ANALYTICAL EVALUATION OF THE UNCERTAINTY OF COORDINATE MEASUREMENTS OF GEOMETRICAL DEVIATIONS. MODELS BASED ON THE DISTANCE BETWEEN POINT AND PLANE

Podobne dokumenty
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Hard-Margin Support Vector Machines

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

Installation of EuroCert software for qualified electronic signature

Wnioski z wdrożeń oprogramowania EMU w przemyśle

Tłumaczenie oryginalnej deklaracji ( z języka angielskiego)

deep learning for NLP (5 lectures)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

OCENA ODWZOROWANIA KSZTAŁTU ZA POMOCĄ WSPÓŁRZĘDNOŚCIOWEGO RAMIENIA POMIAROWEGO WYPOSAŻONEGO W GŁOWICĘ OPTYCZNĄ

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

WOJSKOWE TRASY LOTÓW (MRT) NA MAŁYCH WYSOKOŚCIACH LOW FLYING MILITARY TRAINING ROUTES (MRT)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

WYBÓR PUNKTÓW POMIAROWYCH

NIEPEWNOŚĆ POMIARÓW POZIOMU MOCY AKUSTYCZNEJ WEDŁUG ZNOWELIZOWANEJ SERII NORM PN-EN ISO 3740

RADIO DISTURBANCE Zakłócenia radioelektryczne

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Instrukcja obsługi User s manual

Arca. Design: Ronald Straubel


RADIO DISTURBANCE Zakłócenia radioelektryczne

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Wykład 2 Układ współrzędnych, system i układ odniesienia

MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW

Zarządzanie sieciami telekomunikacyjnymi

PODZIAŁ SEKTOROWY OBSZARU KONTROLOWANEGO ACC W FIR WARSZAWA SECTORS OF ACC CONTROLLED AREA WITHIN WARSZAWA FIR

Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM

II wariant dwie skale ocen II alternative two grading scales


TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

DOI: / /32/37

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

Cracow University of Economics Poland

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

PODZIAŁ SEKTOROWY OBSZARU KONTROLOWANEGO ACC W FIR WARSZAWA SECTORS OF ACC CONTROLLED AREA WITHIN WARSZAWA FIR

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Akademia Morska w Szczecinie. Wydział Mechaniczny

UWAGA!!!! Nie odsyłać do Spółki ATTENTION!!!!! Do not send it to the Company

Robotic Arm Assembly Manual

Planning and Cabling Networks

WIELOMIANOWE MODELE WŁAŚCIWOŚCI MECHANICZNYCH STOPÓW ALUMINIUM

SG-MICRO... SPRĘŻYNY GAZOWE P.103

rozwiązania profesjonalne / outdoor apply czarny / black czarny / black

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Część nr 8

FORMULARZ REKLAMACJI Complaint Form

Streszczenie rozprawy doktorskiej

PROGRAM. Partnerskie Projekty Szkół Program sektorowy Programu Uczenie się przez całe życie. Tytuł projektu: My dream will change the world

ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN

SNP Business Partner Data Checker. Prezentacja produktu

SNP SNP Business Partner Data Checker. Prezentacja produktu

Knovel Math: Jakość produktu


Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u.

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

ALGORYTM ROZPOZNAWANIA OBRAZÓW MATERIAŁÓW BIOLOGICZNYCH

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Comparative analysis of households incomes in the European Union and the United States

1A. Which of the following five units is NOT the same as the other four? A) joule B) erg C) watt D) foot pound E) newton meter

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Pokrywa kołnierza ø120 z tuleją 1½ oraz ø180 z tuleją 2. Flange Cover ø120 with 1 ½ Sleeve and ø180 with 2 Sleeve. Instrukcja montażu

Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

ARCA. Design: Ronald Straubel

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Baptist Church Records

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

Call 2013 national eligibility criteria and funding rates

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Lecture 18 Review for Exam 1

sorriso Design: Studio 1:1 Jarosław Szymański

KINEMATYKA (punkt materialny)

Spectral analysis of signals. Lecturer: dr hab. inż. Janusz Nieznański, prof. nadzw. PG (WEiA, PG)

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Innowacje społeczne innowacyjne instrumenty polityki społecznej w projektach finansowanych ze środków Europejskiego Funduszu Społecznego

PROMOTION - Flexible Ducts and Accessories - FLX-REKU P13.1/2013

STANLUX SLX DO ŚCIANY STANLUX SLX TO THE WALL

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

BOGFRAN home.

