Monitory CRT. Budowa monitora CRT. Zasada działania monitora



Podobne dokumenty
Monitory. Rys. 1 Monitor kineskopowy z działem elektronowym (CRT) Rys.2. Monitor ciekłokrystaliczny (LCD)

Plan wykładu. 1. Budowa monitora CRT 2. Zasada działania monitora CRT 3. Maski 4. Wady i zalety monitorów CRT 5. Testowanie monitora

Gniazdo D-Sub. Istnieją takŝe monitory podłączane do gniazda cyfrowego, gdzie sygnał do monitora przesyłany jest w postaci cyfrowej przez gniazdo DVI.

Monitory Opracował: Andrzej Nowak

Wzmacniacz wizji. Kineskop. Trafopowielacz Działo elektronowe. Cewki

Plan wykładu. 1. Oznaczenia certyfikatów monitorów. 2. Porównanie monitorów CRT z LCD 3. Dobór parametrów monitorów

Lekcja 26. Temat: Kineskopy.

Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK

Zasada działania, porównanie

Lekcja 80. Budowa oscyloskopu

Zmiana rozdzielczości ekranu

Zmiana rozdzielczości ekranu

MONITOR CRT - działanie

Budowa i zasada działania skanera

ROZDZIAŁ 1 Instrukcja obsługi Grand Video Console

Uniwersalne monitory kolorowe LCD

Plan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD

ul. Piastowska 19 tel Pszczyna fax

MONITOR CRT - działanie

O grafice i monitorach. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

kod produktu: 1DD042 Monitor ViewSonic VG2235m 779,76 zł 633,95 zł netto

T2200HD/T2200HDA Szerokoekranowy monitor LCD 21,5 Podręcznik użytkownika

GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej

T2210HD/T2210HDA Szerokoekranowy monitor LCD 21,5 Podręcznik użytkownika

Wprowadzenie do technologii HDR

12.8. Zasada transmisji telewizyjnej

Grafika komputerowa. Dla DSI II

Teoria światła i barwy

T201W/T201WA Szerokoekranowy monitor LCD 20 Podręcznik użytkownika

Instrukcja obsługi Systemu Sterowania Crestron UG Wydział Matematyki, Fizyki i Informatyki

MONITOR SMILE VDS BASIC. comodín (przycisk uniwersalny)

Schemat blokowy monitora CRT

Grafika rastrowa (bitmapa)-

kod produktu: 1PD085 Projektor ViewSonic PS501X 2 678,80 zł 2 177,89 zł netto

PROJEKTORY DO KINA DOMOWEGO

Jaki kolor widzisz? Doświadczenie pokazuje zjawisko męczenia się receptorów w oku oraz istnienie barw dopełniających. Zastosowanie/Słowa kluczowe

@ʁ ud3 k0 Urządzenia Techniki Komputerowej

LCD TV BOX Cyfrowy odbiornik sygnału telewizyjnego

Podział monitorów w zależności od sposobu generowania obrazu

Grafika Komputerowa Wykład 3. Wyświetlanie. mgr inż. Michał Chwesiuk 1/24

kod produktu: 1DD090 Monitor ViewSonic VG2239SMH 715,77 zł 581,93 zł netto

Monitory CRT i LCD. Zasada działania, porównanie.

Do opisu kolorów używanych w grafice cyfrowej śluzą modele barw.

Technikalia multimedialne. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

4.2. Program i jego konfiguracja

Akwizycja obrazów. Zagadnienia wstępne

Procesor. Pamięć RAM. Dysk twardy. Karta grafiki

Dostosowuje wygląd kolorów na wydruku. Uwagi:

hurtowniakamer.com.pl

Przed uruchomieniem. Mocowanie monitora do podstawy. Demontaż monitora od postawy. Przed uruchomieniem

1722/85 I 1722/86 INSTRUKCJA UŻYTKOWNIKA. Panel MIKRA i monitory głośnomówiące CXMODO. Nr ref. 1722/85 Nr ref. 1722/86 INSTRUKCJA UŻYTKOWNIKA

KAMERA WANDAL V-CAM 430 (600TVL 3,6mm 0,01lxIR20)

Komunikujemy się z komputerem.

Polecenie ŚWIATPUNKT - ŚWIATŁO PUNKTOWE

SYMBOLE DOTYCZĄCE BEZPIECZEŃSTWA

Instrukcja obsługi menu OSD w kamerach i8-...r

MODELE KOLORÓW. Przygotował: Robert Bednarz

Dlaczego niebo jest niebieskie?

