmuvycqbcmbmgnquxmaeewvz3r53hqrvfo5q8qrq9+cusf+5qjnbzdxjs6zkekchm4gc83kbdm4u1yqokr7seorz/88l2jvwe+xqpeswecmyniebudpzu+5sgkwxs1ug3r40nhyybgto3lawpidjezudnzcm+gymqq7ldkz3q4bkuyv3+fsozwbd+mf6wvq0s81aij/al7d7l5n+xdf3juax8n4/vohvvpjc0rbvpoyzxmtzas/xutcoo5hzhs1lnps4r/lhczeclfyatcm2svifzqu4assc9chpan0lhry7dvdoiggij2dskqnxeeclarebgqooqavel65q989enfef71he+r4xier7gyfexng8plu4vs64icmz54bn1td6jamkgqpsiicjebby3vhfygrdgbxz50shg2+rl/oxduqvo6alul0eilstkmctunndueq5g37bhfbd9yld7j/8t42jb25lj4d+klfh4rbwh9tilvdowestu5yqojl29sowlnrdvslyu2gfuyc58xzdje8g5irsjkahk4nvd8ahrwlsegpdcv29etn5vdfdrmqcihgrw6gjnw0ny3b32cdv6n8onsfeoxyw2eukw1hihexhh1ewmwz0ov+hhbph55lukvb+ib7x6hyx1vppfcycx7jto39cbzhxsrxbb7gavz5hs5dhfnxmc74akgq8ytfyjd1k/lupf6kmrd978dhhm2gy1gai5ryfzfndlq5e8mjbou71stczh7h76p4wavfsmz8qz45bzjcbpwliqfoq02jczquroju8ttcobfeh/5akfy5ixtxvdoyk/ijwrc6ewxcr6uvr9ppn+wr9vswhza27eftdcx3zwmx9pavc6b65pdlzdpgu37onjmnx9xxkp1em6gumo136mxte6a15ohjgxmrcto/4dz0z7a2+249um9t9ijkuf8bkouqyfwebgaekci+apzb8c6r/eoks/3ftnndue/mytz/msgommw1jjemju03/4uxqtg376qz9k6mfctggsze2dbsshix63fxtn+fxo7tv/e2/gc8+dxetq+rcbm137rtdszl5q98jabdb3ki2bes6jnki/z05m5gf5jdd6+1aujl/bunnvnuhidjnpw9r1nzaxjsw2diewbbk7iof8qjn6lrxg/fblajphkxauwmsphl6t28gprpgdgguzxsm3mnfapiboim/yls5ed182f1vmqighgvp25ewdhvucitila5tkuekvn4qvkarlcyuf7kk4lcqkaeivza6gctevwnelayfxutw7rjuxzdc3sju/h1iqurgjwupqvxourvurqwk2h+0wf1as329+nfu04nhxxzyzbjazqzsoq1bolqaufpmefxjwe4lsg56r2dmbfnht5lbgoxgchs3iglu7pf2jasmqj9eflj9ghzww+txezaus0he7/eaf8zxhzcetjxrg7/berj9unemv2o5tsclaioc6m3toakrtytx/vqlxhciaksxsx64ceroguamrx26mchumxbmagxfz3ma1nhgbo9twd82lvuhubtl3x7y5qmbv+9cobosp0xfzqzch8i439882bvsl83+pd/upo7l9ufz/x04282/m7j7szg4x83frfxyupvxtun+//uxvp/vis7shuwdvdt4drab6k0/apn+9yf05yp8dfvd3sa==</latexit> Greedy Inference Lower the lights <s> takes O( L ) time (iterate through labels) 19

<latexit sha1_base64="pkzxjez09gfztrywto6qwaybiyy=">aabbq3iczvt7cxw3cqcvrwst+87jn6lk4siylk4kj6vlxrljsh1puqsukvqrkd/eifewm9hdkpmsgohuajt5dvl4+sb5m93a7m7gsxw4lxkksjuafuhunbqnbga7klmu1f7+f33ykz/64z/50z/76z9v/svffvrzz37++v99i4tkxoxtxksf+g5ejut5zt4qrll2xskyzuyp+3z08qtbv71kqviip1alkp1mdjlzmy+pgqrh55/+5zbn03lwzw/ji5cvczvtrezzzpszwvxkgc2topkfbooogxxzoljsrpsqv5t/0jsndwmb2k9a3jsqetemb+qxiaiyzhq+rbcrz6omqmlm0/qwaui0g3/lyr2nijsrcycvallfm+auofuhpxwwmya++alagu/i4p6pv7qc/miaupz7m9ub2weaeiv5qx6uwh4hrasftbuvopgr6ck4zscpo6s/rkdfnb93b01zdry5tsr7t1i6ql1psf7ku7ikjrvkptzc1h1evusyinutan7skh550dxdndrrqrkrf7sydikhm3aincmu3fmg6ruyodtcxssff3tnjdevbjibhfviqp/ldylosxq46san5/0ltsyplfh2qqpaaxtr4kxyge8as4iqy3vmauv6xb7drr6ll8efiezdznwzx5m5ivnuelimbkdvb29nyww6ovpnhjzkzmmmjopcun6gkxxb2/mwhzza9i2hoaap+4uz7zcn9kbljdrpy4lnz0f2nj9dkiz6mmzlrnrh8e/f+34b/jfr71xofsbbkxgl0ngl2o1br3hc3xl/rfwwxdnriohutskjzi8jzcthpnkqelplduuwlckiejwgpa3f4m1dr99+vv/mukho3ratnuz5eqsmkqukpznoktfui9uvv9upwtshzjbvqbmnkxursk8w3tj2z226wf6gakgd1ohbbdwt3n+pfb/8duk0cenj3x2tu4v24+ni3w8d1duztwhostad51rt6r787vrqsfi/i+szqn9/rjqhvecd3iablxgg8uh0jc8rhimhhocvddwidqggeqvwad6ctqqitmfujeryvfy6wnxxzqpvca2ukjq+oweoj4d3lybujusjbd0fm1tbrbzcapfzcz8q9wopq0pidhlb9uvr6ybjv+sm1sjgxbryi9jnedqqw/evlyxwxqwcunvhzryh1gijxolgshnavlxijyad+ki+yjddqszp8hxozye8gxojyvdlyxrrkwr9r+fe45rkycelnmzmo++qv+ppokdk28ksooom4+w8pc96vmpp4np2+hexjifnfu5ok3zvmxndg1sqyktsxmtm8od39vf29r/ifwzajzsb7z9xw89//umufhgvsvxpiu8g+6u6rwg/4hhkip2qjctpfeen7aq+c5oxevrr5leh21ctkheh4l9cev3b71httokcbcsoubptwblqo6nu+j9oyfrlsoh/m4zgvupuqtatjqkxoiv0ar80fhxkjfgugnupyfc3ltyltsffzqtrkdummzb9lnbtrnbyyuo5xztvqekq5tm1cxejca8qcrt6nahdkld2lyp5yyiq5lbgu5fj6dqmm8zeydsek5bxd+yxo2rfab9vvedmioiutoklg3wsejyayxg+ymrgwk472urowhqhmx817isoawbxywo05hn3tdjhvpuofcrwbp7gyyi01sgsskn0usd8tlmhztbhdtmzlqswfrx0zawyhkxtphlrjx051ci9yqxvwoad0epnc7fgvowimcmql6dqxf2vlcxle45g8iapg/qjlf81hxuo1poiqqnqb/vktuhznrfwxcrh9spsnmmw/bjeyxfb1e30yfcvl9omjkzswvnaty5ghzg6iqikqdrlye7totjtx8qm3mdz02/qhwy8gtvt7+/9xm1lgeujynby0igmisrwo5bvawuys5gs2btpzi7kcx7dejqtwak5n9htui/siugoxsqoh5yqowoyu/vvq+en7glptuutqrwdvdn1hkgcgeqhr7d6xy9bz44czh+mihr34mpuwhd19nnvqepzfhsnr5znk6z+dmshxj73xe8n6eebm34z169pvnlwis4qxj8ogojw9oz9bypecghspaxrteotzmfv9/4jemxc3xl4pkqypfw0xrqijuomq7wqui8k4rjxstz9clvvzpigiwxwshvvhtgbwsyhrjxkiqjprvsqhu0gv8kiym+ez37n+6bn/fxdadxxu+2abrvhbrbzzxdtpxy/3huxmwqu+hmingvgcrtk0tghjtkdpdrdiogr0wppqvhzrl4fqodmepbdf5kwhly1tevdgijubkm8c3spk4gdxmywwilhbepeo+y5x3nfscaiymjrwcgtq1lsesngt81gsrczoinoatzkvfhnhchiikvm4affdbk3axkcs2hu1hhy29k9uyafceq5ysgs8saqj0iyua7lgnudtif1xzwgojf8ai4yxrlafc16z9l/dbiwrpnjqxowexnyersk+x2guef3m1exhoaarbftelxw1gxh3wel6a5jfepizattv4gptww5agshrcu7m+otkv61qtsywwprdg6gxv9npy2i0dvr1wq/lq26qfwgdzbdjmcghteffk685ga41pp3t5dphqadq3jofoss5bashbmkv/3ni560apmwchzqcppyiiwa7dpaezyuxe0cgca4dklsbtdgjlf3jjizaiwyebchcjbuzkmnacpxba7ycdar6d1jtr6cszdiniwsesimexzmt4cyty2qhq1/so8nv9omxtixgaojgw6plte8u1imtet47dx3aaggbjlqqaxz116rpph9rbyyvncw8uixggbzikma6by9pu8wl2+1ef0e0qlsmx5eig4lifspeycbb6d7a3yjmhhhsrdvgvmmrwjp6y+aii0istd4jstrf54zgbxo9fypnkehugopeug7bhb/4chlw0hqafxagzl2l/g55np+rerqobz1fn56fmcjzb6fvjtltlw9ynz5wnbjfaiw78uixbrkefpfbubpdnewdyfefhyo9is9r1olobwdqzquav9mwwbbycnvc96crlcuuhplfr+976tnl7bhah6klmnumdl2rt7msdgl3pbsit9mo3ymdoi45uc9oonz11/l+wboq3letex086brhtcqh4mjax7210vz989hbxv6tmxxsxmmho//sn+iym3dc0bfg4u8feszcft79mfhchwskc4bsnyctonskgliexvxa/x9vjpnsdsm9woidx8jzfbqo8a2hfews2cnlr1qslq8ihwrprqhkflf9hlwci84aodfhoc6hshq6vtlexiybddmf1xdiud3vzij27abfxludstg4blm68afvwvb7fhxdgc/qx4pent+nh/ne1lwwez2ttk4wm8k5vvpdmiqgkglkqucbilljuk/wmlixdy2qrsgtkl3wjs7gukb1yy2t+cgkm/hjtogyc1y/f0ocp16/gmhz9glyrrupadqpzgixiovcczhj/oxhtbgid2/w++e5e6znllq6/ckvbgbifwjoqdu0o4yt/1lfg8wd43b0tnjx0jiukupjdsbmeeeztqsooo0sooijdzxomtasu4vcvbb8xxkqdkqolwdivb6xu6sda+9se0xdccc+jezphjdgazlgc6gomy895g3zuezwxykqylwmownyd34cuae4endobjcz8vt95oklpwm4ej5eekljlziino/pghoocijmpnyyvgcpizmo4hpq/hswambse/deom4afhgpk1vsy65vxypxu8qbx5saduekd4gs1eskmecku31oiehwsesicqgwt6rdevo4xomswulfirajcxdjwfefrvvowndrp6orjmtqaekq6rlerjhwfkhwsvyljbzskbqqk60rtlarcjyvdjwm1vsrwtvfizdg7tfle3xmzi6jeopp60rmzylkd4lsyqf2s8iajzkixbetfzvpd9/zlcfs5xpjkicum64tsc4xc+rjyqrpax8he14cqbrjmhdtqfcgxq/ssd/wn0t/zaqgggtajgds7qthfobrhrqxebgyjsxt57doqfz2pvliiby28a4nuvzq3e5lbv3bqpe943b5v4lujuf1v5ohvyz1b+6jj3sntytpmdde77urddmdb3szfb6/fgnubqcuuhqtuhm0bzachliqycji3pwxvbuhjc4lhjattij1dobnvp1xbanmuvycqbcmbmgnquxmaeewvz3r53hqrvfo5q8qrq9+cusf+5qjnbzdxjs6zkekchm4gc83kbdm4u1yqokr7seorz/88l2jvwe+xqpeswecmyniebudpzu+5sgkwxs1ug3r40nhyybgto3lawpidjezudnzcm+gymqq7ldkz3q4bkuyv3+fsozwbd+mf6wvq0s81aij/al7d7l5n+xdf3juax8n4/vohvvpjc0rbvpoyzxmtzas/xutcoo5hzhs1lnps4r/lhczeclfyatcm2svifzqu4assc9chpan0lhry7dvdoiggij2dskqnxeeclarebgqooqavel65q989enfef71he+r4xier7gyfexng8plu4vs64icmz54bn1td6jamkgqpsiicjebby3vhfygrdgbxz50shg2+rl/oxduqvo6alul0eilstkmctunndueq5g37bhfbd9yld7j/8t42jb25lj4d+klfh4rbwh9tilvdowestu5yqojl29sowlnrdvslyu2gfuyc58xzdje8g5irsjkahk4nvd8ahrwlsegpdcv29etn5vdfdrmqcihgrw6gjnw0ny3b32cdv6n8onsfeoxyw2eukw1hihexhh1ewmwz0ov+hhbph55lukvb+ib7x6hyx1vppfcycx7jto39cbzhxsrxbb7gavz5hs5dhfnxmc74akgq8ytfyjd1k/lupf6kmrd978dhhm2gy1gai5ryfzfndlq5e8mjbou71stczh7h76p4wavfsmz8qz45bzjcbpwliqfoq02jczquroju8ttcobfeh/5akfy5ixtxvdoyk/ijwrc6ewxcr6uvr9ppn+wr9vswhza27eftdcx3zwmx9pavc6b65pdlzdpgu37onjmnx9xxkp1em6gumo136mxte6a15ohjgxmrcto/4dz0z7a2+249um9t9ijkuf8bkouqyfwebgaekci+apzb8c6r/eoks/3ftnndue/mytz/msgommw1jjemju03/4uxqtg376qz9k6mfctggsze2dbsshix63fxtn+fxo7tv/e2/gc8+dxetq+rcbm137rtdszl5q98jabdb3ki2bes6jnki/z05m5gf5jdd6+1aujl/bunnvnuhidjnpw9r1nzaxjsw2diewbbk7iof8qjn6lrxg/fblajphkxauwmsphl6t28gprpgdgguzxsm3mnfapiboim/yls5ed182f1vmqighgvp25ewdhvucitila5tkuekvn4qvkarlcyuf7kk4lcqkaeivza6gctevwnelayfxutw7rjuxzdc3sju/h1iqurgjwupqvxourvurqwk2h+0wf1as329+nfu04nhxxzyzbjazqzsoq1bolqaufpmefxjwe4lsg56r2dmbfnht5lbgoxgchs3iglu7pf2jasmqj9eflj9ghzww+txezaus0he7/eaf8zxhzcetjxrg7/berj9unemv2o5tsclaioc6m3toakrtytx/vqlxhciaksxsx64ceroguamrx26mchumxbmagxfz3ma1nhgbo9twd82lvuhubtl3x7y5qmbv+9cobosp0xfzqzch8i439882bvsl83+pd/upo7l9ufz/x04282/m7j7szg4x83frfxyupvxtun+//uxvp/vis7shuwdvdt4drab6k0/apn+9yf05yp8dfvd3sa==</latexit> Greedy Inference Lower the lights <s> J error here: model must choose a tag and stick with it; can t change anything later V D N Lower the lights 20