Uchwała nr 04/05/2017. Resolution no 04/05/2017. Rady Nadzorczej Capital Park S.A. z siedzibą w Warszawie z dnia 15 maja 2017 roku

Ukryte funkcjonalności w oprogramowaniu i urządzeniach elektronicznych. mgr inż. Paweł Koszut

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

099 Łóżko półpiętrowe 2080x1010(1109)x Bunk bed 2080x1010(1109)x1600 W15 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTION

U3000/U3100 Mini (Dla Komputera Eee na systemie operacyjnym Linux) Krótka Instrukcja

Transkrypt:

ADVANCES IN MANUFACTURING SCIENCE AND TECHNOLOGY Vol. 37, No. 3, 2013 DOI: 10.2478/ast-2013-0020 ANALYTICAL EVALUATION OF THE UNCERTAINTY OF COORDINATE MEASUREMENTS OF GEOMETRICAL DEVIATIONS. MODELS BASED ON THE DISTANCE BETWEEN POINT AND PLANE Władysław Jakubiec, Wojciech Płowucha S u a r y In this paper a series discussing the possibility of analytical evaluation of the uncertainty of coordinate easureents is presented. It presents odels of evaluation of uncertainty of soe geoetric deviations (such as flatness, perpendicularity of axes, position of point, axis and plane) based on the forula for the point-plane distance. An iportant eleent of the presented ethodology for deterining the uncertainty of easureent is the use of atheatical iniu nuber of characteristic points of the easured workpiece and expressing the deviation as a function of coordinates differences of the points. Keywords: coordinate easuring technique, easureent uncertainty, geoetrical deviations Analityczne wyznaczanie niepewności współrzędnościowych poiarów odchyłek geoetrycznych. Modele bazujące na odległości punktu od płaszczyzny S t r e s z c z e n i e W artykule oówiono ożliwość analitycznego określania niepewności poiarów współrzędnościowych. Przedstawiono odele wyznaczania niepewności niektórych odchyłek geoetrycznych (np. płaskości, prostopadłości osi, pozycji) bazujące na równaniach na odległość punktu od płaszczyzny. Istotny eleente tej etodyki wyznaczania niepewności poiaru jest przyjęcie inialnej liczby charakterystycznych punktów ierzonego przediotu oraz wyrażenie odchyłki jako funkcji różnic wartości współrzędnych tych punktów. Słowa kluczowe: współrzędnościowa technika poiarowa, niepewność poiaru, odchyłki geoetryczne 1. Introduction The previous paper [1] presented the theoretical background of the analytical evaluation of uncertainty of coordinate easureents and the odels based on the forula for the distance between a point and a line. In particular, it described the odels to assess the uncertainty of easureent of geoetric Address: Władysław JAKUBIEC, DSc Eng., Wojciech PŁOWUCHA, PhD Eng., University of Bielsko-Biała, Laboratory of Metrology, 43-309 Bielsko-Biała, Willowa 2, Poland, phone: +48 33 8279 321, fax: +48 33 8279 300, e-ail: wjakubiec@ath.eu

6 W. Jakubiec, W. Płowucha deviations such as straightness, concentricity, parallelis of the axis (cylindrical tolerance zone) and the perpendicularity of axis in regard to the plane. This article presents odels based on the forula for the distance between a point and a plane. In particular, the odels to assess the uncertainty of easureent of geoetric tolerances such as: flatness, parallelis of axes in the plane noral to coon plane, position of a point, axis and plane in regard to datu plane, perpendicularity of axes in space, perpendicularity of a plane to the datu axis, total axial run-out, parallelis of axes in the coon plane, parallelis of axis in regard to datu plane, parallelis of planes, parallelis of a plane to datu axis, parallelis of planes and perpendicularity of planes. 2. General odel of easuring the distance between point and plane In the coordinate easuring technique the distance l of point S fro the plane p given by any point P belonging to this plane and the unit noral vector u is calculated as follows: l ( S p) = ( P S) u, (1) Particular tasks described below differ in the iniu nuber of points required for their deterination and a way to define the vector u. It should be noted that in all odels the deviation is a function of the difference of coordinates of points used to deterine the deviation. In all the forulae a siplified notation of the difference of coordinates of two points is used for exaple: x = x x. BA B A 3. Measureent odels of the flatness, the parallelis of axes in the plane noral to the coon plane and the position of the point in regard to the priary datu plane The flatness can be deterined as the distance l between the point S and the plane defined by three points A, B and C of this plane (Fig. 1). This odel refers to the siplified classical ethod of flatness easureent. The iniu nuber of points required to deterine the deviation is 4. Point S is noinally in the plane containing the points A, B and C. The parallelis of axes in the plane noral to the coon plane can be deterined by the distance l between the point S of the toleranced axis and the plane defined by the two points (A and B) of the datu axis and one point (C) of the toleranced axis. The iniu nuber of points required to deterine the