Pojęcie Barwy. Grafika Komputerowa modele kolorów. Terminologia BARWY W GRAFICE KOMPUTEROWEJ. Marek Pudełko

Podzespoły Systemu Komputerowego:

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

Wstęp do fotografii. piątek, 15 października ggoralski.com

Elektryczna maszyna do pisania Dalekopis

kod produktu: 1DD114 Monitor ViewSonic XG ,72 zł 850,99 zł netto

Istnieje podział na: Monitory CRT Monitory LCD Monitory LED

WYKŁAD 25 URZĄDZENIA WYŚWIETLAJĄCE SMK 2004 Na podstawie: K. Booth, S. Hill, Optoelektronika, WKŁ, Warszawa Uwagi ogólne A.

Dodatek B - Histogram

STEROWNIK MIKROPROCESOROWY PWM EC-10. Dla oświetlenia LED RGB. wersja oprogramowania: 1.7

URZĄDZENIA ZEWNĘTRZNE

Załącznik nr 1 WYMAGANIA DOTYCZĄCE OPISU I PRZEGLĄDU OBRAZÓW REJESTROWANYCH W POSTACI CYFROWEJ I. Wymagania ogólne

Problem nr 1: Podświetlenie LED przyczyną męczącego wzrok migotania

1 LEKCJA. Definicja grafiki. Główne działy grafiki komputerowej. Programy graficzne: Grafika rastrowa. Grafika wektorowa. Grafika trójwymiarowa

STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V. Agropian System

Adam Korzeniewski p Katedra Systemów Multimedialnych

Rodzaje monitorów. CRT kineskopowe. LCD ciekłokrystaliczne. PLASMA plazmowe OLED

Polska-Warszawa: Przyrządy chirurgiczne 2019/S Sprostowanie. Ogłoszenie zmian lub dodatkowych informacji. Dostawy

1. Kineskopy. 1.1 Kineskopy czarno-białe.

Schemat blokowy monitora CRT

U-DRIVE DUAL. Instrukcja obsługi. Osobista czarna skrzynka kierowcy z kamerą cofania MT4056

PRESTIGIO GEOVISION 150/450

INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ

OPIS PRZEDMIOTU ZAMÓWIENIA

Xelee Mini IR / DMX512

Ustawienia materiałów i tekstur w programie KD Max. MTPARTNER S.C.

PODSTAWY BARWY, PIGMENTY CERAMICZNE

Color Display Clone Podręcznik użytkownika

Instrukcja obsługi. Karta video USB + program DVR-USB/8F. Dane techniczne oraz treść poniższej instrukcji mogą ulec zmianie bez uprzedzenia.

Podstawy grafiki komputerowej

Ćwiczenie Wstawianie spisu treści, indeksu alfabetycznego i indeksu ilustracji Wstaw > Indeksy i spisy > indeksy i spisy) Wskazówka:

Strona 1 z 5 Wersja z dnia 9 grudnia 2010 roku

KAMERA kompaktowa kolorowa BOX U-CAM Kamery wewnętrzne

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Jak funkcjonuje nagrywarka DVD

Oświetlenie oraz pole elektryczne i magnetyczne na stanowisku do pracy z komputerem.

Kompletny system multimedialny, łatwe w użyciu a jednocześnie bogate w oferowane funkcje narzędzie wspomagające oprawę liturgii i pracę duszpasterską

Monitor ekranowy urządzenie, na którym wyświetlane są informacje wyprowadzane z komputera.

3.5 Wyznaczanie stosunku e/m(e22)

f = -50 cm ma zdolność skupiającą

Jakość koloru. Menu Jakość. Strona 1 z 7

Transkrypt:

Monitory CRT Źródło elektronów Budowa monitora CRT Podstawowym elementem monitora CRT jest kineskop. Tradycyjne kineskopy zastosowane w monitorach kolorowych mają trzy oddzielne tzw. działa elektronowe, z których każde emituje wiązkę elektronów, odpowiedzialną za wyświetlenie jednej z trzech podstawowych barw czerwonej, zielonej i niebieskiej. Wiązki elektronów są odpowiednio ogniskowane przez zespół soczewek i pryzmatów elektronowych. Stanowią je cewki siodłowe lub toroidalne, umieszczone tuż za działem elektronowym (są przyklejone do tzw. szyjki kineskopu). Dzięki temu otrzymuje się odpowiednią zbieżność kolorów, czystość oraz geometrię obrazu. W takim przypadku wewnętrzna część ekranu nie jest pokryta jednolitym luminoforem, tak jak to ma miejsce w przypadku kineskopów monochromatycznych, ale trzema warstwami i to w taki sposób, iż ekran pokryty jest pojedynczymi triadami RGB (Red Green Blue), składającymi się z leżących obok siebie trzech mikroskopijnej wielkości plamek R, G i B, (po jednej z każdej warstwy). Wiązka z pojedynczego działa elektronowego (np. Red) pada na odpowiadającą jej plamkę (Red), itp. Dzięki trzem niezależnym strumieniom elektronów każda z tych cząstek może być naświetlana z inną intensywnością. Nawet jeśli zostaną wzbudzone wszystkie trzy plamki i spojrzymy na nie z pewnej odległości, będą one zlewały się w całość, tworząc jednolitą barwę pochodną. Możliwe jest to dzięki wykorzystaniu ograniczonej rozdzielczości oka ludzkiego. Swobodna zmiana natężenia poszczególnych strumieni pozwala na uzyskanie pełnej palety barw. Aby wiązki elektronowe z odpowiednich dział RGB trafiały we właściwe plamki RGB i nie powodowały świecenia plamek sąsiednich, stosuje się specjalnej budowy maskownicę. Ponadto kineskopy kolorowe wyposażone są w tzw. pętlę rozmagnesowującą (oplata ona bańkę kineskopu), wytwarzającą niewielkie stałe pole magnetyczne, zabezpieczające kineskop przed rozproszonymi polami magnetycznymi. Proces rozmagnesowywania ma miejsce najczęściej po włączeniu zasilania, lub może być inicjowany specjalnym przyciskiem (degauss). Zasada działania monitora Karta graficzna generuje informacje potrzebne do wysterowania kineskopu. Są to sygnały dla kolorów czerwonego, niebieskiego i zielonego, impulsy odchylania poziomego i pionowego oraz sygnał DDC. Za jego pomocą karta może porozumieć się" z monitorem i ustalić, na jaki tryb pracy ma się on przełączyć. Wzmacniane przez układy elektroniczne sygnały wizyjne podawane są na katody R, G, B (Red, Green, Blue - czerwony, zielony, niebieski). Z elektronowych dział kineskopu emitowane są wiązki elektronów. Przednia część kineskopu składa się z maskownicy i warstwy luminoforu zbudowanego z milionów barwnych punktów pogrupowanych w triady. Każda z nich składa się z trzech malutkich części luminoforu w podstawowych kolorach. Wysyłany przez działo elektronowe strumień elektronów po drodze mija maskownicę. Głównym jej zadaniem jest zapewnienie czystości barw - tak aby jeden strumień elektronów padał tylko na