<latexit sha1_base64="cadaxhopvynlf/+a8wv+1+uyq7y=">aabcnniczvtbdxy5cey6n4djfk/zmdzaezmvljlm0lgtsksc05iixutxgynag5scy3owmyd7jgdnmvgz85jfk9fkjx8ll3nlywt+qqqanungzxhzn5y1dhbvad5ufqqfqqgagrqjl2p39z8/+t7v/o7v/f4ffp8p1//oj//k3p/+4omffihzustsxzwnufhqqcvlembeka4s9luhge0hcftycpem27+8zelypdtw84kdpnsc8rgpqykq/sf3/mktzknr+7vh5nxr14tnafokbd3k2dto05rmwyqsuayrkb3ksypsbkauqj6vf1/xtq1jadhpdg4zmlbvzet+jzwlerxjlm761tziwzrsnylpuh3unym28g/rr6jbngzlhgglqffrun5gcp/61wf5lilgfwyodk/tdhk1ocfm4akpzd9qx7vd+yvzqwozc3lpgrun64vrm+uq9djisvyeml96+aoudjiajc5fmcxqsn2thhz9xvevrffbxdq+uz4/vnitl7ktabtvuyzhm2lqtsukhky9a1dhbppcsgeue8wb1fuuv5/ra1ukwj5kzc7lzfi4ru2oqsya7k1mrkcyomahyklwfhur+yxetxve9cxcjyjdn7jery1m/7hflv/fgvbtirxb+pss9kqc+cfeqouqjisxebge6swcguc7fbjapvs/j64bljecbtmvvnmc1szgsvwzrs7ezsbm37h0tn40kytphghnf4qmrue66/anerf7kyb8w0mqdq/nf9m+cl/taiclej+g4t+fd/05krhrgfr3xidm+j/jz87bfg78gvhnzc4uiegeec3sscxy5gs4hnr8v1i/1xlml/hyr94rlri4uypcn300s9yggjd6w7vgqxskic8idwn+d9txir/ny5frupb6nquvfvwatygpgqriqwdmcfbvjhd77uq65vyxykggonrjpsdxykvqy7xmxuu7aq3ywusmejw6lfe6hzp3hr90w9eula2xmtny378/qqbrcg7+ns3ttiig9fs4kr8ln1ypzwkfgmky+i1tx52b1xpsbc6eagi7jceho5jwnl4nzixgnlgplwapq3cfc6ahhik4ywyshciet1wpg3xdr6xae+dkwrrtqypa4did70a3h3yulnsk5s676q72y18hqrxczhi6rud6uodylbsgzbl6+t24z/gtnuo4ata2bpsjflaamo31deslgzlwpk1ywp8yzaiyqacrrd5gft1scvqab0kxzjyiqdwndlgdca9xk7jhlf4mvd6lxuypphx4nhczwsj+yd2cxh11uv1vnht8imc8iaqtums/wupuvzlqwlm9nh320y6p93oagt2fxniqlos3cgknmbe+v9h9zf3dnvf4j/0ws+7q81f476h//0o2iyx2xkmqulpuntfuq0gv2cxwmde2mpwuhjczpmj/cz0ztj00qfy2uyctvdmsof/jcpomu7psqaslyqgmqxsrcnk0ntj6ua/e0pth9rkvb/htgotijkcr6kyzal0eiyhw8acw6yknhcwbouhj3xltyftedonoxwuco84sfbulbrx4iwex7p7nq0tbshy55dg+exepeqplorrynqltnl1zkyhyaoyg5lnbu5kk7tciqjbbg14yql/ap78rzzusbvfe+qkqg6irn6yea8cqc2gmmypmbqylimo9rqtsf0l5ky1o4kqelq18lymojjd7q44vavybuq1gaeyf5dgmtkq7cjzjzd/ezspwfoa4fplmo5maooouycta+mnhspqjk+hgqq3gagsmhdtmipjrmymyq2bmwrijdrnecusoqczuoorvcwqf3kgs3+iymvdtaaieej6gf1sjvpwjxl8mwkp9ut0qrxwhyjoms4okpm+ut7kstjxuudnuzzpscxo0i8oieccka0ywbokyrsu8ekutplad1t0b2mfahrptrd+znbyjckescgtqarhq5vvhqfrgoowjinzpw6nsa6kmb4deopt3qnjjuip6eajcxduy2iuq45ifd7zhv7s6oxp26ykapyjlqo99+eesjqwudy/tcbnftlxotdh9mhcak+exu9asgq9fzf9ahsc3x3a0ewpeo6enfoov6/9mrpxuhbazn+gvdvafpw8ceuefyfyihirvt2fqmd3nab7d2subrdrc4x73f+orjsvn3veatkoqbc1o0xri3vgvzrixefgyrltsui++fqk59mquly4jbqq1pinrwuq1grluvq04uovfuadh6frcgeq576nr+zno9wd6pl2o+2bbpth7vbzp1ctjfy/xdvxc4quohpifcvgcvskspazjpmdjbqd4kgrkhktmri51n1kiqazxug2y5kydly1jsvbwiudhnd4pta97guomhfdimlgm4mrlwjnnfmqusyenlkdvf3nx2qghyybntqblocncuzdeltwdabdzalnaayagz+8js+9yytg8jsgnqvzm4bug/m5iraoscmruiegojeccnxdzlzr5ppslqrehq0ko3bbcm4l4uiqw8t+i8zc/2kp+3vz5k3izd3oza9ahpv9ih11dgrhw4gsnw3s3ise/pd8gg2h+yrrkymwrbb+jybvluqiliqxluzljrslatuldm0md0q4oof7/z6dtcoa769vqv5qnuqhcbg2ww4jrwp9oh4sng/t7hctf+8pjw4wpj2hcm5c5ljrka4yjmip2+znlaghm2ckkkffbmrhgdxdtkdzoq8a+lgwqha4zbgkxyczrdyssgwifmlgqoxi21gsjbwn+05opfjfghftmusdntiwbsu8tqxq4jbmcze+amlcteb6lf0klnvfadf7smyafoxsoj5uxplnyihiz8cu79saqhbrlxinyo76ti1nj6og8ikz+lexuyxqn5yogi6bi5nu8cn2o2hjus3y7gkw5ilgyhjgcpe4omdvdu9nr5lpsqctyqh/5xjdgficysviak92hanknf0kt+mcfr6zbm+lkw3ysh6stkie7jvl2a4iyyq4kmrdpyl7w/qs+mjurfr6obzzfn5qbkc5yz61rgtbfkwd+mzuyegumvrgr83cnv16nwdb2dwkysaw+zbohz7qhqirhod2awmngkyqrrns2cjekyg6nvxllcod+gjjdr31qfn3nodofaxyvych7hqa3tfg8dottdabrlxu0e+dhpwdft4jfrrwcf/k0na+azh3enrsccgtl0cfu+gzmv7g90vd168w/xvqfkx3svmmpr/fopoxtt7moyac2f3gdswmvf2l7hiliq4rqccodgz2nkmgytympya4ucre5yheldpdu4hjn45t3hbao9a2nfegg2c9hr1qskqsm/wxcqq3cflv9hlaci8oamdlpnckluh6ytt7mwasbfdwxwxmmvt3rxi5y7a+u0ledutwodzwy/ahnwn79fhbdga/qx4de3tehj+u97lasizssk1rgz41ypeeeyqbawnlihcywqllpfjekywxq4wsixynbjxvphzwnfixq0wmn+5baz+vhidbsgrl2jo8merv2myvnpbrltxcwah1wealojb4svnmf5z4qyxxaa2+x3wnbzwc8itxx/miryecqu1yiat2h3gz/6sl8hnafc5oybmnxtsfxko/g6lxea8pkkuzyvrjqerf+gchgntgov4funbb4zwoaghqgvbkiuhrk6rp1r7mwspiyqtnhhzspbicab4xnkij6mopwdn2lljmc/asd5aefc5+tq/bslrn+ydoggmjnxw3d/t1mcsy4lhc0ji2suyxszorlbhocbizmofy2xgml/dgg4g5y9hvmimdsf/dmqmya7haodqktnnyiswtip43elym07chb3gazl6ycayeddpo1ejdgkjzeehhol0cgjfxxhrmkups/gwvg5jhjhf0jrvpgyntjq6fnkmjiaekm7q1shjxamkh8r1slibjanbkukmurslkvdj4vdjwi0vsruttkkze6cjh+s7i5oc6iw6qs89wwowwwbo8inut3mpogcgfbtikc9yt+uofxlhk8c7pfi4zdnvqnafqm5dwswhxaavzkdrqeg3xpmsntrbsozqvsce/1j6e14avumdoggqzlvl2yhuo9yllciaybr2i29cw4wv84exvzsggzcwshslczurgvqbb82ziy+bvcw+lrhu/2gewj3c7zwpmtydmimtzvqxvxrx53yac+42ktp7lrbccwxato1yce/yfkagempckioaexvo8nywnd4nmg4ktqfpjigmvge5ntcmkxoplqtsadhhodingxflpwd0wdx4q6xcoquhi4a+bxmz/uaitqc3cskumsniniryg5lmcoic3ckrfb0k3vj1ypm/l3pasevpuuhsmhjc5ckb0wa8ux2wk81hwdzhnqidd6xgdskdgm2shmyfzdsgouxm5qcl4tjyqzce7bbykgrhfodl7fbs3kwf1wugph/wckd81hyz3r1neh/j3kvnyzje/+5heayxosvgkl0mpn1cja3qbl17raifud3rulazj5ochxxle3jhj6qfrpmlnzblyf1dyagdqq/om2mpyfgyskseea0rm0aeq9y7ihmocnwils0iikpkbboxf33edb7pfed7miu04wsofxvj8/zg4v6x5iogp5yhnljf6x0qigaisociikjewhhrg4efcav+zphllqk+zxnjv7bbdru9mrf6jujemlkkhosadoe25wp2bxvcddt7drux+r8br9vczoxz/1aswmcrqgmtf0fc+z3rgni+nndbpktxlnlbs+ynyczfm8adm/ekzyizw5irsjkahk4lvdmdu1qswctuuh2zflg++3gvunzameqji4dltmrses7147hgq9z+ft2gvh4xjbinqhmv4jkytljj5iygwr0ll+hhbph54lugvb+il76vdsr61nfv2ogzmldxr0t/0azj42lrgnd4ckp0w28ujv2wmbd0c5waczjq7rsdarrbwyxbny4m1vg2gozfalgzcbcpmxuf0auusfsxsw6jvqyg5n99o/ctssmmd4jp4zncxubu7ckowwiktbhpxnwubvfgqphq6cf/rpnvcxlbnxrde0kvitwtmifwpdtkkns99hou8n/ps2gzc74uzsfsn1zaf/5onj4f7nzxrgz9plm3frppgdk7uvsy61ol03mm7w2s+0+ez3wwunffmie6j1x7/jzghv4m12vjzb7hvjyv5cvczkhokhlhf4wjrhonkq2qvh+re5knhpd34wpzwbp5vkxawaxjjdmfaygbjvdb9+ll/rhp9+6iez+pkwexolp6zedelqay+bip06/cp0+/qnn3gb/y2efg4uptfihnyab932fpbl4rfgeo/d+9lqse8k0tov5u125kfk53i6b19r0yet9o82vky5crzm8otsoco6vyyhhqygpaeqnimbeke8+pm6xnvwtaa74onrlsdooirnsb2bl3dkeyaoyfqo9gzeyd8ompu4ox7b6wx/zcsx1uzkcibxr6zurfns1vhchyiwguyrhjl5+fzsmq7xmrhzymujxejabaetjnfpwvtqtzc3shg1lru643mwqwt7dvp4eyelk4czxuyxr3ouqnrpjvbq7klf6tjk7c+ti+ecjlv4osiskzd0pgbdn7glqgmcp8cdv3raw3ujzk3vgmy8bc51lrguxhgas3mllu7wbm1d0ufy6ifigrmlmj97mohfgbzvarlz063mp+nlwrwbc02r5t+6om4+titt72holvgh8ikxekurt5rk0+qou2vb41zkyo1i3ge/w9zz0ithtvmlo9blc4jbuljoyn6ycgvu7rkd4po2cj00bz+uml/w1fxz73uwdibnv/ijmz77exn/44u9nd7utu+f/vr+lz5tfj7z/bu/x/vltqdrvbw/wfvf2qu1o7v3a/g9f7n3r/f+7d6/7//h/n/t//f+/xjo9z5q+vzzmvvn/3//d5wyr2y=</latexit> Greedy Inference Lower the lights <s> J D uses best label for previous position V D N Lower the lights 21

