ALGORYTM ROZPOZNAWANIA OBRAZÓW MATERIAŁÓW BIOLOGICZNYCH
|
|
- Stefan Kruk
- 8 lat temu
- Przeglądów:
Transkrypt
1 InŜynieria Rolnicza 7/2005 Bogusława Łapczyńska-Kordon, Jerzy Langman, Norbert Pedryc Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie ALGORYTM ROZPOZNAWANIA OBRAZÓW MATERIAŁÓW BIOLOGICZNYCH Streszczenie Opracowując wyniki pomiarów zarejestrowanych w postaci graficznej często mamy do czynienia z koniecznością porównywania ze sobą dwóch lub więcej obrazów. Nie zawsze zachodzi potrzeba porównywania ze sobą całych obrazów, nieraz wystarczające jest określenie róŝnic lub podobieństw na podstawie analizy pewnych ich charakterystycznych fragmentów. W pracy przedstawiono algorytm rozpoznawania obrazów na podstawie analizy rozmieszczenia na nich pewnych charakterystycznych wcześniej zdefiniowanych elementów. Zaprezentowano zarówno porównywanie z wykorzystaniem współrzędnych biegunowych metodą analityczną jak teŝ próbę wykorzystania sztucznych sieci neuronowych do klasyfikacji obrazów. Słowa kluczowe: sztuczne sieci neuronowe, rozpoznawanie obrazów Wprowadzenie Opracowując wyniki pomiarów zarejestrowanych w postaci graficznej często mamy do czynienia z koniecznością porównywania ze sobą dwóch lub więcej obrazów. Nie zawsze zachodzi potrzeba porównywania ze sobą całych obrazów, nieraz wystarczające jest określenie róŝnic lub podobieństw na podstawie analizy pewnych ich charakterystycznych fragmentów. Wykorzystywane w tym celu istniejące algorytmy są dokładne, lecz bardzo skomplikowane, tym samym korzystanie z nich wymaga uŝywania sprzętu o duŝych mocach obliczeniowych. TakŜe ich implementacja w środowisku programowym uŝywanym do pomiarów moŝe być trudna i skomplikowana. Dlatego tez podjęto prace mające na celu opracowanie prostego algorytmu pozwalającego na rozpoznawanie obrazów na podstawie analizy rozmieszczenia względem siebie kilku bądź kilkunastu charakterystycznych fragmentów. Uproszczenie metody analizy obrazu pociąga za sobą obniŝenie dokładności, lecz dzięki jej prostocie moŝemy 145
2 Bogusława Łapczyńska-Kordon, Jerzy Langman, Norbert Pedryc uzyskać zwiększenie prędkości działania oprogramowania oraz moŝliwość wykorzystania jej na sprzęcie komputerowym o niewielkich moŝliwościach obliczeniowych. Opis metody rozpoznawania obrazu W celu porównania ze sobą dwóch lub więcej podobnych obrazów naleŝy na nich określić pewne powtarzalne punkty charakterystyczne. JeŜeli połoŝenie względem siebie tych punktów na porównywanych obrazach jest identyczne to moŝemy zało- Ŝyć z duŝym prawdopodobieństwem, Ŝe porównywane obrazy są podobne lub naleŝą do jednej klasy. PołoŜenie punktów charakterystycznych na analizowanym obrazie moŝemy przedstawić jako pary liczb, będące współrzędnymi tych punktów w prostokątnym układzie współrzędnych. Porównywanie obrazów sprowadza się w zasadzie do porównywania ze sobą par liczb przy załoŝonej wielkości moŝliwych odchyłek współrzędnych analizowanych punktów. Taka metoda jest bardzo dobra i szybka, lecz analizowane obrazy muszą być w tej samej skali (powiększeniu). Zastosowanie biegunowego układu współrzędnych do określania wzajemnego połoŝenia punktów charakterystycznych analizowanych obrazów pozwala na porównywanie ze sobą obrazów o róŝnych skalach (powiększeniach). Przedstawione jest to na rys. 1. Rys. 1. Fig. 1. Zastosowanie współrzędnych biegunowych do identyfikacji punktów charakterystycznych obrazu Pole coordinates used for identification of characteristic points of an image 146