plamki luminoforu czerwonego, drugi - tylko na zielonego, a trzeci - niebieskiego. Elektrony, kończąc swój lot, uderzają w luminofor i przekazują mu swą energię, która zamieniana jest przez warstwę fluorescencyjną na światło w jednym z trzech podstawowych kolorów. Wiązka elektronów w czasie jednej sekundy kilkadziesiąt razy obiega całą powierzchnię ekranu. Za czynność tę odpowiadają cewki odchylające, sterowane impulsami generowanymi przez kartę graficzną. Światła pochodzące od wszystkich elementów ekranu kineskopu ulegają zmieszaniu w oku obserwatora i wywołują wrażenie kolorowego obrazu. Do skorygowania ogniskowania i pozycji wiązki elektronów bombardującej luminofor służy specjalna maska. Jest ona niezbędna do uzyskania obrazu o zadowalającej ostrości i kontraście. Typy lamp kineskopowych We współczesnych monitorach spotyka się maskownice perforowane, szczelinowe oraz kratowe. Maska perforowana to nic innego jak cienka metalowa folia z ogromną ilością mikroskopijnych dziurek, przez które przechodzą wiązki elektronów. To właśnie dzięki właściwemu rozmieszczeniu tych otworów działa elektronowe trafiają" tylko we właściwe punkty luminoforu. W masce niebieskie szczelinowej funkcję elementów zapewniających odpowiednie pozycjonowanie strumieni elektronów pełnią cienkie druciki, rozpięte pionowo na całej szerokości ekranu. Zaletą takiej konstrukcji maski jest to, iż ze względu na jej specyficzną budowę do luminoforu docierają wiązki elektronów o większej energii. W rezultacie obraz uzyskiwany na kineskopach z maską szczelinową cechują zwykle nieco jaśniejsze i żywsze kolory, niż ma to miejsce w przypadku maski perforowanej. Maskownice szczelinowe z reguły charakteryzują się także nieco mniejszymi rozmiarami plamki. Jest to niezbędne, ponieważ duża przepustowość" szczelin powoduje w konsekwencji nieznaczne rozmycia obrazu, które nie występują w maskownicach perforowanych. O ile powierzchnia maski perforowanej ze względu na konieczność właściwego zogniskowania wiązki na powierzchni luminoforu jest zawsze wycinkiem sfery, o tyle maska szczelinowa ma postać wycinka walca (w starszych konstrukcjach) bądź jest zupełnie płaska. Znacznie zmniejsza to zniekształcenia geometrii podczas wyświetlania obrazu, redukuje także męczące dla użytkownika odbicia światła od powierzchni ekranu. Kineskopy Delta - maska inwarowa (perforowana) Tradycyjna lampa kineskopowa wykorzystuje maskownicę (maskę) perforowaną. Jest nią cienka, czarna folia posiadająca określoną liczbę okrągłych otworów. Nazwa Delta" odzwierciedla sposób położenia poszczególnych pikseli: jeden kolorowy punkt na ekranie tworzą trzy leżące obok siebie jednobarwne punkty, tworzące trójkąt równoboczny. Tak samo względem siebie umiejscowione są trzy działa elektronowe. Kineskop Trinitron - maska szczelinowa Kineskop tego typu skonstruowała firma Sony. Podstawową różnicą między nim a kineskopem typu Deltą jest inna konstrukcja maskownicy. Tworzą ją cienkie, czarne, pionowo rozpięte, działo maska perforowana

metalowe druciki grubości 0,1 mm. Dzięki takiemu rozwiązaniu wyświetlane na ekranie punkty mają kształt prostokątny, co zapewnia większy kontrast i ostrość oraz lepszą geometrię obrazu. Dodatkową zaletą tego kineskopu jest fakt, iż jest on wycinkiem walca, przez co zniekształcenia geometryczne obrazu są mniejsze, a także posiadają lepsze właściwości przeciwodblaskowe. W kineskopach Trinitron zastosowano tylko jedno działko elektronowe. Największą wadą rozwiązania firmy Sony jest wrażliwość na drgania mechaniczne. Silne dźwięki odtwarzane przez głośniki stojące blisko urządzenia mogą wprowadzić paski maskownicy w drgania, co powoduje powstawanie zniekształceń obrazu. W celu zmniejszenia wpływu drgań montuje się w poprzek ekranu jeden lub dwa (w zależności od rozmiarów kineskopu) druty stabilizacyjne, które są szczególnie widoczne na jasnym tle. Kineskop Diamondtron maska szczelinowa Kineskopy Diamondtron zostały po raz pierwszy zastosowane w monitorach firmy Mitsubishi. Jest to pewna modyfikacja konstrukcji Trinitron firmy Sony. Maska jest również szczelinowa, ale zastosowane zostały trzy działa elektronowe - po jednym dla każdego koloru. Kineskop CromaClear maska kratowa Kineskopy CromaClear zostały wprowadzone przez firmę NEC. Jest to technologia będąca połączeniem konstrukcji szczelinowej i inwarowej. W masce kratowej istnieją również szczeliny, są jednak o wiele krótsze niż w przypadku maski szczelinowej, pogrupowane w tzw. triady i przesunięte względem siebie. Dzięki temu kolory są żywsze, obraz bardziej stabilny i kontrastowy. Temperatura barwowa lampy kineskopowej Zadaniem kineskopu jest przekształcenie sygnału elektrycznego w obraz. Kineskop kolorowy powinien odtwarzać zarówno obraz kolorowy jak i czarno biały. Działanie kineskopu oparte jest na pewnych właściwościach oka ludzkiego. Człowiek posiada w oku trzy główne zakończenia nerwów wzrokowych, które są one uczulone na kolory: czerwony (Red), zielony (Green), niebieski (Blue). Są to tzw. kolory podstawowe, które tworzą paletę barw RGB. Natomiast kolory pozostałe, w tym także biały i czarny, otrzymujemy poprzez zmieszanie na ekranie kineskopu trzech kolorów podstawowych w określonych proporcjach (nasyceniu). Ponieważ niemożliwe jest ustalenie dokładnej definicji koloru białego, więc wyróżniamy trzy grupy (rodzaje) koloru białego, definiowane z różną temperaturą barwy: 2848 K - odpowiada to mniej więcej światłu wytwarzanemu przez żarówkę z grzejnikiem wykonanym z drutu wolframowego i o dużej sile światła, 4800 K - to oświetlenie w pogodne samo południe, 6500 K - to jasne pogodne niebo bez widocznych silnych promieni słonecznych, (lekki błękit). Parametry monitorów CRT Jednym z najważniejszych parametrów monitora, określającym jego rzeczywistą wartość jest rozdzielczość, z jaką może on wyświetlać obraz. Jest ona ściśle związana z maksymalną częstotliwością odchylania poziomego i pionowego monitora, dlatego więc te parametry odgrywają największą rolę. - druty stabilizując e