<latexit sha1_base64="ew92qxkjqfpqx2j2coucwzwjuzs=">aabc53iczvtbdxw3cqy3tw2trnbjy16werlly8ty5n1nilk5s10ijazorqj8ezucxxrjzkd2tq00z0atzl/iw05e84pya/jvugx0tdcuzyt9chzp2goah6okhukhcscm8pglubf3p5/85a/+8i/++e9++qfrf/bnf/gzoz//9c+/fllzhoxtmmvz8e2ichbzll2vxmbs27xgnbnf7jvrxvns/+asfyjn6bfc5ow0ozouj3lijvq/3zf2/snm4h//cqvhz1ira5tfkyrqcpm4vzkta0qgkribokkle2rwlj5llk6gvxj3vdmzdmgf1k4zadkzxvoh4oygms0gks0pmwwgq8driqpygnq4o6jse2/s2hvtdk4kgsgfymdcwt63ua8o9/f5dnwphzzwboeeqw9128pcxgfxqawt9v+t/4wfzlln2cu6gnf6nr++tlst7/wzlefdkv4vsk8wye6euau9nqxn9c39wh0jhgnxm4kvfbyfogf1ou2yxax4ltdbkzs+rjcvr1/xfnundnx+ubrld3jkyjtnmjsbn0r+qkp4uud2fyseorvkom3dsczett0i0v6vuotyqiftdiyxfdqvcopu0gjjiptvurxw0yqhgqpoqd6f7wfg9ydx4meypaletbd5jjwb8ycmrv8a1b3bajy38fkkeqg144+yicoxdekeimmtxagufy5na3a0erzvhvwvos8jqnzeloyjkbnjcqginz3t3d3v4md1eaxruym7kceubdkalrt7hkq73tgc9ivhftxgba+8f19zxx+emtwo0m4se15mp/s0uulkz8htq+0z0n6vpw/78f/0iu8ldjcpciidar2huimouankfyoprcv1b/rzkmeyqcfjaxybeug6fkdpqolwwn4yf1h0ptu/fj4b/q+uzikhs37k9wg7awejsupvvqnguyy4mu4rjiyqi2yib1do+7oexalcjgeqjwykrjew9j4pu6s0zvtksluc1iaxucwcygg/uk9so7/oguj48ioduntbnxf1v/rbus5nu6cjenomhb0nrqi3xw3zvfxwk+r+qwmzqn97vjqirecb3iablxag8uhgjc0jclwphqekc8sqdlnqkutgaa0oqhhiiylys4wgulhkthvzju+7y0opvg+nshicszfgdvlu2ogclh07o/1re2wngf1s7ny4tk+wopq0hcfhka9uvq6ybjv2cnvsvgxbjyi9jledqow/wvlyyu2qwculvhpr2h0ggjxgunyfoaqwqqh0eg9jf8xwcgg1js5snqmg95oyyshodl/eislmj6fsejhzevgo8xhdn0r9dvr9rtb4/ippwkqnvnxtl6spf1fnvqxfxs8o8ogq/pu5zqvsyqjpwcnaosijizswj9+po7e7t76g9xpwbnx9215s/r8wmilcwtlkol8clgl5enfewxpiwzplilydknl+iencbnshmmtiuvendke2oims4k+c+vrnv2e1q0ebggayljfhybvvratko5/vttmp68lod/nknxgrozecziscql0ek8ga8afhxkjegugnvjypxxdty5jshxtznjkbvmgzc552btpkd5lidzszypy8khztnrw+ws4l6zpwb1oag6zsrnwgbzwwoqmuuztuwmhvubzfdka0znugqj/8b+uu1wfpbbhrtkbojoyzremsgniwgjiybhiyznjkwqo6nubez3khwj2p4eou3molgoxnxijxyn3kgqmomknyenebajtdwycowonmqwp9pkgtx0kcv0rsuctauhhficta+mnp2mqbsuhhiu32sgyskendbstrniwwixxcacgxgplsnuqytpwrpxnii3to7ht2n+tymscldwgakkud+ov8hfzko0gy+wp64ekey8ikwxieqkc6pqpk+8l7my1luwyhoevmpymsre1akruacimqnzmlabmjqw19ues+pug+ow4xgsmwpv9zd2k8moqgagtqenabtjrb+frgoowji1zpw6ea51ku/wg8ztnwxo9qgkmozqfjcmrzumwjnkhnwdkj2dl49ennqnyykvt6ryup/m1bggfgwk33+90tl+2xh+adh7mexuu5dxoykgqgfpr0aviupbaziynjnu1fnda/xqhsn+peepwuvxi7b6tzocgw+xged6igwobgrv3pcw6a0bwn7dgku7vop8/n7334kcjau7a4dumeeuf3wbhsijpmnqjstui1fx2alynn7y2spmqzcqnlik2qqwmekt4rdwcmkqvpqckus2ionfflgwz8qtt/ow7rnv342we7fbju624+8gm3uc0v5s9so9fztdqke+guddm1byvalapgdm6sim9hjbxb6xeiqmn2fvlg8bmutadmxixfly1hsvdx4kqrkh8c7tpswlhoqyhsesdgctit4xtzmemqsylrkeho7vpz0goc0xdhbudkyeo4s16jgmo8gzdzovsqhk5rz84lshdyytjwapjookz2obuvcw5cobpmcpruiogojeccp7uiy400l36o8qcwoassfggmgcq0xrolex/vcnc8okpx7uz6kzize3ozbuay0q3upsnxbeoamrbpxtlb6rg4guedxfqpmyilmdlzttfmf1qymif5kxxlmzljpqlx2qfknimr4icnwct3s9pwjhad9oq9f8ogzvqgcwrdccffqp9oh4snf3snfj2s9fhr4clu37lutsoulfiyakwlrozlsqzi0oznmvjg8h+btwqrbro+lezmkrtnswyaeguaxhtiva2yzcuoglqtziomlgcjorlbirzx5yopetfghfvmucdhtiwlsowllwrbcdy5ij8rmwxbid1pf0kno+ptbi9ykyafoxsoj4ux3lnyhix0+w3v+2ai9gy14ioq476li1jj6ohcikx+lexgyhqn5wsdetase6qemtzpbdeqlbvvysysmgqmsxcmuvmeng1c5gd8asbwnpvmxxxzcb4uw4zeefrkaxg/yexyou8sdjarues5hhpxa2dekvkqdhd/fdbqy5aawbprpca19s/gy9m0rvny1gnz+vms99zra4n9grwuhoy4xzg58+g/ailryt+hedn12ponvg7qwuzylaspm2isuekyao7usnjoopy4kmsuxzdnjyb6uhet2wyxbkqthio/ad9wmyd9wgdtsg6d3hbs7v2t7xejbq0/wqw+3vdpcpnuyc3ramut2dvfzfswlym4z1p68jhypydgwupi6yjxc2uichz9/i+mrurir2etmy9x+3qz3fuaggala/eywbaycpaxieq2xdtfajyimeny2stphxi/9gri5709zn09qhagpwisj8+tvgcaty3so2fbekfqvtqhpa851guijyp3yfi+utxdmht0omfimhxs7gh7shn7mwlc7nbwxsxncuc1+9jzc3bx3qletn0lchhjbdiw7vt9zr8ag6c7al+rnr0p87+rvswghcobxmfkglet4qvjdl6q18i8yb4jw2k5s9yxmj+2x8hwynvixrpgzmjti3vzy2tucvem/lh3hxrb/uvrn/jj/txoh/cvyf51hxt2ujudjbqthrc0wfjpipsmebuy5vfbdfjkzze3dp2lldokxa1uz0batd2ml91zx4hebze0x41ta5rsh84xcr5rlimi0zivqmklmilpefaejqzrui35cu/myyew1iqi4kfq84yhvdpvba3ysyhhboeer0s0yiwafgjmvfhzmve86bshot4lkai9l4subm+uv8bqsk+utbqrxakmjn1d0hivqepazg4ziqurajtpbkdf6by5aqjdpzw1jqmsxunozrslljwpsmoshkjkhqmszugccvpojdr7wc46sc150un+nedeoax6vrczbbe3h1fhwvyjeqqbyuopkiiyd2tywrjtouuhjvreumxohnc0qzioep0vzhv0+o1thuudj1vrolysuuzjg4sknsoyr5uyvdj2qjjgkryr8qaasxirz8ikdq2t5pzcfqzkgfqxuwnvcxnq0bi20ax9km6mezaxwxtypfwmps1u26615gmmpxklqkwtbte7irfhlrymiiaqndittdpula4zpzuenjhis27nm88j8id8/zogpoqcca0uzibaefaoe7shlhmyzwbss1ayt3dt5y4oognhiodgjvad1ojbr92klznojhc1sjbyvg1t/rb1yndwfnoyz7p4xlyznvree4q3m7gav7myw6ey0w7asmmrftwlazbamgpahpikrgwlw9y3hrcxpfedxuje0hyr0czag65dpam6bopwrwkbyiwqavwqcrqvo6rpegjbdky5wziiwx1c2yfekvl9pucbowxsxtrzwt39lgqpiciad7ynjjr3e3vj1y/m+ljhao9vtjdynpdw6yhe2obx7f/jqrywbz3oi2qip3hy0d+dsxmsyzjn/laesllpt9bp1he2+nxdi222j9kh25hs6vwznxl+65ngcl3fzdg3kp5pvt7mjkhyv2zte8hsarxzqs0hqtuwym0sxgsy+nmqgkrxovlbcguztasp/5wefw43yvgefugxsba2bldfqsstdqpo5a0ao6tfoqyuyn0hibrepepjflsvwosayqpddczyvwicpy2+ycvz7rot9nrvm9ziqk4wsoxxuj/fzg6v6xzisgzoyhnlfx6x0qikapsociinxewhgrg4elcavuzpfmlqk+db7kxtj1xuvpf7l6crkwvjqfq0lnceeo4wr2thvcs9shzrtz8j/rjra5nzlk7q1yjo9xzbnal1pcuwmjqwxftqhg0tyrs3jb0+ynyczfm8anzjm3ciz4bdknssmbcyfm2ncvj7qmluggtil0+6zz4/16uf/l3epaj4nfr2negmlq7rvdqfb7hd6fvxi8nrgvsleg6t4subjk6cmilvkylttzsea99fyswtrg19w9dsx+ynrmws8aolmwp0h9nhfg+mnjhduwbyh5wkqjj/q+mrb4b5qv+cbdxzxqkpxjml4mptry4m1vg2go9valgzb9fdjnybs0vmkjy+k8vitvxxzw7qd+lqlync/wddwzbpjdcbz7jfnhquin9tmbmofe+nrsorzif9rpnvcxlbnzwdi0kvirwpm8kysgmernl7qptn5pupdtjmb+zy3y4prrma9u5uniyf/nzdwjzqbnz2hxfdajk72vcy6uom03menx2k+3uez3zqunff0ie6j1y7/jzchv4mx2ujrb7hvjkcshxi7kmkkhlgf4wrraon4q2quh6sfeknfvd38tjjwbp5vk+twhxjjdmfayhgjvdb9+rl7r+p9+qiez6pkwkxqwsqzbdelqeq+bit3a/yp05+qnn3gb/z2efg4up1flhnyab9x2bpbl8sfratph/tqq2gecqjlks+z05l5cf5jdt6+1aurz9bunninxjkmnt9aei43s1q/pyddk8ycgqbiof8qjnqkrxgffelajphlnbdgzldcxvlt5cslfaekatovibeyv9g0cvynr9auyl/3xl55xg4emambdt12lsqkroorbegfzmfybjf3xvatuxa9kcl2uvxk5hiaieq04u89a1oqp8wxli2hbnlthzyyefvykpvcrhbdwbjldsfevc6ssvkkxw9d0oswqui/2sxzxjnnjc19w6gxymk4mlhqnwykuwplztpjl4wgus3buasdg+m1zpk4z66qyjgbpbsps3d6rtugstqr1eflh9gdzwwctxuzaus0hu59vn/9plwuucjxrujx/1tvx83eimhphc2ra8illm6g2tpqkqtytjjq1bjzmigysvvh0we9xdqy0znjt1miovnmaybbexhqwr3wfawr33a7wwvu57pu3x1bnl2vqqvn3khg6w+zf/nhmwp6jjpvx9ypdwd7u4f9/ffd3xzq/n/np2l+v/c3avbxb2t+t/w7t5drr2tu18m6v77y7e96jnvan//7kp578p4b+5jomz1+tgx+e/nf/arm68o8=</latexit> Greedy Inference Lower the lights <s> J D N </s> V D N Lower the lights for final word in input, include transition to end-of-sentence label

Greedy Inference Lower the lights <s> J D N </s> x positions, O( L ) time for each position (iterate through labels) time for greedy: O( x L ) time for Viterbi: O( x L 2 ) faster than Viterbi, but doesn t work as well can we improve it? 23

we can convert this greedy algorithm to beam search beam search maintains multiple hypotheses at each position two types of steps: extend hypotheses prune set of hypotheses size of pruned set = size of beam 24

Beam Search (beam size b = 2) Lower the lights <s> starting hypothesis score of hypothesis low score high score

<latexit sha1_base64="scqy9asdvie3tp/hwf7nml9lhus=">aabhl3iczvxzdxw3dqyn24tzxthju14wewmri5ldpjktrljyhtbmxdtnsjs8smgeddw6g2rtkqdy3spvfkxek5f8mpy85oq1/yl3atvvhaw5wdphix2lbec7cy4uli4wepbfxmjd3f/+6ee/9/t/8id/9om/xv2tp/2zp/+ln3z8l29ewuqhex2muzp/m6ccrtxhrywxefsmyxmnbxh7endxbnu/vms54glyloczo43pooejhlijvf2p7/zvok2irpcpd8kayfadhe3dni5pmiwdmwadqgxikidpbj8h6axcg+jsbxttsfzvlqkxqahqvcdztepzfir+0yexd+zngrf+2uzvkzwmsnk/nac8udjdgpuhvuwclfy7mvxlyjbgqzehlhfwllsqnjtlx//6ij2y/n49qmd8soabwzanl7qa/fwdug3akdl5xiowzrky08xjpkv65aiepr2sqs3v9dx1hvmuxcsi2fvyvst8vr1/woszbjgdjxglvccfqj9opgbtqa/ueegxstswszhcabj/52b9enefejx0qeap5vc2afjmi97ubalczscturkkavlea5yhwep6mkgynepxbowrd9fvq+ebw1mzw6hsk5baudjocnoqxhgtpclh4bmuvg9x1z9z9oa4jsxyy6ahpn7uvub+shg8rrr05hxwvrpotkmvjvf8hlkdnr3duc2fmsuddochxxotxau410hvvay56voe6q6sf5r85mdjk3/vg+xlcbufdmoj/llnwyuqdz5ylqi9tnxfbz6cnssimnbvpg8y234bg/bzxh78+4gip3i8vtf3geri8io8bkr/u9wtnuz5oivaknoajcn2bhn9axptvydzv50dqycexnuidnc9gxoyf9siixnnpxiisako0lggzy1aaxoqu55xaijkiflsii2d93tbrpog2a1tkbawi49rzfbhj00no9p9yqqhs/0hufehhfotvq/sy1e/73muvfl7vaowrxy/h5kewik5ljrhqarxtlijdrc2ybawmu12bw/vkh558itepofxebsjggem5iwjyei2yc3ymvcpg0vjrjhowm4io+eevjgwe86/cner5/oy7yw0dgcw/nf1veqgf6gvun1a/lcefpjb9ory4ctnqevz3xod7x3+7nvwdxqkdzuh0e6or1tblaew2mdio/t6qforiri/rmn+bjpr5ws1fqnrjs1rlqqaync2amclsrn4b3ahv93pdl85wvmqvyaz0ylzoql89w2sa6isusxqnyz4hv0ca3fdn1kpgojhct6vs8zvf11wvwp9j18khm5iauj5aifm9tix5k1+/pevkiqlbzwjsl91eqntdylfe0cte1oiopocnevvms3jhtnorpehmfgm2tzw6/son5fqszlpikhc3fniascdmhyx8achq3vqc4rohcvkbdwjwueknmkygutsk8ltkxr1rbeesb0wojfobqeoimp4b3fy5u98tzyd3aa8uvxrsyj/tuyh/khaostpdq9c/xwjfp/4bvvw2ae6njj0hx5gltdjdwxrjq6pakrlwfqy6gyiikgou0hmudhqpgwrzdxujecjhijxz8eqk8zn3e9okeicrypzotjire7atxmkjc8ng8o5v+6ibqxjxv8iisw5smqlpjp9ti6yqebrm2uf4c/t0mo/55vxl6illv7yq3v9undv8nd3d3dtuf4n706o+7k/wfo/7hdz4khmlyxcyrsuot3m4mt0tyl3gyswo1katlahhbx+wephmam3faqgo8iqxdzzcm0hz+syrrtv2kksycjyqgsy/cbsnkx9tjiud/fwrdnxus4p8wncoiilocp4fkyhowqjshdxrmhhql4yscd0mwi1vdteyjknmsgl0pcysxppcbgrxjngyths7m2riijidtnlkbppeq98o0mathmfatemnwmhgfllpjlm7okmikrnrhfe9qodeesxbzd+xnw6thgn8y3cftuhrcjvsswx4snmw0xdr8wosusuqrmuaowxuvwt6o7egqk9ise8vgxmd2b3hajao8lwhye3icb7pceymbgh9f4xtgzxlvwv0fweknvmzbvbdtic/b9wbok/gasuhqiqfrtuaoye3ycs3kjm3njozboywrqjdqoec2sbkmjuootvckyf3occ2ejzddwvsjzcja/gbeiecrk5muvlj2uhxe6vnillyckgloqliepvg24gjslcgajxlsqshfrbc3toiaajcngljtpazu0lgskndzxhubfmgud2holls7v7bbgwzroqiodghah0ozlkehqaok0getwbvqnntfzgp8hv5uj71tftqihqecraxdxo2ing45ixd7zhv7i6mxp/bpeulflbkc7r86dzshoqpn91+udy5f1p4dwsletrd13edxo4ymuu+fxy0qlmtx10hkstyuymehburlf4760rgjakx7l8lyjy0zdjhebkloy1pguba8eltap9dsahslcxt9ujnz2dudfw1ynirv9hxwrzzrnlftnkso5rlwkyvxhrnml52kxemhba10mngzyypfqq1qmzncyg5przagq8uvoejuktb45vcfkyc8donva8r7y8lomxbjtjxztp8mfusysr3ipmo1f4khovcfwkba0ldyvyaveeqy0efe7smcucwq8jyjp8/k+z4ewk4d2byhq5basqa4fofhojprft95ymmiz6tm26hk0j11yhhhpof49ybike9jcri//+sazdtdnngxm7gsrcxwpymad4zor5m0j0ngk2cqb7/rc2fqkifmhufv4sltzxdjtt4t2of4ocjiauoecgnkmpi5d4g0wxjsmvowsdkgeaz9bczfjd5a0dcnc/2sp+5vz4kzije34zdcbx5lcj+2zdhrhw4gen/xjoix3laa4nfsds0jyex1tmy28tnxrayixmswcxxouuhavs4ztyhjz/bagqsmve315kdtb3w7rubzgfjva4hjsl5w9ne++ipiydrd3tos13725ehb0ck1b8nohpne1arcbksx3xflxlqfrwzmhwqtjjvkxgistopufsbmscshcxyanrc0nlqqknuqswq5rmhadfq4n+qmijkzvp3twac34xyb31zrfhds4ni7ymnpmg8hb8c0e/mnliofadqvosiszttqytpkdactglh04qno5wreuodplt9ftgcpyioeczkko+zsny49qixccsfjxl2miubecdhiwgyodvmnjpjthwvkt01ekmdjhkdg0asyl7jjyov2b6fhygcj263skj9natozcmlcc8hal9bsayoux5spxwrqpqyrhxbcwtakvaqcld3cdycw7eujspaxffrrkoo3gnnuvt1zaftzedn87mugxlnoxhvgz1suzf749nmaf6msamgpa7gzettza29hcheway7nt1qu9ojuto0gojeftbwxzfsqygbarj5ybdwrtl62ug7curut78xpu7wtbrgjnksvos5wydb2vtaduyuuh12zvttjphinoiyt3eytivb5/1iwsl+prxdohe0y5lynupjoygy8s9b9dvdsdaveoskzq6i9xtrg/es2qloyel1tebbhrr5jy0pmzvoyltygeicigbn0jp07myy9uo7hxsh8fcnfuy+ccqdzkifx9nms5wzwtod960xyl0jnvyev9ch7ek4s48pdtnwzx+5hzd020gaxsxnputix0sredjiwcc7ki4urbqtmnzh7as6vm4bitgwczm88awvrhdpv/rowbrot8nvkwffw/3d1lawe42stk5wm8lzxfo64gxfkdtivcomtlbdczes4mr+7xmkaso1kn7tozmjtj/t8izo508xt8eol89alxj4vfz0/xj4b/fdle3kpuy49k6jaa8qunwovaiz5n5u3jse3mn3vnrvklz0jbtj6c1u1bsqn1jkotgi7g1+4o96azz3gc7tpenbqoa5ifel3q+uc4ginuifajcpzidtzn2no1m47id8wfolgcdcaskm6yfnusmdqqnysrl9ocbtcooej0c+jiyaaghssk/uyqtxzvqed6wtpbrhjrwsgmtvf5zdglvcne6dwaqmyn5v39xt3mutyzsmfi+rsmxnjyeismvsgiulmcolgqfswv1kfrmhl9mg+pa81i7cpuvdhrvoa+2oq2pxgyzbpynjvibkjeddbb/hqei/yge/e1zt2nilfqgbbmigwiiygsgs5i2pmglvrr+fye+fa8wvlwsxdtghro6shr9to4hjpoqraspiki1ksrjks9bhj3tri16lag0narvknstprjiwtm+crmvz3gvgxujpsr1cdssfupwfrwgilwfe6hfpp6gahtlniqyylceus7rixeazxne0qhv02xazkvymu1txfunigukp2sd1k2umac1bdi4setu0zafc3fn86aqamaganpsy3qblwq723ij8dhg6zfi2rmvutyfohlfdro4bwarqrruj2knfmmhetlkyx1uiw8lbuu/6qdwj3d79amme6wmcmmxvuxnuktzo4afe5nmo2stfuwldjq17viwd9ggqhgq0kbijybxe8rw1hyspid43ehqamedak2pouvaq5+mgd1kmpmmmfkolvineufsoe6xhhw0soomwa0tndqtmh3iry/avhitfvkl00uce9/zykkenkaee8gysqdrn1c9culpi5r2jvvuyxcp6u1u0pinqqce3fyuk05hwtzinqid9x2nhfijge2ifprvftsgesvopohmmvusyc322xps2oxijlffbm3kv7rudbcxev4ug5r/p1cnc04f1gvhm0j4fx6vcemm2nkskcv+li8njhxpgajda518pake2onrlmfawj+fhw7maz90a6xzntram9hew5fi06eiyarpcwixj5ubrmafezmxmkqwyji7kbcs+nuneipkok1jy7569pu8h3qrt8d9m87sscq9dcqr89wirxlnkqikkrgafutxqhc6jp49jhgggfewjc6kzgackcu1gkayuab71fci/sll1ft+azegkssequoung9qnnthmkdk1/3lxbe2a7c/i/1og2vp0zp+6twiapv2sdwi+2hhd7xgaxftmhkknbrizmou/qnyrrf3uh13dpfd9ngg9hz0nstebcihmui8wjrklpmkhsdl3ajk2j3xlp1wr3mpdpypfrlje60ny9dhhvap3dp7bx9sdm1qh0c57ui5gls44xyshfftg5eh4wqieec1yl33jd3enqpffemwt+wspjht0mnm4ibjd9sdbg1uwosh4zueujvm+mbn4bptk+ynb5jtpkfb/if4p3tj5489tmmco91giizb+fzfjytg1vctjyoovutnu5h7x6srn0wimqn+hpfgzuc7sropjr5sockhrrczzfbtt41fifhngvqf95wseyzmqjydcpym8jj7m0l5hiejvc6j7sej/h3rezgnk1n2lza65j3rk7h0cd+zpvpk501m05c7vund4w2eu64ekz0w4d4wsv/xsl63txvndy1y8yivu34juojiogzmihzqh230go0wly5byimhpgguckpxms6qesxxcg/qceqnevd34rxhwbp+vk2swdwtjc0feyggjtdb9+nq91/u8/1znm9uyy5qolu6zeberqaq/rip3k/yp0++qnn3gb/z2efk4vhlfrhnlqb9x2cqyluzmftifb4f1kmln7gqirstl6dgyjpnpc3bevtemqzur3npymuq4cevnkrtns2l36ir0mpjweedtl18lcfdqzdyxrzbgpdsdhozqhp4ms7ixval7ali8hducnyqaw8xjpg0av4nr7bbux/zcvnpvrgwaa/yokpdy1kg1flsxcggmbwbakkomp76wljr1swpvaxsnkehii2ghfqxrwomz/hgcra0hbsqyin7iqwtixmirfztixutjthbr5nsnlquplstlnllqski3ffhzdpov03mixfxqavktjmru+xcurshd8ow745emezksibmrfypptc6pogasyhw9gam7b1n3aruxipbzn6igywuwc5pcozngxhkc1gow82kr/01ewqhee17isf1blcf1xiph6r3nqwli8zvkhlrtqpk48ly86tqy8tpmuvd2fd8bpmjodgjg8dmphb6psqdajzy86mje6wgc1a24h+lstxpwn28/k+jdrqrl+erumg2h9e39ppmf/ioz78wzvp7e70/uxv737q0/rx5/58cpfr/znyszkb+xvvn618vnk0crrlfdo+zv/duff7/zh8/98/l/p/+f5/2rojz6qae6sgh+e/9//a4ese08=</latexit> Extend Hypotheses Lower the lights <s> N V only one hypothesis here to extend consider all possible ways of extending it D J scores of extended hypotheses: low score high score score of previous hypothesis

