Algebra liniowa Linear algebra

Podobne dokumenty
Algebra liniowa Linear algebra

Algebra liniowa. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Z-0085z Algebra Liniowa Linear Algebra. Stacjonarne wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Obowiązkowy Polski Semestr pierwszy

Algebra Liniowa Linear Algebra. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Algebra Liniowa. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-EKO-085 Algebra liniowa Linear Algebra. Ekonomia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Z-ID-103 Algebra liniowa Linear Algebra

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Analiza matematyczna

AiRZ-0531 Analiza matematyczna Mathematical analysis

Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0008 Matematyka Mathematics

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Prof. dr hab. inż. Jerzy Zb.

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Z-ID-102 Analiza matematyczna I

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Dr Jadwiga Dudkiewicz

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień

Z-0476z Analiza matematyczna I

Matematyka. Wzornictwo Przemysłowe I stopień ogólno akademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Z-LOG-530I Analiza matematyczna II Mathematical Analysis II

Z-LOG-530I Analiza matematyczna II Calculus II

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Z-LOGN1-014 Analiza matematyczna II Mathematical Analysis II. Przedmiot podstawowy Obowiązkowy polski Semestr II

Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni)

Specjalnościowy Obowiązkowy Polski Semestr szósty

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

E-IZ1-02-s1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Matematyka Mathematics. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Dmytro Mierzejewski podstawowy (podstawowy / kierunkowy / inny HES)

Podstawy automatyki Bases of automatics. Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Równania różniczkowe Differential Equations

ID1F1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Teoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy

ELEKTROTECHNIKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU / KARTA PRZEDMIOTU

Analiza ryzyka Risk Analysis. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Z-ID-202 Analiza matematyczna II Calculus II

Badania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-ID-203. Logika. Podstawowy Obowiązkowy Polski Semestr II. Semestr zimowy Wiedza i umiejętności z matematyki w zakresie szkoły średniej NIE

Metrologia. Wzornictwo Przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-LOG Calculus II

Budowa amunicji i zapalników Construction of ammunition and detonators

Z-ZIP Logika. Stacjonarne Wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Nieobowiązkowy Polski Semestr trzeci

Interferometria laserowa w badaniach bezpieczeństwa konstrukcji Laser interferometry in the structure reliability investigations

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

Podstawy Informatyki Computer basics

Z-ETI-0605 Mechanika Płynów Fluid Mechanics. Katedra Inżynierii Produkcji Dr hab. inż. Artur Bartosik, prof. PŚk

E-E-0862-s1. Geometria i grafika inżynierska. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Technologia i organizacja robót. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Metrologia. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Podstawy normalizacji INŻYNIERIA ŚRODOWISKA. I stopień. Ogólno akademicki. Humanistyczny Obowiązkowy Polski Semestr 2.

Niezawodność w energetyce Reliability in the power industry

Z-LOG-1004 Matematyka dyskretna Discrete mathematics. Przedmiot podstawowy Wybieralny polski Semestr III

System Labview The Labview System. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-ZIP-0530 Analiza Matematyczna II Calculus II

Z-ZIP-1004 Matematyka dyskretna Discrete mathematics. Stacjonarne Wszystkie Katedra Matematyki Dr hab. Artur Maciąg, prof. PŚk

EiT_S_I_F1. Elektronika I Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

E-2IZ s3. Podstawy przedsiębiorczości. Informatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy automatyki Bases of automatic

Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Niestacjonarne (stacjonarne / niestacjonarne)

Praca dyplomowa. Geodezja i Kartorafia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

PRZEWODNIK PO PRZEDMIOCIE

Podstawy niezawodności Bases of reliability. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy

E-E2A-2021-s2. Podstawy przedsiębiorczości. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Mikroskopia optyczna i elektronowa Optical and electron microscopy

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Ekonomika Transportu. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-ETI-1040 Metody numeryczne Numerical Methods

Geodezja i Kartografia I stopień (I stopień / II stopień) akademicki (ogólno akademicki /praktyczny) kierunkowy (podstawowy/ kierunkowy/ inny HES)

Obróbki powierzchniowe Surface Treatment

Z-ZIP-120z Badania Operacyjne Operations Research. Stacjonarne Wszystkie Katedra Matematyki dr Monika Skóra

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

Etyka inżynierska Engineering Ethics

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-ZIPN Fizyka II. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki

E-N-1112-s1 MATEMATYKA Mathematics

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) semestr 3

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES)

E-1EZ1-03-s2. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E2_PA Podstawy automatyki Bases of automatic. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Energetyka I stopień ogólnoakademicki stacjonarne. kierunkowy. obowiązkowy. polski semestr 1 semestr zimowy