Częstotliwość odchylania poziomego określa prędkość, z jaką strumień elektronów wyświetla jedną linię poziomą na ekranie (stanowi ona odwrotność czasu, jaki upływa na narysowanie jednego punktu). Natomiast częstotliwość odchylania pionowego (odświeżania obrazu) określa liczbę kompletnych ekranów, które monitor jest w stanie wyświetlić w czasie 1 s. Im obie powyższe częstotliwości są większe, tym rozdzielczość monitora może ulec zwiększeniu. Należy pamiętać, żeby obraz o danej rozdzielczości był wyświetlany z odpowiednią częstotliwością odświeżania. Luminofor, zastosowany w kineskopach świeci tylko krótką chwilę - gdy wiązka elektronów przestaje padać na dany punkt, ulega on wygaszeniu. Jeśli częstotliwość odświeżania jest zbyt niska, możemy zauważyć zjawisko migotania obrazu, które jest bardzo męczące i szkodliwe dla oczu. W celu zapewnienia odpowiedniej stabilności obrazu strumień musi w odpowiednio krótkich odstępach czasu przebiegać przez całą powierzchnię ekranu. W nowoczesnych monitorach częstotliwość odświeżania nie powinna być mniejsza niż 75-85 Hz. Plamka - jej wielkość decyduje o rozmiarach Rozdzielczość najmniejszych detali, jakie monitor jest w stanie pozioma wyświetlić, im mniejsza plamka tym dokładniejszy obraz, przy czym średnia wielkość plamki rośnie wraz z przekątną ekranu. Uwaga! - określenie wielkość plamki jest nieco myląca, gdyż tak naprawdę chodzi nie o jej wielkość a o odległości między plamkami luminescencyjnymi tego samego koloru! Rozdzielczość - jest to ilość pikseli w pionie i w poziomie. Im wyższa rozdzielczość tym obraz jest bardziej ostry i większy. Jest to jednak uwarunkowane również możliwościami zainstalowanej w komputerze karty graficznej. W przypadku monitorów 15-calowych rozdzielczość powinna wynosić 800x600, 17-calowych - 1024x768, w 19-calowych - 1152x864, 21-calowych zaś - 1280x1024 lub 1600x1200. Kolory w jakich obraz wyświetlany jest na ekranie monitora podawane są w bitach: 8 - bitów = maks.256 kolorów (minimum dla multimediów) 16 - bitów = maks. 65 536 kolorów (HighColor, jakość wideo) 24 - bity = maks. 16 777 216 min kolorów (TrueColor, jakość fotograficzna) 32 - bity = maks. 16 777 216 min kolorów (TrueColor, szybszy dostęp do pamięci) Częstotliwość odświeżania - im wyższa tym lepsza, co objawia się mniejszym mruganiem obrazu, rozsądny poziom to 75 Hz lub 85 Hz (norma VESA). Przy tej samej karcie graficznej częstotliwość odświeżania jest wprost proporcjonalna do rozdzielczości, czyli im większa rozdzielczość tym mniejsza częstotliwość odświeżania, dlatego dopasowanie odpowiedniej karty graficznej do możliwości monitora jest bardzo ważne. Pasmo - Znając wartość pasma przenoszenia można obliczyć maksymalną rozdzielczość wyświetlanego na ekranie obrazu. Wielkość ta jest wyrażana w MHz i znajduje się zwykle w specyfikacji technicznej urządzenia. Szerokość pasma jest też często określana mianem częstotliwości taktowania pikseli, którą oblicza się jako iloczyn częstotliwości odświeżania obrazu oraz rozdzielczości pionowej i poziomej. Aby sprawdzić, czy posiadany monitor będzie mógł wyświetlać obraz w rozdzielczości 1280x1024 z częstotliwością co najmniej 75 Hz, należy wykonać kilka prostych wyliczeń. Na początek trzeba pomnożyć wartość rozdzielczości pionowej, poziomej i częstotliwości odświeżania (1280 x 1024 x 75 Hz = 98,304 MHz). Otrzymany wynik należy zwiększyć o 5% - zapas przewidziany na czas powrotu plamki do początku wiersza na górze ekranu (98,304 x 1,05 = 103,219 MHz). Jeżeli obliczona wartość jest mniejsza od szerokości pasma wideo, monitor będzie mógł wyświetlić obraz o żądanej rozdzielczości i częstotliwości odświeżania.