<latexit sha1_base64="unweat8sv7xv4jiwvqwthg7kux4=">aabhmhiczvxzdxw3dqyn24tzxte5eckljiitckry2frmkkhwztdanjimgymsfxbzg65gd4ostquuu1ulyp/ja/ksx5m85eq1vyl3atvvhaw5wdphix2lbec7cy4uli4wepbfxmjd3f/+6ee/9/t/8id/9om/xv2tp/2zp/+ln3z8l29ewuqhex2muzp/m6ccrtxhrywxefsmyxmnbxh7endxbnu/vms54glyloczo43pooejhlijvf2p7/zvok2irpcpd8kayfadhe3dni5pmiwdmwadqgxikidpbj8h6axcg+jsbxttsfzvlqkxqahqvcdztepzfir+0yexd+zngrf+2uzvkzwmsnk/nac8udjdgpuhvuwclfy7mvxlyjbgqzehlhfwllsqnjtlx//6ij2y/n49qmd8soabwzanl7qa/fwduo3ndeclgvk4fggam+smi5n5vvxlrqlse1lvm6vrq+s98imjsrcxt+r9l/usev+wvjtyigcb8rboqd6bttf8dladbt0j0dfi9yxii7kbjp7ezfrxokmkeoiajc7n720c5m1gvn3buowcjydym0jspighla+c1fvgqmu5h67zylcfoqtwwze4pma2ukumibwipneu9fs8iizjry7bnvx9h66uf7lozxflsrcxtun5vn2rgpxg43ilnojnk+b7nzxsk15lovg4zds7o4zxwz41lwcddg+69ca6vngvg96rthpu9t3shst/nnt5nw/t4hy5ctdgvphkf9s5qcc1ueflaqexqd+l7apavtlhfgskt53jc4/tyg7bofj3a0v/8hitru8dyzhgfxnysp+mqic9zfn0soak5zqzr+wmjvoc9kz6d7ouojugtgiitxed4ii3jjavtkvgmppl8rbjrr2lsqyag4ec5lsnpk/uujrbpkqrgzvv94jcnugwg6zsbc1hhtfiomjomhp2tpveva9n+w+gog44piz7h6thon7e5yiq5pd7vs2olh4+jd21unjyni9rcejocrmdbm3aicwym+za3qpr/plgcyl5wumidkcwzkzjcxpbkgzbwra17x82lsajmj2wnbfgwwmsymannh/l7lbp5zhfs2jtagd94+p6yq3+uctwu4h4yt358lfpyexcic+dyue65zrfo/zd9+afkbqedkkhnvbfqyjzdmcxgcvh6fvt9vcucx+jhv3cztbpf2osutcbw6jacdsu72wagetlc/fp4o/q6vq8l5fmk181s7hwejaqj1vfnugytxqvlywlb7doaqujjw/7sutvih1j4frv6xnn4uuqy6xosevhuc3iaslolbh93qys/ciu39p15bgbyoe0dhburya9r7fa7mktbmp1vfjck4mt8lm5mdtsfj8h8j4xmieb3x6vevp7fjjy5bu6mos9qvgspkowpzqukg6sqhgnaowtgia0aiglhsxwqlxthxktpwnfqbygljai1ub4zkehxbl+ao8uxkjuibpdurxxiiu8djee96mup5q5fcrsiahpx661btl/daur2ganrsceka7i09ocbqy8zkhuirwmqgpthq2vrugwymkiiwcmvy2ebbukkbwrmmvolpjybhjn+rztewlciov+dfpifl3zcejhrixgo3lhn/3rddwneargevm3nhlqdzn+tphsft3bmmxxvtj8u01g/foujpqvs6resw6uthvt/k/u7u7sqj/e/ejvh3dx6j9h/y8ffbqm07ciwskvxie93uyelrbe8dbi1wpqcjbr8iko2ql8jjrm4rruj3gvwyeairmlofyxskjquxqljqvosebih4xdhpw+tpncjv7+fiy/kytepy1overepgspa8mq52cfaa4fnmw56erccqxvkiwxq4ayjezu8iq1ullifi9mitc1asc5zsy8njm1crfjdts8szzmlyhvlwlivo9i4fsk0qxlmd4sp5jznnfvxehytcmphqfcrwmxlobv2m+2smmbv2w4q6ag6irm6cwd/srs2giiafiaysljisi0zr2d616yffdzgyansvknisgij+3e4oabvxkq0bam8arpdix2rjyep4rgkyzpjn6zuj6whe6pmiorykddnoprwdam4wgvwtvddqkbjfcrm7atwshjms8zzbdygcnql6fywg2tzbllhhyd4bwt+9etmj1pyiadt0biuid5wbxczinwjil8sexx+yjub8ysuqrvepxqzt184m3bxaqqgweb86rug4tziw6deaefyboxckdjgaihy1lv7rk46jyogikfwpwpd3d+ybcyzkjyefaz0iaohzjdjkjrfrsgz1qzatu8+l7ixvgn/aloeqf6deqnqzmicoa9ghfthhjc7vbi9vyxry9o7epzhipbcjncf3xqkenzbprvv1zrhl+sptu0hl2bioq7z69gdrminj67gluoia+vkcisefyvzw4n1jcvhpwjmubqsvdfhovlgmccyognhncxp8bxlxj1tobor9ka9hbmkpqhmueztzv/gursvn7toayklkm8r9ptibzlm6xwsui6mswvoxwl0w/bwuk08tlcbotvw9uym7nfhnjaiq2gil9ahdxsbpdlrwpsdnnset/xlpexk9fi7jjta7jtpxks1jfke5fjh2svekncot6bqbwkr7cqdcvz1dghg4jauwrxwvtgnrn+npx3fqiwxaeybuoglifltxh5zsnbndcsvvoqh0wev822uzwgo+uq8y54wvhytzbrnsbkch//yqhjaizpsgnmccvywaxorzqedj1ej2keh8bwziaoftfnzqalq5gkg6rek9ua78acvcewz/fdkzedhjwr0shljhpuegmc5aqyp2crzawhgprztioavbwgb04w+iv/3kvoemdalm/dibkmrkfmybsamohqzwvq8zxwo8ojtao9kcmkeqmeps2wzjc65btuw8ycznkpx10ygqxgzqecee4yeev014m+rjqdsp+hzajeyd5asgapnlvedoo330r8sttbu9tswu/ezlw4ojhwvfkp09jomofyqnli6645aiaquk2mwlyvpinsm9ecrtb90rtmytlg8wlabsbmk4asfqtigxfhkjkluyqhcu1e1bmmesotuzqg/hlqk+rdyo7tje8xarh9m0h0iojmkm5k9yfascqf9custlakdfpskzafo1sojeu53l1yihzp8sv79sar7frjwxchr2zkvqhhtqc4uvjse9ukxdglzismw0gbzrpk5mmnspc8hum7wkwzingyyjswuvccfbyu3eto/fdhk2w6ulf84epjphhiuxkifernkdfcm+kb+pcdr8tcm+liszyeh6stkoe7jvtmdyi0aq4gmotnylfw8wsqmturpqqobzpvnc1wyjc529kozotlyyvfdpswevulnrgh/xcdp0qlmh3o7g4iwchjtvqvzseamz2kf0ygqyoc7iqfsrzycnflakqldtvwylhisjnlrfmz+meccmykdtif5zxodcro19rqejfl0pu2attpn8jbpwdfu4jvpcrpl/psxgf1ol7ta62jhibrug5ngq2xhnofvs4nnrsj1zumzwrxukayz6121qzzh1uqygimjapcawh8yd9wusuq3xdheaj+hmonc2wxqh3i+9gvn5uopzhwuvtuduquls8ytpgebtd/vwmbbekjqvtirpq/b1nfjglbts+tk+3moye2ygwwks5tkksgolib0ymgetnjuxc1fcvs0+cfyenf83azfo2qsc33gc1qi7tn/6j2andcfgt5wz4uh+7+oocwjhyszxobngba/43hehl8jrzf7keidbylnl1neyp3ajkzvg28k+d53mxnpo9vksj3oni6fjx0vnore8fcr6on+8fdb64csn5fjzhxtwuluhicluff7qgpm/k28aq25gut87n8gro0fcspuxtmonibuojr1p0xy3vnbhvqgfe8dndp/wrkfzxjh60u9wywxeerqlqrqyvbiqaey/09cpnxcsvy0oxi0rbjrgu3wrs6irgnvv+vhzf53gnorwwhoi30ctaqea91hw9jfvueestjvxcz4lmjkofgxkqr/ob8aqr072tq0erje+k+/uke5jlrcchwtgynlmmsat0vll9kfckszkesfs92f+sz5cw8rtw3xjh2pgbh+k7snc9qh21vsw642xyz6u8apdchmirrco8nx0xraxnoirr+1obiufalzgec1ewayr1njg1mwwaqnew+umzohnc8qysozp0dzgvw+otthemdj1vlwr5bvgslhczstpmzk8qzguu7u2krsn5e+vtncygvs2wsm17e804mn1z6spodqttqhlz9abxraao3qk9dpuaq6yzswgweot1ixdcs8jtom4m1qku2y6tmmuuiitq4uhpa10leyqeps00zxnoizgcalt22d44d8w7prnqvxqgeeatnmw6tyq1xa38rlhcyzwb8s1cytzbt5w8ooanhaodcjvad1oxbr90klzzmjd+qgs30omyn/sd6xo7vbqr032shkvxmkqis5xv+d2aav2mpl31los2bcyngvbswdvsa2a8cckgzaaaep2logtlvh8tvc4kdqewjoemlj1yrwgpk0xesg0jxkwsxwqsu4jgqrwnc4j62ivfe2wglpqqfsw+8rfx7sp5cys8kumizgmvrpbrak5qqn2kgwsdqjurnrkxj8xke0c66ms71lsm9ykmrttdzy6+slxnmk0umvtuafvoxo78bmxmkqp9n8raedzvpp9bp0nx16itdi+22j9mh25bjcq4jm4s/dcz4ms7l7dg3kp5uvl7mjc+41452ged+pv7z002xptugsu0sxgsy+nmqfkrhovlbugmxw9zzn7wefwo6zzgwfugxsoc6ajbnok2xmognuggafdis0xmfjzazkaomzi8kht2uzhzamvnhuhokv4vbwsbxbox592g+9tn/gepnnciqwhrrmefnuwck9ysluquymct6lr9q4xuhpcmeet4meljvjcachav3sujsfghfer/kxtgtu4qezdp1eirgishyhozqe85tjxtsmv64a7f3zhbn5h+sa219ozno3vuxdb+vydq1xmwj7/amdwl7ckilk7zdwcxzntrvsnyu6g6u4z75fs4eh8kek9izgirejlxgikddk9jgunkcurrjwke/jdkvfe5h4b4qmsb3shuxvtmkruoodpya/sj82suekwpn1hihexhgpekissonp1pcxqdz0xrba+8ya7x6fir7xnfvy0hpmlexhoneumyppjrcgt2r2upgai1kd930wjvankc3yqofmadcj6fpevbu9tffdmt80wr3qpxutipgqzsbcdgqrkplf0fqmzqnmoa/vjm+ixelu/w9p5zkgwdinw5nfmhwulndyxbiomqpgppqo4sf9qv/kej2xjieesovornxmez2kumcukarjufat1fsk9bzmbs2tuxobxxme8c3c+jgb2dd5mneis23lmdt07vwgy13xbhtknhqbgcv776rbx6a55obgvx2rctm7fdxwzfq2c0q6beey+krymbetlerex9caygehl51jutyw74ed9xwlqo1/u/ckmkwj/1smzwqaccyshr2qb0abppvxsxuv6n36qj5nqmtdlfrz2tb0k1kedhtyvo5x/vej21u8/8tb+ezz5xf8mr9yjpdxfqu0vteuijguydrfd+8kwz/ceusovppxpzezm57i7b19r0yhn1o9tlblyhtj05slac6sxe/vdohhmetwgamqvk4x6qgfqctezmr7sgi9haq5+bixcs6rvviatxw7qge7fqc3mjdiggv7e9fyldi/7l188k9cczqd/txrluwtvgr4qs7gfezadyrvq0h/fs0tneqwa67w8kskljesw0yps9axfzf4iz1bwgrzltre+zsg0sc9hcl/kcgklskclafm6r8pslzzic5pctfhvwor9llp4yum4hs8q9dr5scdjnnyjsykuiphz3pdlxz2clxdc1irb9nvmvj0yvmu+hsdu3ikpu7vbmzb4om7vq2sf2qxmlx3m8gimgwob2xmwvf+noyyeigiucvn/rmrj+unempwo5tsazxmapuitadvjxxlahnvqdxiy5il4ez7vgj80dqy0ynjt1miovnmaybkex3qwl3wfawrx3a7wavu56hu3n5x1b9zuzf3zkhggw/on/tjmz/4vgffjzd5ob3en9y9/e/dxn9a/pvpjlb9e+zuvjzxeyt+t/grl85wjldcr4z3qzr/d+fc7//h8p5//1/p/ef6/gvqjj2qaoyvgn+f/9/9riht+</latexit> Extend Hypotheses Lower the lights <s> low score N V D J scores of extended hypotheses: high score only one hypothesis here to extend consider all possible ways of extending it because score of starting hypothesis is fixed to 1

