EGZAMIN MATURALNY Z MATEMATYKI



Podobne dokumenty
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2013

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

Czas pracy 170 minut

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI 9 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

LUBELSKA PRÓBA PRZED MATUR 2016

LUBELSKA PRÓBA PRZED MATURĄ 2019

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Transkrypt:

Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-052 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora. Błędne zapisy przekreśl. 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie. 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie. 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. 9. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. 10. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe. Życzymy powodzenia! Wypełnia zdający przed rozpoczęciem pracy ARKUSZ I MAJ ROK 2005 Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów tylko OKE Kraków, OKE Wrocław PESEL ZDAJĄCEGO KOD ZDAJĄCEGO

2 Egzamin maturalny z matematyki Zadanie 1. (3 pkt) W pudełku są trzy kule białe i pięć kul czarnych. Do pudełka można albo dołożyć jedną kulę białą albo usunąć z niego jedną kulę czarną, a następnie wylosować z tego pudełka jedną kulę. W którym z tych przypadków wylosowanie kuli białej jest bardziej prawdopodobne? Wykonaj odpowiednie obliczenia.

Egzamin maturalny z matematyki 3 Zadanie 2. (4 pkt) n + 2 Dany jest ciąg ( a n ), gdzie a n = dla n = 1,2,3... Wyznacz wszystkie wyrazy tego ciągu 3n + 1 1 większe od. 2

4 Egzamin maturalny z matematyki Zadanie 3. (4 pkt) 3 2 Dany jest wielomian W ( x) x kx = + 4. a) Wyznacz współczynnik k tego wielomianu wiedząc, że wielomian ten jest podzielny przez dwumian x + 2. b) Dla wyznaczonej wartości k rozłóż wielomian na czynniki i podaj wszystkie jego pierwiastki.

Egzamin maturalny z matematyki 5 Zadanie 4. (5 pkt) Na trzech półkach ustawiono 76 płyt kompaktowych. Okazało się, że liczby płyt na półkach górnej, środkowej i dolnej tworzą rosnący ciąg geometryczny. Na środkowej półce stoją 24 płyty. Oblicz, ile płyt stoi na półce górnej, a ile płyt stoi na półce dolnej.

6 Egzamin maturalny z matematyki Zadanie 5. (4 pkt) Sklep sprowadza z hurtowni kurtki płacąc po 100 zł za sztukę i sprzedaje średnio 40 sztuk miesięcznie po 160 zł. Zaobserwowano, że każda kolejna obniżka ceny sprzedaży kurtki o 1 zł zwiększa sprzedaż miesięczną o 1 sztukę. Jaką cenę kurtki powinien ustalić sprzedawca, aby jego miesięczny zysk był największy?

Egzamin maturalny z matematyki 7 Zadanie 6. (6 pkt) Dane są zbiory liczb rzeczywistych: A= x: x+ 2 3 { } { : ( 2 1 3 3 2 ) 8 13 6 3 } B= x x x x + x+ Zapisz w postaci przedziałów liczbowych zbiory A, B, A B oraz B A.

8 Egzamin maturalny z matematyki Zadanie 7. (5 pkt) W poniższej tabeli przedstawiono wyniki sondażu przeprowadzonego w grupie uczniów, dotyczącego czasu przeznaczanego dziennie na przygotowanie zadań domowych. Czas (w godzinach) Liczba uczniów 1 2 3 4 5 10 15 10 a) Naszkicuj diagram słupkowy ilustrujący wyniki tego sondażu. b) Oblicz średnią liczbę godzin, jaką uczniowie przeznaczają dziennie na przygotowanie zadań domowych. c) Oblicz wariancję i odchylenie standardowe czasu przeznaczonego dziennie na przygotowanie zadań domowych. Wynik podaj z dokładnością do 0,01.

Egzamin maturalny z matematyki 9 Zadanie 8. (6 pkt) Z kawałka materiału o kształcie i wymiarach czworokąta ABCD (patrz na rysunek obok) wycięto okrągłą serwetkę o promieniu 3 dm. Oblicz, ile procent całego materiału stanowi jego niewykorzystana część. Wynik podaj z dokładnością do 0,01 procenta.

10 Egzamin maturalny z matematyki Zadanie 9. (6 pkt) Rodzeństwo w wieku 8 i 10 lat otrzymało razem w spadku 84100 zł. Kwotę tę złożono w banku, który stosuje kapitalizację roczną przy rocznej stopie procentowej 5%. Każde z dzieci otrzyma swoją część spadku z chwilą osiągnięcia wieku 21 lat. Życzeniem spadkodawcy było takie podzielenie kwoty spadku, aby w przyszłości obie wypłacone części spadku zaokrąglone do 1 zł były równe. Jak należy podzielić kwotę 84100 zł między rodzeństwo? Zapisz wszystkie wykonywane obliczenia.

Egzamin maturalny z matematyki 11 Zadanie 10. (7 pkt) W ostrosłupie czworokątnym prawidłowym wysokości przeciwległych ścian bocznych poprowadzone z wierzchołka ostrosłupa mają długości h i tworzą kąt o mierze 2α. Oblicz objętość tego ostrosłupa.

12 Egzamin maturalny z matematyki BRUDNOPIS

Egzamin maturalny z matematyki 13