Geodezja i Kartografia I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Konstrukcje spawane. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-LOGN Ekonometria Econometrics. Przedmiot wspólny dla kierunku Obowiązkowy polski Semestr IV

Infrastruktura podziemna miast. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

E-E2A-2019-s2 Budowa i oprogramowanie komputerowych Nazwa modułu

Transkrypt:

Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Algebra liniowa Linear algebra A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia Profil studiów Forma i tryb prowadzenia studiów Specjalność Jednostka prowadząca moduł Koordynator modułu Automatyka i Robotyka I stopień ogólno akademicki studia niestacjonarne wszystkie specjalności Katedra Matematyki dr Beata Maciejewska Zatwierdził: B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Przynależność do grupy/bloku przedmiotów Status modułu Język prowadzenia zajęć Usytuowanie modułu w planie studiów - semestr Usytuowanie realizacji przedmiotu w roku akademickim Wymagania wstępne Egzamin Liczba punktów ECTS 4 przedmiot podstawowy przedmiot obowiązkowy polski Semestr pierwszy Semestr zimowy Wiedza i umiejętności z matematyki w zakresie szkoły średniej tak Forma prowadzenia zajęć w semestrze 12 12 wykład laboratorium projekt inne

C. EFEKTY KSZTAŁCENIA I METODY SPRAWDZANIA EFEKTÓW KSZTAŁCENIA Cel modułu Przedmiot obejmuje podstawowe zagadnienia z zakresu algebry liniowej i geometrii analitycznej: ciało liczb zespolonych, macierze i wyznaczniki, układy równań liniowych geometrię analityczną w przestrzeni. Celem kształcenia jest dostarczenie słuchaczom niezbędnego aparatu matematycznego do sprawnego rozwiązywania równań w dziedzinie zespolonej, równań macierzowych, układów równań liniowych oraz zagadnień geometrii analitycznej. Nieodzowną część kursu stanowią elementy rachunku wektorowego z zastosowaniem w geometrii i mechanice. Symbol efektu Zna liczby zespolone. Efekty kształcenia student, który zaliczył przedmiot: Zna podstawy rachunku macierzowego i wektorowego. Zna wybrane metody rozwiązywania układów równań liniowych. Ma wiedzę na temat podstawowych pojęć geometrii analitycznej. Zna podstawowe typy kwadryk. Forma prowadzenia zajęć (w/ć/l/p/inne) ćwi czenia odniesienie do efektów kierunkowych odniesienie do efektów obszarowych Umie rozwiązywać równania wielomianowe w zbiorze liczb zespolonych. K_U01 T1A_U01 Potrafi wykonywać działania na macierzach, umie obliczać wyznaczniki. K_U01 T1A_U01 Umie rozwiązywać układy równań liniowych. Potrafi U_03 dokonać wyboru odpowiedniej metody w celu K_U01 T1A_U01 rozwiązania układu równań. Umie rozwiązywać proste zadania z geometrii ćwi analitycznej. Umie w praktyce zastosować rachunek czenia K_U01 T1A_U01 wektorowy. U_05 Umie naszkicować wykresy podstawowych kwadryk. K_U01 T1A_U01 Rozumie potrzebę ciągłego dokształcania się i podnoszenia swoich kompetencji z zakresu metod matematycznych wykorzystywanych do rozwiązywania typowych problemów inżynierskich. Ma świadomość odpowiedzialności za pracę własną potrafi podporządkować się zasadom pracy w zespole. Treści kształcenia: K_K01 K_K04 T1A_K01 T1A_K03 T1A_K04 1. Treści kształcenia w zakresie wykładu Nr wykładu 1 Treści kształcenia Zbiór liczb zespolonych. Interpretacja geometryczna liczby zespolonej. Działania w zbiorze liczb zespolonych. Moduł i argument liczby zespolonej. Odniesienie do efektów kształcenia dla modułu

