Genomika funkcjonalna
Co to znaczy? TCACAATTTAGACATCTAGTCTTCCACTTAAGCATATTTAGATTGTTTCCAGTTTTCAGCTTTTATGACTAAATCTTCTAAAATTGTTTTTCCCTAAATGTATATTTTAATTTG TCTCAGGAGTAGAATTTCTGAGTCATAAAGCGGTCATATGTATAAATTTTAGGTGCCTCATAGCTCTTCAAATAGTCATCCCATTTTATACATCCAGGCAATATATGAGAG TTCTTGGTGCTCCACATCTTAGCTAGGATTTGATGTCAACCAGTCTCTTTAATTTAGATATTCTAGTACATACAAAATAATACCTCAGTGTAACCTCTGTTTGTATTTCCCT TGATTAACTGATGCTGAGCACATCTTCATGTGCTTATTGACCATTAATTAGTCTTATTTGTTAAATGTCTCAAATATTTTATACAGTTTTACATTGTGTTATTCATTTTTTAAA AAATTCATTTTAGGTTATATGTATGTGTGTGTCAAAGTGTGTGTACATCTATTTGATATATGTATGTCTATATATTCTGGATACCATCTCTGTTTCATGCATTGCATATATATTT GCCTATTTAGTGGTTTATCTTTTCATTTTCTTTTGGTATCTTTTCATTAGAAATGTTATTTATTTTGAGTAAGTAACATTTAATATATTCTGTAACATTTAATGAATCATTTTATG TTATGTTTAGTATTAAATTTCTGAAAACATTCTATGTATTCTACTAGAATTGTCATAATTTTATCTTTTATATACATTGATATTTTTATGTCAAATATGTAGGTATGTGATATTATG CACATGGTTTTAATTCAGTTAATTGTTCTTCCAGATGTTTGTACCATTCCAACATCATTTAAATCATTAAATGAAAAGCCTTTCCTTACTAGCTAGCCAGCTTTGAAAATC CATTCATAGGGTTTGTGTTAATATATTTTTGTTCTTTTTTTTCCTTTCTACTGATCTCTTTATATTAATACCTACTGTGGCTTTATATGAAGTCATGGAATAATACGTAGTAAG CCCTCTAACACTGTTCTGTTACTGTTGTTATTGTTTTCTCAGGGTACTTTGAAATATTCGAGATTTTATTATTTTTTAGTAGCCTAGATTTCAAGATTGTTTTGACGATCAAT TTTTGAATCAATTGTCAATATTTTTAGTAATAAAATGATGATTTTTGATTGGAAATACATTAAATCTATAAGCCAAATTGGAGATTATTGATATATTAACAAAAATGAGTTTTCC AGTCCATGAATGTATGCACATTATAAAATTCATTCTTAAGTATGTCATTTTTTAAGTTTTAGTTTCAGCAGTATATGTTTGTTACATAGGTAAACTCCTGTCATGGGGGTTA GTTGTACAGGTTATTTTATCATCCAGGCATAAAGCCCAGTACCCAGTAGTTATCTTTTCTGCTCCTCTCCCTCCTGTCACCCTCCACTCTCAAGTAGACCCCAGTTTC TGTTGTTCTCTTCTTTGCATTAATGACTTCTCATCATTTAGATTGCACTTGTAAGTGAGAACAGGACGTATGTGGTTTTCTACTCCTGTGTTAGTTTGCTAAGGATAACC ACCTCCATCTCCATCCATGTTCCCACAAAAGACATGATCTCCTTTTTTATGGCTGCATATTATTCCATGGTATATATGTACCACATTTTCTTTATCCAATCTGTCATTGATG GACATTTAGGTTGTTTCCACATCATTGCCGTTGTAAATACTGCTGCAGTGAATATTCGTGTGTATGTCTTTATGGTAGAATGATTTATATTCCTCTGGGTATATTTCCAAGT AATGGGATGGTTGGGTCAAATGGTAATTCTGCTTTTAGCTTTTTGAGGAATTGCCATATTGCCTTTCACAACGGTTGAACTAATTTATACTCCCAAGAGTGTATAAGTTG TTCCTTTTTCTCTGCAACCTCGACATCACCTGTTATTTATGACTTTTATATAATAGCCATTCTGCTGGTCTGAGATGGTATCTCATTATGATTTTGATTTGCATTTCTCTAAT GCTCAGTGATATTGAGCTTGGCTGCATATATGTCTTCTTTTAAAAATATCTGTTCATGTCCTTTGCCTAATTTATAACGGGGTTGTTTGTTTTTCTCTTGTAAATTTGTTTAA GTTCCTTATAGATTCTAGGTATTAAACCTTTTTTCAGAGGCGTGGCTTGCAAATATTTTCTCCCATTCTATAGGTTGTCTGTTTATTCTGTTGATAGTTTCCCTTGCTGTG CAGAAGCTCTTAACTTTAATTAGATCCGACTTGTCAATTTTTGCTTTGGTCGCAATTGCTTTTGATGTTATTGTCGTGAAATCTTTGCTAGTTCTTAGGTCCAGGATGATA TTGCCCAAGTTGTCTTCCAGGGCTTTTATAATTTTGGATTTTACATTTAAGTCTTAATATATTTATTAAATTTGTTAGGGTTTCAGGATACAAGGACAATATAGCAGCAAAC AATGTAAAAGTAAAATCTGAAAAATAATAGAAAACAGTTTAATTGAACACTTTACCATTATGTAATGCCCTTCTTTGTCTTTCCTGATCTTTGTTGGTTTGAAGTTCAAAAA