Prune Hypotheses (b = 2) Lower the lights <s> N V D J keep top b hypotheses low score high score

<latexit sha1_base64="wkokru6zbz3tjasu9w/vkgbdg=">aabdkxiczvtbdxw3cqy3m2tdza7l7gneeldklk1ilkfo3iqrxzslsikpmpeo39jkllohmwoybwlqnbm1ov8zl/ktqqj6phux5su+ismdww3gq1whucgucpiosjiqu7v/9cfp/uqnf/03f/uzv1v/+d//4pcf3vnoh74seclj+ibok5x/exfbe5brn5ljhh5tcerskkffrxf72p71jewc5dmxxbt0ncwtji1ztcrudt/6clzjsqqy/plr8olly4dosvokdd3m6czo05rkoyquerhvvzgsoc0l+dfk59ugfocb2xvrrl3xjlzkom5qoarzkwx1qfgxb0y9sn9p3gy4jbja1mnb8cqicz8ar2g1cfmmhihjuh3udrbu4d9iwivrnozeamglqfesur6ncf/llwf5jpkwzwykbb4r6ll6qe/eidupj7lf+hp5i/nnjbcde08e913rhlkx8sssimuym+rzrpqzq+djixdc31z+8nqgoufs3m/3tw1jf3ahukwb08wrh8bohwhdnhpj8f0jmzkk0sela9x4g+qt9vd+r67bgkf/rtkjaiv9qkypjswxrbqbguj2aysak1ugctsszeutofte1pdrcvwykg6bjv0mbyfxtvthmsql2ophhjfismzbmhj2ppsnu7xhnfgxraxdv5khp0iozf1iyjbvxr4m6ozdspz3utaie9alcz4njlgiwjhijjlcwofhxbz2t2thq2bx5cf+klkmpwxqzmbamjyxkoip2drz2dlada9xmsylm5tstgnk4mlqo55w0vw7wwofxxwvpo0bgpap6+s5r/chwodbtcspa8mh/5uwxc2n+dysfaz7hqjpw///fvwjucldjitciidinrrddliezlsomoux6t/ooyhfziooq2ssffisgy4haaqjcmdeghvzdkbvpxseaf0prmyih7q4uvv/uvljoav9n6km9wrw50fzmvtspywohu0b1vh7jrvsifs6bag5go5b0lia/rljg92y4trdujbexxyreydu4r1o/t+oe6pngcglnzwjsb95f1+7rbar6nk3ftikmiezjnbzhpqnvz+yvb54h8ebjn0/vdcvusioqojfrgfdqbi4ciofmcjyh/zahq3lia8hobslsadwnfuekmqc2eufoli4zlr7841pu2nkkvrvjuosgbm/0a3l2audos96z1v69vbbxicqtdzscdiuwppq4fivtibnqxq62bjp+envstgbnjyi+dlsvtrh2ur7yksdqufzsqcjptdzvggndmsqybb0xvg3wpmqcpzcsgmxzeki7lgnz8ynoxbwemvtypzkujro93nhicechyengrtx90xfvkpxx4oni0thzqdznxtp7szt3fmnrxptv8ux2mh+ddtmgrzlvzilspj+a8k9oi8vxhnbu7o7vqt+b+djqpu2vnn6phr598ei7yuexpjpxej4pdqp5wsf+wokfwui4fluh8qsb0bd4zkljxwqkuqr1sqs0ogocc/stkogq7psqsclyqgmqxcrsnk31tj6uc/+kupr8ojfg/zwhcjohma8w3bcpgqqvjaj5izbnigsrtatylkrfrbpucjesyldeguuh5m84hnjvqj5wuuxbpzdq0tcsdy55zg+exepfkpdorxynqltnp1lkyh8qjpbzlnbuxflbtaiy5ghh1wcrn2tv6261grqg/zbwtzedqatallxtok3bgizgg4rgvm0oz1dfudwqme0l5vnutikepwsfkamwm9mhxwo0qnkturak8wzsr0nzir2bhyssh+zmmd62hrxbtgrelmbucdmw4mb5mbtajibsuhdjkbjjdjtdhj6su05wvkofbhoyixmuijjitkqkg2yihebymci/zj8w/zrdcwvotjcha/abeircjrbicvmjxphocnkkoml2ckbkuqkqzpvg2zgjav2fejyyr1orivihhj0raaygmfmxpwovq6mhrv7s0rbsnqsomjwdnvls7v7dbkuzrhbjubjqko5hm+1hiqoycjfllvq+bkbwlyolfmj76zhcquzdqgqooksmoahxo5qqnwd1bsl39xdhzuzsxlxfxsyqhe69phweipyd53quntvpl49mhxezdffhfvbganakievrsalspol65hipn0kldpts0uc+fo+ine/sgtr6/iktxjc0y+babck6p50bxi3z9torbb9ga+hbwknqhuueztzv/gxi6ru4ohfjlurdg6/yyiifydkuvklipjphlp2kz/bc1lc8ylyfssei1vs0xk1rkikwv0ico6iveyc1fbr/8omdpeuvdzg90zwf93ug5cbtt627b/m6wwacq7svmp9x7stmefootcnq9y4vdzvsbicamramxlwjiiqtebdz+nlupfajqxaeybungninttvh5zknbntckvvn0j0vo69wxuzvgojsq8y5zxjc7l4ixz9pgcg9v/yaosifhsknmmcxywaxbjysnrs6os5ynmzcvc/cd3w2zm2nzcjzcvfeyrg3o3lse7wm45/ihsmgbq5wiywrflwvzouko/v0lj6crbaiugma5whqnemvzf5vzgfbsyaa+y5wjubwnhewb0kiyb6mtxo44jipgq29n8vhdfntb4/kcmscqmepo2wxjc6zbtug8yiiz5c666fbv9qlapklneidavqve7rv/0i4dvp1wo/la2aqbwgbzbzj63ghtefhbxt3bro9pp3t5ehc0no1bkrpnjbonghda0kv33jixa0ejnxshrqspptwlwa7tphuziuxw0sgcbyddlymnlqtknussqcwr0xydfc5lnclickrrs4cw6o2krcc31zqkhz041i54pmv5cgjwddmxfskiwhaa+p4ezdbxb1rsppwcobudi44/1bfcgxjp+mmy+8sw4bfszliq47ijllxj6inykkxwlo71zr4d5dwdi6zf4fg3dxyc2x5yqns7iksylnkqidhwoewlnjhott3ygdduqcjxq7l4l6jaccae0vgcitcldxucekux+woaqk3hpggjujgbhisxhigwh3vuaoazaaibprpca19s/gy9mzqqoxunaj5fnz/7mifwbqjxhdhrlguznz6dg/ailryt+hedn12pyj2wdgaxuqgwblalyrhhqupudqjtk8humufkppjsbmzsg9vqvw7lzqvlibyxufvo+jtzo24qb2pd9j7japdqbe9rpri16xrirfzqo8jhthfdt4xhqj7okv7vjqhnm4z1p68jhyxydgwulblrg+9sdj8fphttqwcuss2qac8xjvh/dxtulqbz1xqewfi7x8sykiwzv0wksyhekqlgfi1jx84mss+u+bfxed/v7xhu60gemzgvkdjnpmk4bbxtyd86c9yluuvvcsv9ykfee31umuuw9dflhslmowmnftocs7oh7stn7evehd3hrlpymuk2avaxsxfg4rofij36fudixguwyd3p+61/atzadwf+wzs7hp7/rvayghcmbhqfkqhetooxjjl4qv4j8yj7jgyjzs5zx8j82b4jw4fti3vhgpmjty3sry+rucvfm/dj3nxobfcvrd/gj/txox/evyb71xxs2uhvgsalefb4tlkm/6y4aqkxgwl+71wnr/scmepxx9iirudmqpumpexbw/jcnfuv+nwdprfhhlmgtroi94xfrzrlimm0yyvomapkiflcn9pqoz13eb8tcfinmr404fb1wwmy4odvdfveax8zwgniwakwbfobzidaaeazy4o+zir2nddh52aaeqea5omlaznrr/mbkol1ycntk4brhm+quw8v9qnnkgfxkhbstolmmdm6r80xsaisqexhlpuyfjcbwzwk3desesbqehlhipuyfmomck4mgl6vvaljpilvns436ct00qg+vqmxdiizcfvqfpvgkrbafhsimqilipa1jbelm5s6em9f5sbggfkfpvnfw9roq6orj0fraooo6bpejzlkfuqysfyljolrkrypkq4ttvgstjxkd5w01rgrwzhfljq2d5kwiboz0imozqit6tkznwcxbeakn0h9lheaedwk6ahleua7xxfcywhtoc4hlcapm/qj2rukuxvlmys0ga6qna4eie1wzunukaqhsa37ahp+e+huer5udq3obecabzlvo1dtcfdwijyg0dqnuhztfa7oiyeuaecrkzbivkv1o5fq9cslzbiri5tujb6vikp/0w+stu4omkdn9k6zlmzmqopouqtzo4afe5vknb0wc/yfbinadizyj2wdidwiasckrsc8pav4awsaxwsybgyadsjkas2iynjtoe0t9b4y50ebxcydyqxsrjivjtflceotsnllreawgoowzm7464s2fdzejb+kuohz4ssnzorjcxkwp6yqjeq6seqr43+e56st1lml36wkn7jjuzohhnhy8yxxmsoyumvtuafvs40d+dtrkiu5jn/lkck85wbnoivrxnupei7ttlifzeduh0vl8ezcpzvx86cee9bwonzuflpdhu3zcmxesc1jml791gf1rde5jwaqxqymfwymcvbsnxutogxz3dfs+szhssgpi9ujvhat0hzxzmob6cvkr6fk3iggb3sztfte2e+ljqkihohji89l6x2rdfr4botkfuervdc22cm/pu0636eu8z3medrxbyeuuor+e7b0r1iyrrazwwikv1dhuq00elqwqrpilgunwnwbkebxezypiwad/6vore2pvdru8xhxojetjmljwiosbdue24gl3thnft9ohz7mt+j9rrnrczk9y9fsvw8ypsquvlkfduwdggti8nvdbp65wmjloseuoycdemcaza84fwwez87ajgqkbdjxx1dmdu0rg0btu+j2zflg+/vwv5a5h4bpbouo0rwxhnxda4dqrfy5fap75xhsyiurbkhtfsryccnqr4yykbkyum/dqvxqc0lqartfmtcdiv2v9czdxzfw4mkebvursodpj40vbsmeogqpfy086vtmquadum7xqyaoa1ss9f0yxgzf2/lgzw8byy71voubkj0kmdo4xrqq5isxzj6olapjdmv3uz8gvayaz3g6nhk3zg4etvys+bagpmb6ne1zqg98aqkcdpwx1e+e8lfsmgajpghuwe8clhy5lxhibmq61h2k9x7cvw8zafnrbsqw11zhvhpo4e9nxexgv0nm0+c7vunt4w2fu6yekp03ydkwyv/xsla3txvndy0y8yivq3/dvojpigzmzhqxnsvpec5sxey7xmqhpggyknjqss6qesxxcofvamev1h5/dxwgfwzzn4ni+amc4wjdvyqrrqug8/v691/u8/1znm9uyycowfu9ogbnfixokmyqf2vwrdvvrpj97gf48nn5vl6duyibfmw7w9hmw5/bm3wopwxjbi9gmrqjnk8iy7cy8lczzdt6+1yygu6ncbpvouhyc+pfl7jjror35ib4mhjwcetfw6xiipeqaucj0v48fgbdloodgzlpasqxbzeo58hmqbmcpibeyv9g1dvynr4xecxvzepx9wbysaap7gvze6fmvfv0ujtybc5zctakr643tjqbteyeb6ka8kcgkbery0klw9a1grp8hcykbytmyojk9pdc30juzhlwuurbzoddfzvc6rslklxiwn2uwlvave7ofjxvngji18wagxyssymddrk9wsoqton+gbxz4z4loe56z2dkrfnucqy1hxfblb0tycpbu1w5uqddth6igywuwc5g8oznqxaue1hox8stx8p70sucjwrmnv/ftxx83hiadqhc2past4xurcbwn1svn5wh11ag14npmcrj0voud9vz0btsheo7wwa1u2ibie84so5pwumedtntsbpm0r133z9tuq+wvnxtx/xgvdz9j8iz+agdg/kxe/vnq4m9jdgfzhp9/97m5zm/w/vhtd+s3vsbrp1x7bo1f2tha2/w4g//+85p7/zizi/3f7x/5/3p9j/x0j980pt51zrxz/+l/wgeos1c</latexit> Prune Hypotheses (b = 2) Lower the lights <s> V J = set containing the top b hypotheses ending at position 1, along with their scores note: this is a set; the items do not have to be sorted low score high score