2 3 Postać algebraiczna, trygonometryczna i wykładnicza liczby zespolonej. Wzory de Moivre a i Eulera. Pierwiastek liczby zespolonej. Rozwiązywanie równań wielomianowych w dziedzinie zespolonej. Macierze. Rodzaje macierzy. Algebra macierzy. Wyznacznik. Własności i obliczanie wyznaczników. Rozwinięcie Laplace`a. Macierz odwrotna. Układy równań liniowych. Postać macierzowa układu równań. Wzory Cramera. Metoda eliminacji Gaussa. 4 Wektory. Działania na wektorach. Iloczyn skalarny, wektorowy i mieszany. 5 Elementy geometrii analitycznej na płaszczyźnie i w przestrzeni. 6 Kwadryki. Postać kanoniczna i wykresy podstawowych powierzchni stopnia drugiego. U_03 U_05 2. Treści kształcenia w zakresie ćwiczeń Nr zajęć ćwicz. 1 2 3 4 5 6 Treści kształcenia Interpretowanie geometryczne liczby zespolonej. Działania w zbiorze liczb zespolonych. Przedstawianie liczby zespolonej w postaci trygonometrycznej. Potęgowanie liczby zespolonej. Wyznaczanie pierwiastka liczby zespolonej. Rozwiązywanie równań wielomianowych w dziedzinie zespolonej. Działania na macierzach. Obliczanie wyznaczników. Odwracanie macierzy. Rozwiązywanie układów równań liniowych za pomocą wzorów Cramera. Rozwiązywanie układów równań liniowych za pomocą eliminacji Gaussa. Działania na wektorach. Iloczyn skalarny, wektorowy i mieszany. Wyznaczanie równań płaszczyzny i prostej. Badanie wzajemnego położenia punktów, prostych i płaszczyzn w przestrzeni. Kwadryki. Postać kanoniczna i wykresy podstawowych powierzchni stopnia drugiego. Kolokwium. Odniesienie do efektów kształcenia dla modułu U_03 U_05 3. Charakterystyka zadań w ramach innych typów zajęć dydaktycznych Samodzielna i zespołowa praca na ch.

Metody sprawdzania efektów kształcenia Symbol efektu Metody sprawdzania efektów kształcenia (sposób sprawdzenia, w tym dla umiejętności odwołanie do konkretnych zadań projektowych, laboratoryjnych, itp.) Egzamin pisemny, kolokwium Egzamin pisemny, kolokwium Egzamin pisemny, kolokwium Egzamin pisemny, kolokwium Egzamin pisemny, kolokwium Egzamin pisemny, kolokwium, udział w dyskusji na ch Egzamin pisemny, kolokwium, udział w dyskusji na ch U_03 Egzamin pisemny, kolokwium, udział w dyskusji na ch Egzamin pisemny, kolokwium, udział w dyskusji na ch U_05 Egzamin pisemny, kolokwium, udział w dyskusji na ch Obserwacja studenta podczas zajęć dydaktycznych, dyskusje w trakcie zajęć Obserwacja studenta podczas zajęć dydaktycznych, dyskusje w trakcie zajęć D. NAKŁAD PRACY STUDENTA Rodzaj aktywności Bilans punktów ECTS 1 Udział w wykładach 12 2 Udział w ch 12 obciążenie studenta 3 Udział w laboratoriach 4 Udział w konsultacjach (3-4 razy w semestrze) 8 5 Udział w zajęciach projektowych 6 Konsultacje projektowe 7 Udział w egzaminie 2 8 Konsultacje przygotowujące do rozwiązywania quizów w tym konsultacje typu on-line 9 Liczba godzin realizowanych przy bezpośrednim udziale nauczyciela 34 akademickiego (suma) 10 Liczba punktów ECTS, którą student uzyskuje na zajęciach wymagających bezpośredniego udziału nauczyciela akademickiego 11 Samodzielne studiowanie tematyki wykładów 10 12 Samodzielne przygotowanie się do ćwiczeń 20 13 Samodzielne przygotowanie się do kolokwiów 18 14 Samodzielne przygotowanie się do laboratoriów 15 Wykonanie sprawozdań 15 Przygotowanie do kolokwium końcowego z laboratorium 17 Wykonanie projektu lub dokumentacji 18 Przygotowanie do egzaminu 18 19 Samodzielne wykonanie quizów 20 1,36 Liczba godzin samodzielnej pracy studenta 66 (suma) 21 Liczba punktów ECTS, którą student uzyskuje w ramach samodzielnej 2,64 22 Sumaryczne obciążenie pracą studenta 34+66=100 23 Punkty ECTS za moduł 4 24 Nakład pracy związany z zajęciami o charakterze praktycznym 88

25 Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym 1 punkt ECTS=25-30 godzin obciążenia studenta E. LITERATURA 3.52 Wykaz literatury Witryna WWW modułu/przedmiotu 1. Gdowski B., Pluciński E., Zadania z rachunku wektorowego i geometrii analitycznej, PWN, Warszawa 1982. 2. Hożejowska S., Hożejowski L., Maciąg A., Matematyka w zadaniach dla studiów ekonomiczno-technicznych, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2005. 3. Jurlewicz T., Skoczylas Z., Algebra liniowa 1. Definicje, twierdzenia, wzory, Oficyna wydawnicza GiS, Wrocław 2004. 4. Tarnowski S., Wajler S., Matematyka w zadaniach cz.ii. PŚk. Kielce 5. Trajdos T., Matematyka. Cz. 3, WNT, Warszawa 1987. 6. Wstęp do matematyki, red. A Płoski, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 1995. 7. Skrypt z Algebry: http://wzimk-moodle.tu.kielce.pl/