AGACAAACTTAATGGTACAATAGGTATTGTAGATTTCAGGACTTTCTGTATAAAATATTTTGTATATATGAATAGATCATTTTTTATTTCCAGTCTTTAAACATTTTCTTAACAT TTTCTTCTATTGCTTCACTTCACTCGCTAGGACCATCAGGACAGTGTTGAACAGAAATTGTCAGACTGATCATCACAACTTTTTCTAGATTTTAGAAGGAAATTTTTCTT TATTTCAACATAAAGCAGCATGTTAATGCCAAGTTTTAATATGTGTTATCAGATTGAAATTTTTTTGTATATTTCTACATTACCAAGAATTTTTAGCAAGAGTTTTTGTTGAG TTTTAATTTAAAAATCATTTGTTAATTTCATCTGATTTTTTTATTTCTCTTTTTACCTTAAGAGATTAAACTGACTACAGATTGAATATAAACAAACAAACAAACAAACAAAAA CTCTAAAATGCTGTGGATCAACACCACTTAGTAATTTGTATACTTGGATTCAATTTGCTGAAATTTTGTTAGACATTTTTGCGTCGATATTTATGAGGGATGTTGATCTGT AAAAGTATTAAAATGCCTTTGACAGATAGTGTCACCATATAAAAAACTTTGAACAAAATCAGATTATATCACTGTGGATATTTCTATTTTGAACTAACTTAGATGATAATTTT AATCTATATCCTAGATGAACT Mały fragment chromosomu 21
Odwrotna genetyka od genu do funkcji Genetyka tradycyjna Genetyka odwrotna Funkcja (mutacja, fenotyp) Gen (z sekwencji całego genomu) Identyfikacja i klonowanie Inaktywacja genu genu Analiza uzyskanego fenotypu Analiza genu
Odwrotna genetyka inaktywacja przez rekombinację
Odwrotna genetyka interferencja RNA Odkrycie roku 2002 regulacyjna rola małych RNA Nagroda Nobla w dziedzinie medycyny 2006, za odkrycie mechanizmu interferencji RNA A. Fire i C. Mello
sirna - jak to działa? Wprowadzenie do komórek krótkich dwuniciowych RNA (dsrna) o sekwencji opowiadającej wyciszanemu genowi Aktywowany komórkowy mechanizm wyciszania ekspresji genu przez degradację mrna przez hamowanie translacji Hannon G.J.: RNA interference, Nature 418, July 11, 2002
Redagowanie genomu - system CRISPR/Cas9 System obronny bakterii przed fagami, zaadaptowany do edycji dowolnej sekwencji w genomie. Nukleaza bakteryjna (Cas) naprowadzana przez RNA (guide RNA) Przecinana sekwencja DNA substratem dla mechanizmów naprawy genomu komórki Rozwijane warianty z innymi enzymami efektorowymi (np. bezpośrednia zmiana zasady azotowej) Działa także u organizmów, dla których nie istnieją stabilne wektory Nature 495, 50 51 (07 March 2013) doi:10.1038/495050a
Co to oznacza dla nauki i biotechnologii Można zmienić dowolny gen u roślin i zwierząt Można łatwo adaptować do kolejnych gatunków (w odróżnieniu od tradycyjnej inżynierii genetycznej) Modyfikacja nie pozostawia żadnego śladu, nie zostaje włączony obcy DNA mimo to podlega (w UE) regulacjom takim, jak GMO sprzeciw aktywistów
A dla człowieka Możliwa jest zmiana sekwencji dowolnego genu w komórkach zarodkowych Skuteczność: około 50-80% W połączeniu z zapłodnieniem pozaustrojowym możliwość uzyskania zmodyfikowanego człowieka Pierwsze badania - na komórkach, z których nie mogły rozwinąć się zarodki (2015) Obecnie badania na komórkach zarodkowych człowieka Na człowieku (He 2018)?