<latexit sha1_base64="wkokru6zbz3tjasu9w/vkgbdg=">aabdkxiczvtbdxw3cqy3m2tdza7l7gneeldklk1ilkfo3iqrxzslsikpmpeo39jkllohmwoybwlqnbm1ov8zl/ktqqj6phux5su+ismdww3gq1whucgucpiosjiqu7v/9cfp/uqnf/03f/uzv1v/+d//4pcf3vnoh74seclj+ibok5x/exfbe5brn5ljhh5tcerskkffrxf72p71jewc5dmxxbt0ncwtji1ztcrudt/6clzjsqqy/plr8olly4dosvokdd3m6czo05rkoyquerhvvzgsoc0l+dfk59ugfocb2xvrrl3xjlzkom5qoarzkwx1qfgxb0y9sn9p3gy4jbja1mnb8cqicz8ar2g1cfmmhihjuh3udrbu4d9iwivrnozeamglqfesur6ncf/llwf5jpkwzwykbb4r6ll6qe/eidupj7lf+hp5i/nnjbcde08e913rhlkx8sssimuym+rzrpqzq+djixdc31z+8nqgoufs3m/3tw1jf3ahukwb08wrh8bohwhdnhpj8f0jmzkk0sela9x4g+qt9vd+r67bgkf/rtkjaiv9qkypjswxrbqbguj2aysak1ugctsszeutofte1pdrcvwykg6bjv0mbyfxtvthmsql2ophhjfismzbmhj2ppsnu7xhnfgxraxdv5khp0iozf1iyjbvxr4m6ozdspz3utaie9alcz4njlgiwjhijjlcwofhxbz2t2thq2bx5cf+klkmpwxqzmbamjyxkoip2drz2dlada9xmsylm5tstgnk4mlqo55w0vw7wwofxxwvpo0bgpap6+s5r/chwodbtcspa8mh/5uwxc2n+dysfaz7hqjpw///fvwjucldjitciidinrrddliezlsomoux6t/ooyhfziooq2ssffisgy4haaqjcmdeghvzdkbvpxseaf0prmyih7q4uvv/uvljoav9n6km9wrw50fzmvtspywohu0b1vh7jrvsifs6bag5go5b0lia/rljg92y4trdujbexxyreydu4r1o/t+oe6pngcglnzwjsb95f1+7rbar6nk3ftikmiezjnbzhpqnvz+yvb54h8ebjn0/vdcvusioqojfrgfdqbi4ciofmcjyh/zahq3lia8hobslsadwnfuekmqc2eufoli4zlr7841pu2nkkvrvjuosgbm/0a3l2audos96z1v69vbbxicqtdzscdiuwppq4fivtibnqxq62bjp+envstgbnjyi+dlsvtrh2ur7yksdqufzsqcjptdzvggndmsqybb0xvg3wpmqcpzcsgmxzeki7lgnz8ynoxbwemvtypzkujro93nhicechyengrtx90xfvkpxx4oni0thzqdznxtp7szt3fmnrxptv8ux2mh+ddtmgrzlvzilspj+a8k9oi8vxhnbu7o7vqt+b+djqpu2vnn6phr598ei7yuexpjpxej4pdqp5wsf+wokfwui4fluh8qsb0bd4zkljxwqkuqr1sqs0ogocc/stkogq7psqsclyqgmqxcrsnk31tj6uc/+kupr8ojfg/zwhcjohma8w3bcpgqqvjaj5izbnigsrtatylkrfrbpucjesyldeguuh5m84hnjvqj5wuuxbpzdq0tcsdy55zg+exepfkpdorxynqltnp1lkyh8qjpbzlnbuxflbtaiy5ghh1wcrn2tv6261grqg/zbwtzedqatallxtok3bgizgg4rgvm0oz1dfudwqme0l5vnutikepwsfkamwm9mhxwo0qnkturak8wzsr0nzir2bhyssh+zmmd62hrxbtgrelmbucdmw4mb5mbtajibsuhdjkbjjdjtdhj6su05wvkofbhoyixmuijjitkqkg2yihebymci/zj8w/zrdcwvotjcha/abeircjrbicvmjxphocnkkoml2ckbkuqkqzpvg2zgjav2fejyyr1orivihhj0raaygmfmxpwovq6mhrv7s0rbsnqsomjwdnvls7v7dbkuzrhbjubjqko5hm+1hiqoycjfllvq+bkbwlyolfmj76zhcquzdqgqooksmoahxo5qqnwd1bsl39xdhzuzsxlxfxsyqhe69phweipyd53quntvpl49mhxezdffhfvbganakievrsalspol65hipn0kldpts0uc+fo+ine/sgtr6/iktxjc0y+babck6p50bxi3z9torbb9ga+hbwknqhuueztzv/gxi6ru4ohfjlurdg6/yyiifydkuvklipjphlp2kz/bc1lc8ylyfssei1vs0xk1rkikwv0ico6iveyc1fbr/8omdpeuvdzg90zwf93ug5cbtt627b/m6wwacq7svmp9x7stmefootcnq9y4vdzvsbicamramxlwjiiqtebdz+nlupfajqxaeybungninttvh5zknbntckvvn0j0vo69wxuzvgojsq8y5zxjc7l4ixz9pgcg9v/yaosifhsknmmcxywaxbjysnrs6os5ynmzcvc/cd3w2zm2nzcjzcvfeyrg3o3lse7wm45/ihsmgbq5wiywrflwvzouko/v0lj6crbaiugma5whqnemvzf5vzgfbsyaa+y5wjubwnhewb0kiyb6mtxo44jipgq29n8vhdfntb4/kcmscqmepo2wxjc6zbtug8yiiz5c666fbv9qlapklneidavqve7rv/0i4dvp1wo/la2aqbwgbzbzj63ghtefhbxt3bro9pp3t5ehc0no1bkrpnjbonghda0kv33jixa0ejnxshrqspptwlwa7tphuziuxw0sgcbyddlymnlqtknussqcwr0xydfc5lnclickrrs4cw6o2krcc31zqkhz041i54pmv5cgjwddmxfskiwhaa+p4ezdbxb1rsppwcobudi44/1bfcgxjp+mmy+8sw4bfszliq47ijllxj6inykkxwlo71zr4d5dwdi6zf4fg3dxyc2x5yqns7iksylnkqidhwoewlnjhott3ygdduqcjxq7l4l6jaccae0vgcitcldxucekux+woaqk3hpggjujgbhisxhigwh3vuaoazaaibprpca19s/gy9mzqqoxunaj5fnz/7mifwbqjxhdhrlguznz6dg/ailryt+hedn12pyj2wdgaxuqgwblalyrhhqupudqjtk8humufkppjsbmzsg9vqvw7lzqvlibyxufvo+jtzo24qb2pd9j7japdqbe9rpri16xrirfzqo8jhthfdt4xhqj7okv7vjqhnm4z1p68jhyxydgwulblrg+9sdj8fphttqwcuss2qac8xjvh/dxtulqbz1xqewfi7x8sykiwzv0wksyhekqlgfi1jx84mss+u+bfxed/v7xhu60gemzgvkdjnpmk4bbxtyd86c9yluuvvcsv9ykfee31umuuw9dflhslmowmnftocs7oh7stn7evehd3hrlpymuk2avaxsxfg4rofij36fudixguwyd3p+61/atzadwf+wzs7hp7/rvayghcmbhqfkqhetooxjjl4qv4j8yj7jgyjzs5zx8j82b4jw4fti3vhgpmjty3sry+rucvfm/dj3nxobfcvrd/gj/txox/evyb71xxs2uhvgsalefb4tlkm/6y4aqkxgwl+71wnr/scmepxx9iirudmqpumpexbw/jcnfuv+nwdprfhhlmgtroi94xfrzrlimm0yyvomapkiflcn9pqoz13eb8tcfinmr404fb1wwmy4odvdfveax8zwgniwakwbfobzidaaeazy4o+zir2nddh52aaeqea5omlaznrr/mbkol1ycntk4brhm+quw8v9qnnkgfxkhbstolmmdm6r80xsaisqexhlpuyfjcbwzwk3desesbqehlhipuyfmomck4mgl6vvaljpilvns436ct00qg+vqmxdiizcfvqfpvgkrbafhsimqilipa1jbelm5s6em9f5sbggfkfpvnfw9roq6orj0fraooo6bpejzlkfuqysfyljolrkrypkq4ttvgstjxkd5w01rgrwzhfljq2d5kwiboz0imozqit6tkznwcxbeakn0h9lheaedwk6ahleua7xxfcywhtoc4hlcapm/qj2rukuxvlmys0ga6qna4eie1wzunukaqhsa37ahp+e+huer5udq3obecabzlvo1dtcfdwijyg0dqnuhztfa7oiyeuaecrkzbivkv1o5fq9cslzbiri5tujb6vikp/0w+stu4omkdn9k6zlmzmqopouqtzo4afe5vknb0wc/yfbinadizyj2wdidwiasckrsc8pav4awsaxwsybgyadsjkas2iynjtoe0t9b4y50ebxcydyqxsrjivjtflceotsnllreawgoowzm7464s2fdzejb+kuohz4ssnzorjcxkwp6yqjeq6seqr43+e56st1lml36wkn7jjuzohhnhy8yxxmsoyumvtuafvs40d+dtrkiu5jn/lkck85wbnoivrxnupei7ttlifzeduh0vl8ezcpzvx86cee9bwonzuflpdhu3zcmxesc1jml791gf1rde5jwaqxqymfwymcvbsnxutogxz3dfs+szhssgpi9ujvhat0hzxzmob6cvkr6fk3iggb3sztfte2e+ljqkihohji89l6x2rdfr4botkfuervdc22cm/pu0636eu8z3medrxbyeuuor+e7b0r1iyrrazwwikv1dhuq00elqwqrpilgunwnwbkebxezypiwad/6vore2pvdru8xhxojetjmljwiosbdue24gl3thnft9ohz7mt+j9rrnrczk9y9fsvw8ypsquvlkfduwdggti8nvdbp65wmjloseuoycdemcaza84fwwez87ajgqkbdjxx1dmdu0rg0btu+j2zflg+/vwv5a5h4bpbouo0rwxhnxda4dqrfy5fap75xhsyiurbkhtfsryccnqr4yykbkyum/dqvxqc0lqartfmtcdiv2v9czdxzfw4mkebvursodpj40vbsmeogqpfy086vtmquadum7xqyaoa1ss9f0yxgzf2/lgzw8byy71voubkj0kmdo4xrqq5isxzj6olapjdmv3uz8gvayaz3g6nhk3zg4etvys+bagpmb6ne1zqg98aqkcdpwx1e+e8lfsmgajpghuwe8clhy5lxhibmq61h2k9x7cvw8zafnrbsqw11zhvhpo4e9nxexgv0nm0+c7vunt4w2fu6yekp03ydkwyv/xsla3txvndy0y8yivq3/dvojpigzmzhqxnsvpec5sxey7xmqhpggyknjqss6qesxxcofvamev1h5/dxwgfwzzn4ni+amc4wjdvyqrrqug8/v691/u8/1znm9uyycowfu9ogbnfixokmyqf2vwrdvvrpj97gf48nn5vl6duyibfmw7w9hmw5/bm3wopwxjbi9gmrqjnk8iy7cy8lczzdt6+1yygu6ncbpvouhyc+pfl7jjror35ib4mhjwcetfw6xiipeqaucj0v48fgbdloodgzlpasqxbzeo58hmqbmcpibeyv9g1dvynr4xecxvzepx9wbysaap7gvze6fmvfv0ujtybc5zctakr643tjqbteyeb6ka8kcgkbery0klw9a1grp8hcykbytmyojk9pdc30juzhlwuurbzoddfzvc6rslklxiwn2uwlvave7ofjxvngji18wagxyssymddrk9wsoqton+gbxz4z4loe56z2dkrfnucqy1hxfblb0tycpbu1w5uqddth6igywuwc5g8oznqxaue1hox8stx8p70sucjwrmnv/ftxx83hiadqhc2past4xurcbwn1svn5wh11ag14npmcrj0voud9vz0btsheo7wwa1u2ibie84so5pwumedtntsbpm0r133z9tuq+wvnxtx/xgvdz9j8iz+agdg/kxe/vnq4m9jdgfzhp9/97m5zm/w/vhtd+s3vsbrp1x7bo1f2tha2/w4g//+85p7/zizi/3f7x/5/3p9j/x0j980pt51zrxz/+l/wgeos1c</latexit> Prune Hypotheses (b = 2) Lower the lights <s> V J = set containing the top b hypotheses ending at position 1, along with their scores note: this is a set; the items do not have to be sorted so, this step only takes O(N) time if there are N hypotheses to sort; cf. unordered partial sorting low score high score

<latexit sha1_base64="7t1squwmqspokyo7k32a0jtjl9y=">aabh0hiczvx5cxy5dec6l8nc3nj/s6ukjkijtiy0h4qdrfqlzjuuyvmks0uu9mcty0wpzgzkx2qgyrm1oqn8mw+u75jvk/eanu7gmtxwca2lwreb/n6bh4ehh4m7zciu5m7o/37yoz/64z/50z/78z+v/svf/tvf/81v3btyit8pc9cdmozb8zuseinra3ksuifzpljmbdih09ph+c7v9fsfzwndms84ydxhss8depqysqwac//z91mkrz/18ekigqrqyjuwztokbjqaxkmg2rmoipnkyz/byms3iniro1rbxhwlvvjlykoqprgwqzkwx5ufhxb8y8sf9o3poxg/1n8pgoyynyhvbesq9pvo5xfql6+hd1pruuwtcnrmiobcjgkwlvbwiev/vdfnrj8nv3ab7zezlvbj0bl2kb+lkgon6b68ayjevxkci0z8hnf6fzrbquixiy96kqnlfvxq2cnlkuashq3udymalypszzr06h8lbqra+u98nnjczbxn6rd12rs+rdw9qqqy/sb8q90jdcbaptfajjc2a/r8dwxlz8xmzya0j8pz8n4kv3sfdwmn7e2wti2414q99thzxppnizsnkkiicsh16vb1mqyzl0zva++hhdtro+5zm1s4uqnqmpfswnpqcn4huxsspybk7r6vtwdf3uojdhlsnbxjyn5dfwvwly/y2jhmnqm1fad2s42sl9lktxcci2t7cn47z8ai4pohwedolndk3ibge9w5nmqov7pdti/nn8/z+lw/m7hy3fmslxsdc86t/vffyo8ucjvynq68t31eypxpelbbima543dl6/j0h7ymmx/v1i0r89xqvre0bykhhfhjbsv6nqsu/zpl0kqjjzmkwidgotfqf6w32awvedhkenbmtbia5xqz4qmbdbiimzzav4ilgijtjybs2nqafzqloev2ooyibs0oinnq/6qa6aininuil6y5fhntkosjomhh3t7prq4wz/avtuacfuzpej9fjuzwccrzx8fr+qxzhfz4ekr1zkdovmespbhc1uosotdrierwatxdtbnyov95+qmcc8lmj3bopmllwweqxjd9ac3nxw0fgaj8lllowmmbpoyrudo+h8k3d6fz/hfc+htqoa9y+q6yu3+aotwo0g4of15ipfpyexcyc+cyqf657pfo/gd9+df6bqenajhxzcfaukzjmaxqywh6xxz9rfucsdjroocpvzif+osuhdb2yjaihqul6zaqaulc3fp4g/q6vr84fcmq981szfwuvhujxwa3mkyzbrvvywlb7cogusdje+hciuv4l0lifrvafnnyuvqy6zoswuh0c1iwekolzedpqbsvqju35x15nhbikd09pzul+c9lzgarkntbip1vfjcu2mtsqn5czss1f8hsj7xgiebnb7vurm71vicjfx6ggudgvhsziowp7qukc4sqlfnqoutgia0qqhlbgxwwlxtrxmtzsofaxagljaifyb4tohhhbn+ag8s3chuifoduvwxiuu8nrfenynuv5q5lcqsiwepn+51rpj/zesrmodhbsde0s6ik9qc7ix8okfuodumkoqxopoqcxcgnfoq1g8ykhqjgzbvyzkjybl7mscl0+a12za2z6riiry7kenhutrm50ghkzucd6ed3tth91q3zinch6rdwutavu36wcbkv3rs55hi+vf4d8tmh6cdswhr5hv9u5yc7xdaa9+cmdne0f9ie5hv/64s1l/orx8+uctyjsgrcwsqtq+7u9k8qse9ykheatwg0kwjibndmko4tohmrmnptphrmg61iziom3hv0qsvdulkgksceicevso7das9ludf3l8zycw/fkhif5pqemiijilefxjrjwhk0rz+kbhzkfxek4pejdkuvg1xgq0opinqdgverd4yqq5qve7ywk25ehmri2lshly5pm1yxobea9me7n6hapfipfmlypxytmvzokmrilgwqodxeirl/sacmli/p79vecadvgtw21ycypoyzremnhpwoanhpigd5m8zcxrhka5y3ddc5ypk3sq5dq260qxhpoj3vscckmqtyua1gqe44mz0n7irubh0ssf8zngu1bxh5bqsyrm4cry6zdn4howtmlkskvw9zdd6cyjvoqm7jgwcprmc0bzxg5jboolva65bzisy8mioxo8znivekkzf0tghoo3rshqgpnbveloi1ymkxyx7hh5inqh2iy5afusnfblpxzixchftcqdizvwpfsdi1khbp0qaqvggjfwp2kzqkfjwvxusljqniicsz6covpubp/sbmwyreugodkgar2nzlochaiqkecftwbvqnkwf55n8bv6ux33t/tpibqgchgvdhs1jto45jjc6zotrs8pn5/yx/sjfbfkcrd3+srrhuymnn97tdy5fll7dmajez9f1hcvrkangkkeprsavsijb66ryjj4upxpdgzuy+eo+teei2il+y/c8hwnmw4xxazc6mtt4lgwvh5xqkfxbab7b3mu/vcz89m77f8icjyu7/qdvkwwuz5x7tzetuqpvislcr0z5redisxph22t9dlxmsigi1vb1tizucuc0lohdyakx0cf7ck2+ovxbslhphaj72vk+8vjadfxyby02zafdbbrglk9yktdtrejiafqn8cgwtjxwfvglxnqmnbhro0pgrgskvaadd9py/s+bfiua9myisowwlkmuhzn4acaaxbfecjdis+rztuostcddch4xzzhedkoydhpy3kwt/dkn2q0wztymto4eqwsvqcjgg9htq+tni9dyctneae/g3bn0jirtivhveljbc13y04+enjn+khiyafdnghp5dksoxeinmfyupltsegygram/wwmry3uleibk4vbyr/3q9pegzcl23bi7gopmrkf22bsqeohq7zva0bxck9qdfb4nofmmwsmols22/ic61ztes8yy7kkz110ocqxmvreswd4imfve96merlf9go+nvajev/5qohazfkvoppoh/0r8wtttn9tiws/e3mwf7hw7vuys8ckebwcsmhsrxfcenhzgii280kyfpjncy8esdtb9wot86tlgwulajtbgk5bcjrtyawfxcjklqyqnct/u5dmgatody3qu0mlgg+rnyo7nng8xethzzqpiafhnbpzjyykbqhul6eokmu00glt5awarrpydokpzuvqxejnt5bfx7qaj2jjngs5djvmujwopaifwgrh415fpcfaxnpyylomjnrtjyay7qcfzldnxpjgyyzaxtgkshe442dlvn+7z2ihcdut0pi/zwltmxdkwnpiqm/x7agkff+uj8ceaj6mer8vwlkwjl2ghjq92hmnmoxfi0jwmrra65kknxjz1fbdwwhu81ntfozrhss5zl4vrmdblsxe+ptzgbeprgjbj2q4gxru2qnvr3bxfggozxsqf3teaqz2ej2aaqaocziqvwqzygmfrilqvvsvwykh4ain1nfmpynecypyurui1xwxudbre1/rwahf18ouwavtjb+jhhzdfm6jlhcr/h8pc9jf1ki7ti52dhlbbih5ngi23lnovth/9qzsz7cumvxrnmiao/51g9rztl2ukqiisfapieuhc2d9muhuq7xdbmapopponu2wxij3y69gfrau4sxhqyxtozwqops8yxmgenvdvnumrbek5qutsvqqaz0nlnhlllu+jc/3moyeg2iwmka5ncnswgliz4dm2asn5fncfbdus0+cpqhn101ajfo2aec3noc16a7tt/4jwapdcfht5ax4up+7osocwngy6rvobnjbk1447uafez3mi1zizassd9k6tubhlngybmw72qvxyuys7wqvljizo108ht9aog+94ovt0df5o+wz0q9fpigxmuvis4kqpubmcapwnmay/1l50wrya9p93rtbxtk54oatv7rva0dcqc3psiu2u/glo+on+mwdprp7hgcnneok1jd+t1ouii7qkbwixaishugz/5mgtu28k/hdqsfujhgjazuq85xfjqssrsrhyvrrblchhboeep1+mwgialjhsrkps5v7zuq0c53guqaj6xjbqkb66+wgrplqepfesmau49pyzq7ipmejy3m4yiscbsytpbmdvwyfjctjtc4rlhuf5jfrwzws3d7ml/shzut2qeo+zfufyf9nbbveebnmsrmvoiq3iej66wbfte8fm+cjuhp0j0awwahgcwbrqotfegktz0tndkm26jvcbuicel6glktkmbztbxt14ggbtr0jxudvg0leysslxvvgkh4jyzsa6tpvaynj20j+vel7jzgxzvm8utp+tim+uxdg+giqm+meuvrshvj0abyll1b/mtraidos2ahlack6pnvuzyrphgetsmgxtzcp2vukpxv1mzs0ga6shvkpkna65hzu0aghow37da/8j8jd8zyochowcia2wzldqqxa7jzeijyo0fqnuhzuza7nh05euyogzofbpcqt24lyo19zaj6mefgfvejbiwh5g/3a6vhov37uzk+uuwespqrohhd1bgewyc+tewetxyj9gugzth0l9g7baagpqhoiqrewbk8z3tqcxecejxtjtscsq6blqk651tcnkuypmeyka2awqyxwausqfi7tjwedrzkicvyjsw11c2af+oulnpxchev+wxqrx8r3npgoiccowr6ytnjh1m1vd5348zylnwm9vfjdsnqtmzrme+qbrzc/5yptmba3ua3q4h1hy/t+ikatkix+ewunad5ks8+gs9hes5qjx3dbre+zq5fgqgu8e3fhnut5umlda3hq7tf8vdwdtvmgee8czenhvpq9h2zby0qkwfw6gdz2stemqil17rwyfmsto6cscx/rch6cntvwzd2qznhonnfatyf7dkxjdgqjocuk5slgfi4te0duteweasrb6ihsomjzi1s0ci+qgrxnzvnr027wfeog34m0jzux4ma1l9bvdxbhfuu2culsimcx1lv6hwuo6epsyyiihxmi3opgyahcgrtyjgmlgg+9x3iv7jzdru/nmxojerbefdldrvuj55ytcnzmf9yx2/tmu3pyp9gbtr6dmaturvigj1dknvovtor3+sygsx05ozjj264s5jlp6jcka+d1b9dwz3w/z4kpym9j7exaqiitlipfo65patcoba5d2isto98s6dck9zdw6wdxuzy3utdcvxyyvwqdw6ewv/bhztaodaue7ior8wuomwlerrbruxoefqihngtwc994y93jukrx3jmlflbdybk9ddtoigyw/bhw4nbsdqpfda71ud83uwlvgnich2toveydsn5y5ivbb1sfvpltm8yxxmoxebkpqmysbkegkjlplj1faqbqnmna/dgmeqxe1c/wdd4zroxdcbz5nfnhqumn9qwbignqfgqpag7sf9svpofjwtlmkwtovoqxhmdzmktmmykalnufab2fco/btmdsmhux+txxme/dny+jgx2dn1mnouu2nlld915vmox1xxchzgmhgumc1366xxw6a15o7okxmzctw/edr0zfa2e0w2yeu28kr2kb+xjerew9sawg0ti5fvvtys44up/xbntov9u/dookwj918mywgwacyegrwuc0abo5vxuv6nn+pjpnomzhkfhv1tvwj16jchdcv25x8vunx100+8jf8etz7xf8ordujp9bdqew3tkqjjaqbd7fbemsrzpuhuscvpftqzedm57u7b19p0rdp1extlhlwhdr15stycaexe/zaoblmedwia8utkot7qmbrcdwambzvkk3gag59bcfesajuvymuxgzqguzfui3mjteggf3g9/yldy96r58/ktuazwp9txlluwpwgr8osbsgezwbybzt0x/fsupnekeb6la9kcgejewy0olq9a1gzp8kzlbwgbvlthe9zcc3sjqzhvxlorbt2dcftxudiwarsumxok/mwq0plsv9e5085nbtwrywejq/ozmjgr3bjhbief44bfvm4j/msgptamzh+25yqu8aqzcddmjo9mlq9ncqexknjrh4ik8woyh7lyebnewhuc8j2g179n46yeiogumzl/bmqj+qpy8huo5ota5blazyktarvx3xlsxnyqtxgyzqn4o35van+0tqz0ijhtvml21dla4jjeh7ewbzsfqaoxxm7wkdt5apv3h5e1r9zu5x1z6tggazrn/hlm337v2tcj7e72/2d7f5v//horz+vf33mxyt/t/ipkxsr/zv/wvn1youvw5u3k+fnf//zk8/2p3v5/nxz2fp/fp5fgvqjt2qan64yf57/9/8bnzc2da==</latexit> Extend Hypotheses Lower the lights <s> V N scores of extended hypotheses: J V b hypotheses to extend consider all possible ways of extending them D J N V last label from previous hypothesis