Analytical evaluation of the uncertainty... 7 deviation is 4 (Fig. 2). In this case, the point S noinally lies in the plane containing the points A, B and C. Fig. 1. Measureent of flatness: a design drawing with characteristic points, easureent odel Fig. 2. Measureent of parallelis of axes in the plane noral to the coon plane: a design drawing with characteristic points, easureent odel In the above tasks, plane p (fro the forula (2)) is given by the three points A, B and C. As the point P to the forula (1) you can adopt one of these points (A, B or C) and the noral unit vector u can be calculated according to the forula: AB AC u = (2) AB AC Depending on whichever point we assue as the point P, we get the following three odels:

8 W. Jakubiec, W. Płowucha axsa + bysa + czsa l1 = (3) axsb + bysb + czsb l2 = (4) axsc + bysc + czsc l3 = (5) where: a = ybazca zba yca b = xcazba x z BA CA c = xba yca xca y BA 2 2 2 = a + b + c (6) As the uncertainty of easureent the sallest of the three cobined uncertainties calculated on the basis of the above forulae is assued: { u, u u } u = in (7) l 1 l 2, The position of the point, axis or plane in regard to the datu plane defined by three points (Fig. 3-5) can be deterined as the doubled difference between the distance l of this point fro the plane and the theoretically exact distance l TED. l 3 Fig. 3. Measureent of position of the point in regard to the datu plane: a design drawing with characteristic points, easureent odel

Analytical evaluation of the uncertainty... 9 = 2 l l TED (8) It can be proved that the uncertainty of the deterination of the position deviation is two ties bigger than the uncertainty of easureent of the distance of the characteristic point S fro the datu plane ABC. Fig. 4. Measureent of position of the axis in regard to the datu plane: a design drawing with characteristic points, easureent odel Fig. 5. Measureent of position of the plane in regard to the datu plane: a design drawing with characteristic points, easureent odel 4. Measureent odel of perpendicularity of axes, perpendicularity of plane in regard to axis and total axial run-out The perpendicularity of axes in space can be calculated as the distance l of the point S fro the plane perpendicular to the straight line AB and containing the point K (Fig. 6). The iniu nuber of points required to deterine the deviation is 4. The datu axis is represented by 2 points A and B. The axis the orientation of which is toleranced is represented by the points K and S. The perpendicularity of a plane in regard to a datu axis as well as total axial run-out (Fig. 7) can be calculated in the sae way as the perpendicularity of axes in space. The iniu nuber of points required to deterine the deviation is 4. The datu axis is represented by 2 points A and B. The plane the orientation (or the run-out) of which is toleranced is represented by the points K and S.

10 W. Jakubiec, W. Płowucha c) Fig. 6. Measureent of perpendicularity of axes in space:, design drawings with characteristic points, c) easureent odel c) Fig. 7. Measureent of perpendicularity of plane in regard to axis and the easureent of total axial run-out:, corresponding design drawings with characteristic points, c) easureent odel In the above described easuring tasks, the plane p fro the forula (1) is perpendicular to the straight line AB and contains the point K. As the point P in the forula (1) the point K is to be assued and the noral unit vector u can be calculated as: AB u = (9) AB Finally, the forula takes the for:

Analytical evaluation of the uncertainty... 11 xks xba + yks yba + zks zba l = (10) x + y + z 2 BA 2 BA 2 BA 5. Measureent odel for parallelis of axes in the coon plane The parallelis of axes in the coon plane is calculated as the distance l of the point S fro the plane parallel to the straight line AB, perpendicular to the plane ABK and containing the point K (Fig. 8). The iniu nuber of points required to deterine the deviation is 4. The datu axis is represented by two points A and B. The axis the orientation of which is toleranced is represented by the points K and S. Fig. 8. Measureent of parallelis of axes in the coon plane: a design drawing with characteristic points, easureent odel In this easuring task, the plane p fro the forula (1) is perpendicular to the plane ABK, parallel to the straight line AB and contains point K. As the point P in the forula (1) the point K is to be assued and the noral unit vector u can be calculated as the vector product of the noral vector of the plane ABK and the vector AB divided by its length: ( AB AK ) AB ( AB AK ) AB u = (11) Finally, the forula for calculating the parallelis of axes in the coon plane is:

12 W. Jakubiec, W. Płowucha where: 2 2 ( ax ) + ( by ) + ( cz ) SK SK SK l = (12) 2 ( xba yka ybaxka ) zba( zbaxka xbazka ) ( ybazka zba yka ) xba ( xba yka ybaxka ) ( z x x z ) y ( y z z y ) a = yba b = z BA c = x BA BA KA BA KA BA BA KA BA KA 2 2 2 = a + b + c (13) 6. Measureent odel for parallelis of axis in regard to plane and for parallelis of planes The parallelis of axis in regard to plane can be deterined as the distance l between the point S and the plane parallel to the plane ABC and intersecting the point K (Fig. 9). The iniu nuber of points required to deterine the deviation is 5. The datu plane is represented by the three points A, B and C. The axis the orientation of which is toleranced is represented by the points K and S. Fig. 9. Measureent of parallelis of axis in regard to plane: a design drawing with characteristic points, easureent odel The parallelis of planes can be deterined as the distance l between the point S and the plane parallel to the plane ABC and intersecting the point K (Fig. 10).The iniu nuber of points required to deterine the deviation is 5. The datu plane is represented by the three points A, B and C. The plane the orientation of which is toleranced is represented by the points K and S.

Analytical evaluation of the uncertainty... 13 Fig. 10. Measureent of parallelis of planes: a design drawing with characteristic points, easureent odel In both easuring tasks, the plane p fro the forula (1) is given by the point K and the noral unit vector u calculated as: where: AB AC u = (14) AB AC The distance between the point S and the plane is calculated as: axks + byks + czks l = (15) a = yab z AC z AB y AC b = z AB xac xac z AC c = xab yac y AB x AC 2 2 2 = a + b + c (16) 7. Measureent odel for parallelis of plane in regard to axis The parallelis of plane in regard to axis can be deterined as the distance l between the point S and the plane parallel to the axis AB intersecting points K and L (Fig. 11).The iniu nuber of points required to deterine the deviation is 5. The datu axis is represented by the two points A and B. The plane orientation of which is toleranced is represented by the points K, L and S.

14 W. Jakubiec, W. Płowucha Fig. 11. Measureent of parallelis of the plane in regard to axis: a design drawing with characteristic points, easureent odel In the task, the plane p fro the forula (1) is parallel to both the straight line AB and the straight line KL. The noral unit vector u of that plane: KL AB u = (17) KL AB Finally, we can assue the following forulae for deterining the perpendicularity of axis in regard to the plane: where: axks + byks + czks l1 = (18) axls + byls + czls l2 = (19) a = ybazlk zba ylk b = zbaxlk x z BA LK c = xba ylk ybax LK 2 2 2 = a + b + c (20) As the uncertainty of easureent of parallelis the saller value of the two values calculated on the basis of the above forulae is assued.

Analytical evaluation of the uncertainty... 15 8. Measureent odel for perpendicularity of planes The perpendicularity of two planes can be deterined as the distance l between the point S and the plane perpendicular to the plane ABC and intersecting points K and L (Fig. 12). The iniu nuber of points required to deterine the deviation is 6. The datu plane is represented by the points A, B and C. The plane the orientation of which is toleranced is represented by the points K, L and S. Fig. 12. Measureent of perpendicularity of the planes: a design drawing with characteristic points, easureent odel In this task, the plane p fro the forula (1) is perpendicular to the plane ABC and intersects points K and L. The noral unit vector u of the plane can be calculated as: ( AB AC) KL ( AB AC) KL u = (21) As the point P in the forula (1) the point K or the point L can be assued. 9. Suary The accuracy evaluation is the key eleent of any easureent [2]. Using in the atheatical odel of the easuring task the atheatical iniu nuber of characteristic points of the easured workpiece and expressing the deviation as the function of difference of the coordinates of the characteristic points enables analytical evaluation of uncertainty of coordinate easureent fully consistent with the GUM requireents [3]. The presented algoriths were tested and used to develop the special software. The software is fully consistent with the rules of geoetrical product specifications described in ISO 1101 [4].

16 W. Jakubiec, W. Płowucha References [1] W. JAKUBIEC: Analytical estiation of uncertainty of coordinate easureents of geoetric deviations. Models based on distance between point and straight line. Advances in Manufacturing Science and Technology, 33(2009)2, 31-38. [2] A. GESSNER, R. STANIEK: Evaluation of accuracy and reproducibility of the optical easuring syste in cast achine tool body assessent. Advances in Manufacturing Science and Technology, 36(2012)1, 65-72. [3] JCGM 100:2008 Evaluation of easureent data. Guide to the expression of uncertainty in easureent. [4] ISO 1101:2012 Geoetrical product specifications (GPS). Geoetrical tolerancing. Tolerances of for, orientation, location and run-out. Received in Noveber 2013