Dzieci na zamówienie??
Genomika funkcjonalna Wysokoprzepustowe analizy: ekspresji genów (mikromacierze, RNAseq) proteomu interakcji genetycznych i fizycznych fenotypów
Biologia systemów wyzwanie Przejście od opisu genów (i ich produktów) do opisu działania całych systemów genomów i komórek Zrozumienie dziedziczenia wieloczynnikowego wymaga stworzenia systemowego modelu współdziałania genów Przejście od opisu części do opisu całości Właściwości emergentne cechy całego systemu nie będące prostą ekstrapolacją cech jego elementów
A w biotechnologii? Współczesna biotechnologia molekularna bardzo sprawnie manipuluje pojedynczymi genami ekspresja heterologiczna transgeneza roślin A co z bardziej złożonymi, wieloczynnikowymi cechami?
Inżynieria ewolucyjna Brassica oleracea var. silvestris (brzoskiew) Brassica oleracea odmiany uprawne
Biologia syntetyczna Współczesna inżynieria genetyczna ograniczona jest do prostych systemów, gdzie za pożądaną funkcję odpowiada jeden lub kilka genów Biologia syntetyczna - projektowanie nowych systemowych właściwości organizmów żywych
Podejścia biologii syntetycznej od góry (top-down) - głęboka modyfikacja istniejących systemów minimalne genomy syntetyczne genomy przeprojektowane genomy Przykład - ortogonalny kod genetyczny
Pierwszy syntetyczny funkcjonujący genom 2010 Syntetyczny genom Mycoplasma mycoides JCVI-syn1.0 (~1 mln par zasad) Złożony z 1000 kaset po 1080 pz Składanie z pomocą drożdży znaki wodne
Kolejny krok - syntetyczny genom minimalny Na podstawie JCVI-syn1.0 Usunięte geny, które nie są niezbędne do życia (w warunkach laboratorium) 531 kb, 473 geny
Inżynieria kodu genetycznego Zmiana kodonu stop na sensowny (może kodować niestandardowy aminokwas) Wprowadzenie równoległego kodu, np. czwórkowego, kodującego niestandradowe aminokwasy Lajoie et al., 2013, Science 342: 357-342 Davis, L., and Chin, J.W. (2012). Nat Rev Mol Cell Biol 13, 168 182.