<latexit sha1_base64="6dc1wp+pjf701yzke51tyrpgp68=">aabefxiczvtjdxw5cmaptzg9jno++pjjfd3uiosw2j6xlbx8hk3jkt0umynrvthjgmqwqgpkbgkqrcql0mdf7yt/jw9+vvrs3+kli4csxaakl9az29lrvgl4ebeibakbacriiibk7u5/ffsj3/rt3/nd3/vx76//wr/+0r//5n7hf/kvshme0jdhgqx8m4aigrgevpfmrvsbjfmsbxh9org8wpavrygxle1o5dkjzzgzjmzcqikhavtxt/57gyrrnvybr96lly89uibxftf1p6hzmi1jkowlx6zzubz+toqszedfif0uaygubtudyfcwzrcuulfwkf/shzsy+ez8rqwjdtjpnw7dnxfzlmvr0hvi+yrpgdeowposuukejcooy9lzt/bvnir8ii3gygm0iqarsvluask/+c1hoqf8k08ahloxt3xg4yxjab/uabt+qcn/74p5yxm9a/eonv6hlfuifprbokrsoppi+0rzfktp64bzwdfc3/h8c/gazuwr+b+ctm8394d7b3l+4ola39ihlsecld6jmvs3qjgj9gnn6dydlpyrzbrr8+j9dfqqfl89lmvzexieog+9ias4qqdekibbivmywqv4baabhxhcqdji3hjvuw557fkyvdnr+jhi5pny5wjoc9w05ufjviqtfurjhfrlhgrxwpz0f9evb1qmfwgrfd+wzo+d5fjvl0cmwrxs4bcs2hmrfx95qz8cvtdvm+8ehfaskw4jw50v6id5zna7cbrqfl8ehngxs1icx/ymxlmx80pfmcvbozs7w8vrua1pxajzgexuoyscesxqcddfsbs1dfnm92jagqbo/6s8mxo9ic3g0iflhlpvrftorizcqxfuky3qtpfr79/7fgh8gvhrvc4uoeeaac3irct+zdzgobj5lrp+qvyonrj4qjbhib8zuylphupolyxbaj/khouylnki4j3ana31iozg+48mw9fwupg0kxk0fyhldtt1cxwda4gh0wsb1vfjusbass6uqc1rkmdci3vys+ltve9g67shdvjbswx6nbyjr8ofg/nuv3dl332annz7w2nu4vy/dlhdv8z2p3u4mjghkszeyrz4vnxyna8auih3qd5tmd9rgkcrfccxks4grtzcwe8ggspmpkh3ueyg8tqh6dalkpgiy0yighxtquqlyvhwxfpavfhooduxrrscnc6taqz5p+ao+utkgayfuudb8v72y14hqrxc3hqylld6uobqkbsni1l1tbtxn/pjfurydtzsaee22wz5u6bf95ruopxsoovrxm2hsqjxj+hjmqng+yqgr5hmrah8lqbnmcxious4dwyssamxl+cl7cju5ziawftjx4gbeh2gtzkk1/tf11rz7sf+xtgicmqlrnobtpabnebhv0ctm7/lvttuyxbu5ok92q6id5ae7hazlhaexro3v3d3d21r/p/hhwh/fxqj/ho48//cgfp2ee00qqiu+hu5k8k2c/ygfe4ysfc5qr8jjm6sl8jism4qxqayrs24castdjofyxse/vtnsujba4iagjyxrmg1a62k5zofnrm5j+ljfg/zsjsr55mvuw5+gngqctrev4icfniksxzghyl6rcrhfyzcqikivpzygfhvhcfglttu2uk2zgwkw3ns4jyecy160n0yuie2wadksnmddne9mtpta/lbnjdcpokmiijnrxhpnemgqpsrqzd/rnw15nab9luopnqdcznynxfm6tcgajiybhazvzshpvsavugez3ivkgncdbzujuncidczuao8uj71txvkjiu8bttfsjby10dhyutvoyn1m8zww9mjjoivicqecgq8bb9gbqk2lapldlkef0mxnkerd2sni5s/mser7fyy5avitigjkqytkajbkawwsq96mdkv1daiscrdvcgglud+ovchnriknhi2zpisdelq6jyrwikucckqrpe29zjmzl4qd0ypjcts5ghxh0qgqugghewzxmha+mjmzlsuvjst2goszzgnzmsbvzc7ovyhtfguhzgfpkpjzppwpzlvcamwvjyvvuwu8ym+i3jkc8hz7p7iiahikicoqjmnhaod6pd3/obw9/cfz8zewojktckcrr/uszsxjckui+/2rqsr8mnh0zzn7nepxdi+try4qop8+ur+wk45sboniknpbfs6mo6uvzs/xoih601omxyfgkxbkdh2icwfxxfcgo/ndvcxj0watqt7bg0q6vop+93flhn9njcx9okcqzjdbenscqozxnwk2exh1kzk9afavsh6mtdj44cwgdqaqpaoh1qcumwlohowqvpz8iuaxi4jdbfow5zrhd+ahu+bc/g8mndrdt3w3b3q026xiivajbd/de7awbhfoeamxpwgfxgzfdrgncgoiyswrxwzrjeh0/z4uhlgrorgxznifjmsc2pqh856cgmiss3zm6hznnzx1svcuyzgzevbowmlxhen6ep7f3tl9/cohljmmw2fizmblslmagixihy2vuscrjemjkbfjb70bmmrrkdeshkavm3fz0n5feew/oow4oerlaecdcgnnxzcmstrpdf1fjcwgkmyilhnhwi6jcb63615mfucgedmvzxjqqq7tqsb4cjsj5gjtqbildggc2+mywt9qftbs8wsyheqkrqy6wu21syxrrvxanmunmubm22levfaowceyyhghw1yi3ex0cnuoab6u103yoblwdwgbzbzg6ty/2ihhvch846dhtzy+pdo9xpn1hcuacjkisea5yumjpwylmdsiicyckaydzjdsh2lwzdcczsuwaolgwahc4jegsgudzhfwricvc2mcgwrow7dksnnlyfm8avz02cpg2wqo4prpl2gup5ykfqwyoysbgt1guqw5q39mjt/r6qivzh1mangjg0fknoparegmdpxl2f9uahijngbdyerbupwosfradhrwwxb2+skoavgzwxdqinoimlk/oth/len3wcumcjrmceucdyl7hiymw28odiy0tjby3cop/kgomz8izds8har0cmbmukbrih9meaj2mervnwtowjlkidiq92rcxmjxfiwjw0rua+5lyn+jz1fhd2mhu80xdfofqhsc5il4vrkdbnszc+hruwiluwjtgjxw863pu7oe1m7jkrybhsy0viz32kqkme511gcwse6reks/wgu1csbkq1025tkeshcu2at9an132lhvegzoqvefywjvam/tab0ztug5y9v5tbvnykwdotvay1dnzxf+9job8u7fu9bwkoxdb1kdjoje18dzg9/nhszelessh1kyk5hltgpv/u0hlyqp9tugahbf7ta0lwvr7y1qye+kcigdo0jh07nwl6yqyn/ya4he9ps5cpyiwbqcceuucjxmngdct7ftrwtpbar1aoaqlodjroo8qs8myprrmqzg5dkdbypzy2e1h+sou9jkgwuxwxlyuthfbnbvymqtwedmcxe59c3b56wvysw71/da9acugvqc/la0dd89/13tzqfhgnrvgyabvwsulyxycikeroze9rrbcmpuszwrubi+r1wdtyf7yrtbfmkb2osfi7oxigphj7zp0gvuxomvwj/2r0q3vx5c96jpx7kdqdbatpcg8jzhgf0bcnixyogt+72wnr/qcsy6uvzbfq0gsg+ozsim2h/gfpes1+mibvjdhhlmgvroidyxfjzqrimu0sovomkpkinlmndpqoz1zeb/ncfincr404fb1ywluc8dqsniitl/h4theyx5l0i1bpgapcmzuqfcxv7lqqwc8pdvad10smkgez118utsphydo/mcgau4fpi/p6ipquj5sxceulkjpepzkyxzxcmeojkknsysz2g5e3gcampewzlnjfuhowxsd2gprodnkujodcrl8m4kwnlq8ttojf9dicvevsctjejrl7uohimegligki0e2eqxl6gmajkhaxw4tvubmmcmf9qmlu8uhptdht95ggdzswl3dsrupk8rkkgieuujb1kkrdv0k2ivkqspplcozk2mk7els0wpabtnursqu6mdaqqteieuvrsdfhsathk51a/ty1gqduposzsmtb21x37mqkrhouqsucutfqebauf3nqydiq0gbaqra4oic1wzurukaghoan7dbp+u2hveq5ucq3obecabzluo1dncgsreq7daoxg3li2mlvngrvxvkdashheqtk4nyg1+pwbzsmyhvwqet9kbmxf6wdwp/eh1ammc6em8s5mqopwuqt1o4afc5vkrb0wc+yfbsmadiyyj+woqdgqsooqgghz9ptirs1ofolhutgroggjctqnkss1qjsm6d1kyr0mibkglrjzcd/jlanlwspbjxntrmaggoowzmz464s2fdyeob+iuohz4sonjorjkxiwpyytjijaseqx5x+ep6sv1lml16wkm7hjyzoldnh0+yxxnmkyumntuavvso0dujtrkkqpjn/jkcc84wbmolpx1nkpe5btnlixzmd2hyvl8lq4kzuv50aj+6zhqnmp+wq7o56xuc3ess1jml797qe+1nq5rwaqbqymfuxmf6dywvdawqmyu6ol9jmpkykfzpujplmt0hzxto0n9biy11a0auhqa9pmgipi4qbseaferarli01l4x2rdfq4botybueqvdcm2cq/pm0736e28z1kedzybue2uor+e7byr1gyrrdzjgeee1vrlsogpotkiwgixetacasbgruic/zmkaqnar71ecm+sou7ip4tm/usxkejydlfqlwgc9tybbtde9w124fddivzp9wotrqdmab2rvigj1dkfvqvjot3h50dyvnyqgwtpl5pzdhlqjckg8tqgam8mz/kvlaxndk9mxkqemiefv0x1turogrkk0k7b5jw3q+h+43mhqrcmhh0loy7q6jvxluesrxp4vpya8djeqtfugnn+5hi5rvdhzfmioviuj0p89vdzxwplw18xex0kpzx1rpwf1rbvutzgtqvoqgmpwy1bmaoulkyikoe9x07ifaokox4iephnsrj+n4vl/rvtxnw5rejmcd6q8vayeyflgjyla1vssjysojustuxh7h7qr+xklbvmzwdz0wqzrccr27jxfgqumndzibpodc+tvqob84l6idp+fjwm7biujqq7+cei7ouswwxptvd6j7sed9h37d1aysbbsswn1zhvlppye5nxeqmv0nkw+s7punt4wmfu6yekp03qd0wsv/xslbxq3vndy1y8yivo3/dvojpig1myh9qy230io0xzizz5hvd2w9mhtkiuw9vpjnthxp71gix6584swlj34s+e9w2taggcyxuqtifo17yef9wtd999srtpromxghh1dqsqrwsslcq2cndr0k3r3/6ibfx3+pj58zqervmyk36vm2vyvmufkou8di8n4w5/ur4aqastmrobmzkiaf75ru2gznm/w6jz8q149chj2kz3tqxvswmdi4wbbe7+jf8qjnqkrxgvfolabm05sdnygjtxlqt08hymfb3fapjxqm3mbfx1fb+l6+awnl/1xz58va18twn/z91lxotr0vzrwbyj0admqokq/vpeuuuu1dg6w8loivxaqwuerstwzfrx6i8ytdpymzaa6pquhtncxmivfzriwujjthar+nsnlouq9we6sywarsr3yz6plp4xmg/iqqi+tv2q6penxucvcczw/wwo/fdledqnote0yvl9ttlwwssz4nicluqvld2u37eli8zsrh8gkswuyx1qy8euuhnuksvppvvwf9rlgisc5xkx1b1mcvb+ngqp3ngcdwmbtlbvqsytpq8qz4rhv24ghku/b2vmybt6o6zrqiok1uwm7vouobinwftncvnivhvcz57aat5vkdde8/ayoflltftw/18hqgvb/4o9mhuzpzoypr/z2hrs7w1//5f1ffvb9fobha3+29udrm2vdtb9a+9xai7xjttdr4b3g3j/d++d7/3lwrwf/dvdvb/+hot/6qorzp2udpwf/+t/v72j4</latexit> Prune Hypotheses (b = 2) Lower the lights <s> V J D D = set containing the top b hypotheses ending at position 2, with their scores note: using backpointers, we can recover the entire hypothesis