3 Algorytm rozpoznawania obrazów... Celem przygotowania obrazu do porównywania naleŝy (rys.1): wyznaczyć długości wektorów oraz określić wartości bezwymiarowych współczynników stosunków ich długości względem wybranego wektora bazowego I 1 / I 2 = K 1, I 1 / I 3 = K 2, I 1 / I 4 = K 3 I 1 / I 2 = K 1, I 1 / I 3 = K 2, I 1 / I 4 = K 3 wyznaczyć wartości kątów pomiędzy wektorem bazowym a pozostałymi wektorami α 1, α 2, α 3 Stosunek długości wektorów (biegunów) do długości wektora (bieguna) bazowego jest stały i niezaleŝny od powiększenia analizowanego obrazu, natomiast wartości kątów są niezmienne i niezaleŝne od powiększenia analizowanego obrazu. Jako punkt bazowy (biegun) przyjętego układu współrzędnych moŝna wybrać albo jakiś punkt charakterystyczny leŝący poza analizowanym obszarem albo dowolny punkt charakterystyczny naleŝący do analizowanego obszaru, co przedstawione jest na rys. 2. Rys. 2. Fig. 2. Wykorzystanie punktu charakterystycznego obrazu jako bazy dla układu współrzędnych Utilization of characteristic image point as a basis for the system of coordinates Porównanie wartości bezwymiarowych współczynników Kn i kątów α n między wektorami przeprowadzane jest według algorytmu przedstawionego na rys
4 Bogusława Łapczyńska-Kordon, Jerzy Langman, Norbert Pedryc Rys. 3. Fig Algorytm rozpoznawania obrazu z wykorzystaniem stosunków długości wektorów do wektora bazowego Algorithm for image identification using the relationship between vector lengths and the basic vector
5 Algorytm rozpoznawania obrazów... Porównywanie ze sobą dwóch obrazów rozpoczyna się od porównania ze sobą wielkości kątów miedzy wektorami. JeŜeli wynik tego porównania jest pozytywny oznacza to zgodność pierwszej grupy cech opisujących porównywane ze sobą obrazy. W następnym kroku porównywane są ze sobą bezwymiarowe współczynniki stosunków długości wektorów punktów charakterystycznych porównywanych obrazów. Wynik pozytywny oznacza zgodność drugiej grupy cech, opisującej porównywane ze sobą obrazy. Podczas przygotowywania danych liczbowych opisujących obrazy moŝna popełnić błędy polegające choćby na niedokładnym oznaczeniu punktów charakterystycznych, a co się z tym wiąŝe wartości kątów między wektorami oraz wartości współczynników bezwymiarowych stosunków długości wektorów dla dwóch identycznych obrazów będą się róŝnić miedzy sobą. Porównywanie ze sobą dwóch obrazów moŝe dać w tym przypadku wynik negatywny. Dlatego jedynym rozwiązaniem jest przyjęcie zakresu tolerancji (błędu lub dopuszczalnych odchyłek) podczas procesu porównywania ze sobą cech opisujących dwa obrazy. Sytuacja taka moŝe wystąpić w przypadku porównywania ze sobą obrazów zaszumianych bądź zdeformowanych. Określenie wielkości dopuszczalnych odchyłek jest obarczone juŝ na początku duŝym błędem wynikającym z subiektywnych ocen osoby ustalającej te wartości. MoŜna tego uniknąć stosując odpowiednio wytrenowane sztuczne sieci neuronowe do procesu porównywania cech opisujących porównywane obrazy. Jest to moŝliwe dzięki jednej z podstawowych cech sztucznych sieci neuronowych jaką jest zdolność do uogólniania rozwiązywanego problemu. Podczas samego procesu uczenia sieci poprzez zastosowanie odpowiednich metod moŝna osiągnąć zdolność sieci do rozpoznawania obrazów zdeformowanych bądź uszkodzonych. Architektura sztucznej sieci neuronowej do rozpoznawania obrazu Architektura sztucznej sieci neuronowej zastosowanej do rozpoznawania obrazów przedstawia się następująco: Wejście sieci neuronowej. Liczba wejść sieci K 1, K 2, K 3,..., Kn, α 1, α 2, α 3,..., αn jest zdeterminowana liczbą punktów charakterystycznych rozpoznawanych obrazów. Warstwa ukryta. Liczba neuronów warstwy ukrytej dobierana podczas procesu uczenia sieci, tak aby uzyskać załoŝony błąd uczenia sieci oraz zaleŝy ona od liczby wejść i wyjść sieci neuronowej. Wyjście sieci neuronowej. Zbiór wyjść O 1,..., Om sieci neuronowej naleŝy traktować jako wyjście równoległe m bitowe, co pozwala na identyfikację do (2 m - 1) obrazów. Liczba wyjść jest określona liczbą klas rozpoznawanych obrazów. - Funkcje aktywacji. Zastosowano funkcje: warstwa ukryta tangens hiperboliczny, warstwa wyjściowa funkcja logistyczna. 149