Podejście od dołu (bottomup) Repertuar elementów i podstawowych obwodów Matematyczny model elementów Projektowanie i składanie systemów z elementów (cegiełek)
Metafora obwodu
Syntetyczna biochemia Analogi cząsteczek biologicznych o nowych, rozszerzonych możliwościach DNA z dodatkowymi parami zasad Białka z nowymi aminokwasami https://synthorx.com/
What I cannot build I cannot understand Richard Feynman
Mutacje w ujęciu genetycznym
Mutacje poziom kodu genetycznego Podstawienia Niesynonimiczne Zmiany sensu (missense) Nonsens (nonsense) Synonimiczne (ciche) Mogą niekiedy wpłynąć na fenotyp - efekt częstości wykorzystywania kodonów synonimicznych
Mutacje poziom kodu genetycznego Zmiany fazy odczytu zmienia sekwencję i/lub długość kodowanego białka poniżej miejsca wystąpienia Delecje lub insercje w białku delecje lub insercje wielokrotności 3 nukleotydów delecje lub insercje eksonów Deficjencja rozległa delecja, np. obejmująca cały gen
Mutacje efekty fenotypowe Klasyfikacja Müllera nullomorfy hipomorfy hipermorfy antymorfy neomorfy
Nullomorfy Brak jakiejkolwiek funkcji genu Tzw. allele null, inna nazwa: amorfy Nullomorfy: transkrypcyjne (brak transkryptu) translacyjne (brak białka wykrywalnego przeciwciałem) inaktywacyjne (obecne białko, ale całkowicie nieaktywne) najpewniejszy sposób na uzyskanie nullomorfa deficjencja (pełna delecja) Często recesywne Dominacja (lub kodominacja) w przypadku efektu ilości białka - haploinsuficjencja
Hipomorfy Obniżona aktywność produktu, niewystarczająca do uzyskania dzikiego fenotypu homozygoty Obniżenie ilości produktu lub produkt o obniżonej aktywności Np. obniżona transkrypcja, splicing, stabilność, translacja obniżona aktywność (np. katalityczna) Często recesywne
Hipermorfy Fenotyp wynika z: nadmiaru produktu genu (np. nadekspresja) nadmiernie wysokiej aktywności produktu
Antymorfy Zmutowany produkt ma działanie antagonistyczne wobec dzikiego Fenotyp podobny do fenotypu nullomorfa lub hipomorfa, ale z definicji dominujący Zwiększenie dawki allelu dzikiego może osłabić (odwrócić) fenotyp Inny termin mutacje dominujące negatywne (dominant negative)
Antymorfy Mutacje w genach podjednostek tubuliny blokujące polimeryzację Advanced Genetic Analysis: Finding Meaning In A Genome RS Hawley, MY Walker, Blackwell 2003
Antymorf zespół Marfana Dominująca mutacja w genie FBN1 kodującym fibrylinę białko tkanki łącznej Zmutowane białko blokuje polimeryzację białka prawidłowego Defekty tkanki łącznej, aorty i zastawek serca, wysoki wzrost, arachnodaktylia Ok. 1:5 000 urodzeń
Sławni muzycy chorzy na zespół Marfana Niccolò Paganini (1782-1840) Robert Johnson (1911-1938)
Sławni sportowcy chorzy na zespół Marfana Flo Hyman (1954-1986) Michael Phelps
Neomorfy Aktywność genu w niewłaściwym miejscu lub czasie np. mutacje heterochroniczne (ekspresja w niewłaściwym czasie) przykład: chłoniak Burkitta: translokacja fragmentu chromosomu 8 na 14 przenosi gen c-myc pod kontrolę silnego promotora IGHα aktywnego w limfocytach Niewłaściwa aktywność, ale nie toksyczna dla produktu dzikiego Wiele mutantów regulatorowych Np. białko pozbawione domeny odpowiadającej za regulację aktywności, konstytutywnie aktywne
Neomorf Antennapedia (Antp73b) Sekwencja genu Antp przeniesiona w pobliże promotora genu ulegającego ekspresji w głowie Rozwój odnóży na segmencie głowowym
Dziedziczne zapalenie trzustki Choroba dominująca autosomalna Przewlekłe zapalenie trzustki. Niekiedy z rozwojem raka trzustki Najczęściej mutacje w genie kodującym trypsynę
Dziedziczne zapalenie trzustki Trypsyna w trzustce ulega autoinaktywacji przez proteolizę Mutacja R117H - supertrypsyna oporna na proteolizę - aktywna w komórkach trzustki
Inne terminologie Mutacje utraty funkcji (loss-of-function) nullomorfy i hipomorfy w klasyfikacji Müllera Mutacje nabycia funkcji (gain-of-function) neomorfy i hipermorfy w klasyfikacji Müllera Mutacje dominujące negatywne (dominant negative) antymorfy niekiedy zaliczane do nabycia funkcji albo utraty funkcji częste niejednoznaczności