Rozmiary ekranu - czyli przekątna ekranu wyrażana w calach (1 cal = 2,54 cm). Uwaga! - w rzeczywistości powierzchnia czynna ekranu jest mniejsza niż podają producenci, gdyż część kineskopu zakryta jest obudową. Brak przeplotu (Non interlaced) - redukcja migotania obrazu. Płaski ekran (Flat Screen) - najnowsze technologie pozwalające uzyskać bardziej płaski ekrany, co eliminuje wypaczenia obrazu. Multiscan - automatyczne dopasowanie się do sygnału podawanego przez kartę graficzną. Normy MPR i TCO - normy określające dopuszczalny poziom promieniowania elektromagnetycznego. Energy Star - Możliwość przechodzenia monitora po dłuższej bezczynności najpierw w tryb czuwania a następnie uśpienia, co znacznie redukuje ilość zużywanej energii. Powłoka antyrefleksyjna (Anti-glare coating) - eliminuje efekt odbijania się promieni słonecznych od ekranu monitora. Degauss - opcja usuwająca namagnetyzowane obszary z ekranu monitora, które źle wpływają na jakość obrazu. Większość nowoczesnych monitorów jest wyposażona w przycisk, którego wciśnięcie powoduje rozmagnesowanie ekranu i znaczną poprawę oglądanego obrazu, a zwłaszcza wierności kolorów. B - Polska norma bezpieczeństwa elektrycznego. Sterowanie cyfrowe - OSD Obecnie produkowane monitory zamiast niewygodnych w obsłudze i zawodnych potencjometrów wykorzystują cyfrowy system sterowania parametrami wyświetlanego obrazu -OSD (On Screen Display). Poruszając się po menu systemu OSD, za pomocą kilku przycisków można dokonać regulacji geometrii i pozycji obrazu, zmienić jaskrawość, kontrast i temperaturę kolorów. Dodatkowo użytkownik jest informowany przez system OSD o rozdzielczości oraz częstotliwości odchylania pionowego i poziomego wyświetlanego obrazu. W droższych monitorach można spotkać opcję regulacji błędów zbieżności (konwergencji), czystości kolorów czy eliminacji mory. W monitorach montowane są coraz bardziej zaawansowane układy elektroniczne. Podobnie jak w większości sprzętu komputerowego, w nich także można znaleźć mikroprocesory sterujące pracą całego urządzenia. Są one odpowiedzialne za kontrolę częstotliwości sygnału podawanego z karty graficznej (np. czy nie jest zbyt wysoka) oraz za przetwarzanie informacji dostarczanych z systemu regulacji OSD. Regulacja jasności, kontrastu czy temperatury wymaga zmiany sygnału wideo, który steruje pracą wzmacniaczy wideo. Tę czynność wykonuje procesor. Z sercem monitora jest sprzężona pamięć, w której przechowywane są fabryczne ustawienia urządzenia. Dzięki nim po podłączeniu urządzenia do każdej, nawet nie skonfigurowanej karty graficznej na ekranie można oglądać obraz. Monitor automatycznie przełącza się w jeden z podstawowych trybów graficznych, zapisanych w pamięci przez producenta. Często możliwe jest również zapamiętanie od kilku do kilkunastu własnych ustawień parametrów pracy monitora.