<latexit sha1_base64="6dc1wp+pjf701yzke51tyrpgp68=">aabefxiczvtjdxw5cmaptzg9jno++pjjfd3uiosw2j6xlbx8hk3jkt0umynrvthjgmqwqgpkbgkqrcql0mdf7yt/jw9+vvrs3+kli4csxaakl9az29lrvgl4ebeibakbacriiibk7u5/ffsj3/rt3/nd3/vx76//wr/+0r//5n7hf/kvshme0jdhgqx8m4aigrgevpfmrvsbjfmsbxh9org8wpavrygxle1o5dkjzzgzjmzcqikhavtxt/57gyrrnvybr96lly89uibxftf1p6hzmi1jkowlx6zzubz+toqszedfif0uaygubtudyfcwzrcuulfwkf/shzsy+ez8rqwjdtjpnw7dnxfzlmvr0hvi+yrpgdeowposuukejcooy9lzt/bvnir8ii3gygm0iqarsvluask/+c1hoqf8k08ahloxt3xg4yxjab/uabt+qcn/74p5yxm9a/eonv6hlfuifprbokrsoppi+0rzfktp64bzwdfc3/h8c/gazuwr+b+ctm8394d7b3l+4ola39ihlsecld6jmvs3qjgj9gnn6dydlpyrzbrr8+j9dfqqfl89lmvzexieog+9ias4qqdekibbivmywqv4baabhxhcqdji3hjvuw557fkyvdnr+jhi5pny5wjoc9w05ufjviqtfurjhfrlhgrxwpz0f9evb1qmfwgrfd+wzo+d5fjvl0cmwrxs4bcs2hmrfx95qz8cvtdvm+8ehfaskw4jw50v6id5zna7cbrqfl8ehngxs1icx/ymxlmx80pfmcvbozs7w8vrua1pxajzgexuoyscesxqcddfsbs1dfnm92jagqbo/6s8mxo9ic3g0iflhlpvrftorizcqxfuky3qtpfr79/7fgh8gvhrvc4uoeeaac3irct+zdzgobj5lrp+qvyonrj4qjbhib8zuylphupolyxbaj/khouylnki4j3ana31iozg+48mw9fwupg0kxk0fyhldtt1cxwda4gh0wsb1vfjusbass6uqc1rkmdci3vys+ltve9g67shdvjbswx6nbyjr8ofg/nuv3dl332annz7w2nu4vy/dlhdv8z2p3u4mjghkszeyrz4vnxyna8auih3qd5tmd9rgkcrfccxks4grtzcwe8ggspmpkh3ueyg8tqh6dalkpgiy0yighxtquqlyvhwxfpavfhooduxrrscnc6taqz5p+ao+utkgayfuudb8v72y14hqrxc3hqylld6uobqkbsni1l1tbtxn/pjfurydtzsaee22wz5u6bf95ruopxsoovrxm2hsqjxj+hjmqng+yqgr5hmrah8lqbnmcxious4dwyssamxl+cl7cju5ziawftjx4gbeh2gtzkk1/tf11rz7sf+xtgicmqlrnobtpabnebhv0ctm7/lvttuyxbu5ok92q6id5ae7hazlhaexro3v3d3d21r/p/hhwh/fxqj/ho48//cgfp2ee00qqiu+hu5k8k2c/ygfe4ysfc5qr8jjm6sl8jism4qxqayrs24castdjofyxse/vtnsujba4iagjyxrmg1a62k5zofnrm5j+ljfg/zsjsr55mvuw5+gngqctrev4icfniksxzghyl6rcrhfyzcqikivpzygfhvhcfglttu2uk2zgwkw3ns4jyecy160n0yuie2wadksnmddne9mtpta/lbnjdcpokmiijnrxhpnemgqpsrqzd/rnw15nab9luopnqdcznynxfm6tcgajiybhazvzshpvsavugez3ivkgncdbzujuncidczuao8uj71txvkjiu8bttfsjby10dhyutvoyn1m8zww9mjjoivicqecgq8bb9gbqk2lapldlkef0mxnkerd2sni5s/mser7fyy5avitigjkqytkajbkawwsq96mdkv1daiscrdvcgglud+ovchnriknhi2zpisdelq6jyrwikucckqrpe29zjmzl4qd0ypjcts5ghxh0qgqugghewzxmha+mjmzlsuvjst2goszzgnzmsbvzc7ovyhtfguhzgfpkpjzppwpzlvcamwvjyvvuwu8ym+i3jkc8hz7p7iiahikicoqjmnhaod6pd3/obw9/cfz8zewojktckcrr/uszsxjckui+/2rqsr8mnh0zzn7nepxdi+try4qop8+ur+wk45sboniknpbfs6mo6uvzs/xoih601omxyfgkxbkdh2icwfxxfcgo/ndvcxj0watqt7bg0q6vop+93flhn9njcx9okcqzjdbenscqozxnwk2exh1kzk9afavsh6mtdj44cwgdqaqpaoh1qcumwlohowqvpz8iuaxi4jdbfow5zrhd+ahu+bc/g8mndrdt3w3b3q026xiivajbd/de7awbhfoeamxpwgfxgzfdrgncgoiyswrxwzrjeh0/z4uhlgrorgxznifjmsc2pqh856cgmiss3zm6hznnzx1svcuyzgzevbowmlxhen6ep7f3tl9/cohljmmw2fizmblslmagixihy2vuscrjemjkbfjb70bmmrrkdeshkavm3fz0n5feew/oow4oerlaecdcgnnxzcmstrpdf1fjcwgkmyilhnhwi6jcb63615mfucgedmvzxjqqq7tqsb4cjsj5gjtqbildggc2+mywt9qftbs8wsyheqkrqy6wu21syxrrvxanmunmubm22levfaowceyyhghw1yi3ex0cnuoab6u103yoblwdwgbzbzg6ty/2ihhvch846dhtzy+pdo9xpn1hcuacjkisea5yumjpwylmdsiicyckaydzjdsh2lwzdcczsuwaolgwahc4jegsgudzhfwricvc2mcgwrow7dksnnlyfm8avz02cpg2wqo4prpl2gup5ykfqwyoysbgt1guqw5q39mjt/r6qivzh1mangjg0fknoparegmdpxl2f9uahijngbdyerbupwosfradhrwwxb2+skoavgzwxdqinoimlk/oth/len3wcumcjrmceucdyl7hiymw28odiy0tjby3cop/kgomz8izds8har0cmbmukbrih9meaj2mervnwtowjlkidiq92rcxmjxfiwjw0rua+5lyn+jz1fhd2mhu80xdfofqhsc5il4vrkdbnszc+hruwiluwjtgjxw863pu7oe1m7jkrybhsy0viz32kqkme511gcwse6reks/wgu1csbkq1025tkeshcu2at9an132lhvegzoqvefywjvam/tab0ztug5y9v5tbvnykwdotvay1dnzxf+9job8u7fu9bwkoxdb1kdjoje18dzg9/nhszelessh1kyk5hltgpv/u0hlyqp9tugahbf7ta0lwvr7y1qye+kcigdo0jh07nwl6yqyn/ya4he9ps5cpyiwbqcceuucjxmngdct7ftrwtpbar1aoaqlodjroo8qs8myprrmqzg5dkdbypzy2e1h+sou9jkgwuxwxlyuthfbnbvymqtwedmcxe59c3b56wvysw71/da9acugvqc/la0dd89/13tzqfhgnrvgyabvwsulyxycikeroze9rrbcmpuszwrubi+r1wdtyf7yrtbfmkb2osfi7oxigphj7zp0gvuxomvwj/2r0q3vx5c96jpx7kdqdbatpcg8jzhgf0bcnixyogt+72wnr/qcsy6uvzbfq0gsg+ozsim2h/gfpes1+mibvjdhhlmgvroidyxfjzqrimu0sovomkpkinlmndpqoz1zeb/ncfincr404fb1ywluc8dqsniitl/h4theyx5l0i1bpgapcmzuqfcxv7lqqwc8pdvad10smkgez118utsphydo/mcgau4fpi/p6ipquj5sxceulkjpepzkyxzxcmeojkknsysz2g5e3gcampewzlnjfuhowxsd2gprodnkujodcrl8m4kwnlq8ttojf9dicvevsctjejrl7uohimegligki0e2eqxl6gmajkhaxw4tvubmmcmf9qmlu8uhptdht95ggdzswl3dsrupk8rkkgieuujb1kkrdv0k2ivkqspplcozk2mk7els0wpabtnursqu6mdaqqteieuvrsdfhsathk51a/ty1gqduposzsmtb21x37mqkrhouqsucutfqebauf3nqydiq0gbaqra4oic1wzurukaghoan7dbp+u2hveq5ucq3obecabzluo1dncgsreq7daoxg3li2mlvngrvxvkdashheqtk4nyg1+pwbzsmyhvwqet9kbmxf6wdwp/eh1ammc6em8s5mqopwuqt1o4afc5vkrb0wc+yfbsmadiyyj+woqdgqsooqgghz9ptirs1ofolhutgroggjctqnkss1qjsm6d1kyr0mibkglrjzcd/jlanlwspbjxntrmaggoowzmz464s2fdyeob+iuohz4sonjorjkxiwpyytjijaseqx5x+ep6sv1lml16wkm7hjyzoldnh0+yxxnmkyumntuavvso0dujtrkkqpjn/jkcc84wbmolpx1nkpe5btnlixzmd2hyvl8lq4kzuv50aj+6zhqnmp+wq7o56xuc3ess1jml797qe+1nq5rwaqbqymfuxmf6dywvdawqmyu6ol9jmpkykfzpujplmt0hzxto0n9biy11a0auhqa9pmgipi4qbseaferarli01l4x2rdfq4botybueqvdcm2cq/pm0736e28z1kedzybue2uor+e7byr1gyrrdzjgeee1vrlsogpotkiwgixetacasbgruic/zmkaqnar71ecm+sou7ip4tm/usxkejydlfqlwgc9tybbtde9w124fddivzp9wotrqdmab2rvigj1dkfvqvjot3h50dyvnyqgwtpl5pzdhlqjckg8tqgam8mz/kvlaxndk9mxkqemiefv0x1turogrkk0k7b5jw3q+h+43mhqrcmhh0loy7q6jvxluesrxp4vpya8djeqtfugnn+5hi5rvdhzfmioviuj0p89vdzxwplw18xex0kpzx1rpwf1rbvutzgtqvoqgmpwy1bmaoulkyikoe9x07ifaokox4iephnsrj+n4vl/rvtxnw5rejmcd6q8vayeyflgjyla1vssjysojustuxh7h7qr+xklbvmzwdz0wqzrccr27jxfgqumndzibpodc+tvqob84l6idp+fjwm7biujqq7+cei7ouswwxptvd6j7sed9h37d1aysbbsswn1zhvlppye5nxeqmv0nkw+s7punt4wmfu6yekp03qd0wsv/xslbxq3vndy1y8yivo3/dvojpig1myh9qy230io0xzizz5hvd2w9mhtkiuw9vpjnthxp71gix6584swlj34s+e9w2taggcyxuqtifo17yef9wtd999srtpromxghh1dqsqrwsslcq2cndr0k3r3/6ibfx3+pj58zqervmyk36vm2vyvmufkou8di8n4w5/ur4aqastmrobmzkiaf75ru2gznm/w6jz8q149chj2kz3tqxvswmdi4wbbe7+jf8qjnqkrxgvfolabm05sdnygjtxlqt08hymfb3fapjxqm3mbfx1fb+l6+awnl/1xz58va18twn/z91lxotr0vzrwbyj0admqokq/vpeuuuu1dg6w8loivxaqwuerstwzfrx6i8ytdpymzaa6pquhtncxmivfzriwujjthar+nsnlouq9we6sywarsr3yz6plp4xmg/iqqi+tv2q6penxucvcczw/wwo/fdledqnote0yvl9ttlwwssz4nicluqvld2u37eli8zsrh8gkswuyx1qy8euuhnuksvppvvwf9rlgisc5xkx1b1mcvb+ngqp3ngcdwmbtlbvqsytpq8qz4rhv24ghku/b2vmybt6o6zrqiok1uwm7vouobinwftncvnivhvcz57aat5vkdde8/ayoflltftw/18hqgvb/4o9mhuzpzoypr/z2hrs7w1//5f1ffvb9fobha3+29udrm2vdtb9a+9xai7xjttdr4b3g3j/d++d7/3lwrwf/dvdvb/+hot/6qorzp2udpwf/+t/v72j4</latexit> Prune Hypotheses (b = 2) Lower the lights <s> V J D D = set containing the top b hypotheses ending at position 2, with their scores computational complexity of beam search?

x positions Complexity of Beam Search extend hypotheses: O(b L ) time for each position (O(b) hypotheses, for each we have to iterate through labels) prune set of hypotheses: O(b L ) time for each position (unordered partial sorting takes O(N) time for a set with N items) time for beam: O( x b L ) time for greedy: O( x L ) time for Viterbi: O( x L 2 ) 34

Beam Search beam search alternates between extending hypotheses and pruning hypothesis sets the design of these steps depends on the structure being predicted at the end, just return the highest-scoring hypothesis the final set of hypotheses can also be used as an approximate n-best list (where n = b) 35

Beam Search if we set b = L, do we get Viterbi? no beam search still operates left-to-right greedily and can t recover if the best path is pruned early Viterbi doesn t prune recombination can improve the diversity of hypotheses in the beam (and therefore improve the search), but is only applicable for certain parts functions 36

Beam Search for Generation Let beam size = 2: X Pranav Khaitan, Google Research Blog: Chat Smarter with Allo 37

Beam Search in Generation in generation tasks, using too large of a beam size may hurt performance why? 38

greedy beam search coarse-to-fine heuristic search Approximate Inference 39

Coarse-to-Fine use a series of models of increasing complexity earlier models are faster than later models each model is used to prune away potential structures for subsequent models to consider downside is that this requires training additional models but these additional models are usually fairly simple and efficient to train 40

Coarse-to-Fine this is popular for tasks like parsing Petrov (2009): Coarse-to-Fine Natural Language Processing 41

Coarse-to-Fine also can be used for generation tasks (by clustering words and training coarse models to predict clusters) Petrov (2009): Coarse-to-Fine Natural Language Processing 42

Coarse-to-Fine remember the local predictors we discussed for dependency parsing and machine translation? while they don t work very well by themselves, they can be useful as coarse models e.g., for dependency parsing: train a local predictor use it to get top k head candidates for each word restrict next model to trees that use those candidates 43

References for Coarse-to-Fine Procedures in NLP Petrov (2009): Coarse-to-Fine Natural Language Processing Weiss and Taskar (2010): Structured Prediction Cascades Rush and Petrov (2012): Vine Pruning for Efficient Multi-Pass Dependency Parsing 44

Heuristic Search Algorithms beam search can be improved by using heuristics to favor certain hypothesis extensions over others e.g., in phrase-based machine translation this is called future cost estimation (see Koehn et al. (2003): Statistical Phrase-Based Translation) if using a particular form of beam search (cf. agenda algorithms ) and the heuristics satisfy certain conditions, search can be exact cf. A* search for parsing, see Klein & Manning (2003): A* Parsing: Fast Exact Viterbi Parse Selection 45

Non-Local Features efficient exact or even approximate inference requires relatively small parts but intuitively, this limits modeling power how can we combine efficiency with some long-distance or non-local information in the scoring function? lots of work on this 46

Non-Local Features in Named Entity Recognition The Chicago Bears needed a win in Sunday night s game. But in the end, Chicago came up short. organization? location? 47

Non-Local Features in Named Entity Recognition organization The Chicago Bears needed a win in Sunday night s game. But in the end, Chicago came up short. organization first mention of a named entity may have more information 48

Non-Local Features in Named Entity Recognition this type of non-local feature was used in several papers focused on approximate inference for NLP 49

Skip-Chain CRFs with Inference via Loopy Belief Propagation Sutton and McCallum (2004): Collective Segmentation and Labeling of Distant Entities in Information Extraction 50

Inference via Gibbs Sampling Finkel et al. (2005): Incorporating non-local information into information extraction systems by Gibbs sampling 51

Non-Local Features in Beam Search Lower the lights <s> V J D D note: using backpointers, we can recover the entire hypothesis à we can compute any feature or scoring function using the entire hypothesis! same idea can be applied to Viterbi and other exact DP algorithms!