6 Bogusława Łapczyńska-Kordon, Jerzy Langman, Norbert Pedryc Jako metodę uczenia sieci wybrano wsteczną propagację błędu. Jest to metoda uczenia, która sprawdziła się w wielu inŝynierskich zastosowaniach sztucznych sieci neuronowych. Dane tworzące pliki, uczący oraz testujący naleŝy, znormalizować tak aby tworzyły one zbiór zawarty w przedziale (-1, 1). Zastosowanie normalizacji w istotny sposób przyspiesza proces uczenia sieci oraz ma znaczący wpływ na zdolności uogólniania sieci neuronowej. Wnioski 1. Zastosowanie współrzędnych biegunowych do opisu połoŝenia charakterystycznych fragmentów obrazu pozwala na porównywanie ze sobą obrazów w róŝnych powiększeniach. 2. Rozpoznawanie obrazów poprzez porównywanie ich charakterystycznych fragmentów moŝliwe jest z zastosowaniem sztucznych sieci neuronowych. 3. Sztuczne sieci neuronowe umoŝliwiają rozpoznawanie obrazów zniekształconych i zaszumianych. Bibliografia Osowski S Sieci neuronowe w ujęciu algorytmicznym, Wydawnictwo Naukowo-Techniczne, Warszawa. Rutkowska D., Piliński M., Rutkowski L Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, Warszawa Łódź. Summary ALGORITHM FOR IDENTIFICATION OF BIOLOGICAL MATERIALS IMAGES In handling graphic representations of measurement results, need often arises to compare two or more images. It is not always necessary to compare the entire images. Sometimes it suffices to describe differences or similarities based on the analysis of certain characteristic fragments. This body of work presents an algorithm for recognizing images based on certain pre-set characteristic elements. A process of comparing through the analytical method using polar coordinates, as well as an attempt to utilize artificial neural networks for the classification of images is also presented. Key words: artificial neural networks, classification of images 150
PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH
InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W
MODELOWANIE PROCESÓW PRZETWÓRCZYCH Z UŻYCIEM SZTUCZNYCH SIECI NEURONOWYCH
Inżynieria Rolnicza 7(125)/2010 MODELOWANIE PROCESÓW PRZETWÓRCZYCH Z UŻYCIEM SZTUCZNYCH SIECI NEURONOWYCH Jerzy Langman, Norbert Pedryc Katedra Inżynierii Mechanicznej i Agrofizyki, Uniwersytet Rolniczy
Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych
InŜynieria Rolnicza 11/2006 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie METODA PROGNOZOWANIA WARTOŚCI PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH MASZYN ROLNICZYCH
ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI NEURONOWEJ
InŜynieria Rolnicza 12/2006 Katarzyna Siejka, Andrzej Tukiendorf Katedra Techniki Rolniczej i Leśnej Politechnika Opolska ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI
WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN
Inżynieria Rolnicza 2(9)/7 WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Akademia
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
WPŁYW KOMPRESJI BARW NA DZIAŁANIE NEURONOWEGO MODELU IDENTYFIKACYJNEGO
Inżynieria Rolnicza 3(121)/2010 WPŁYW KOMPRESJI BARW NA DZIAŁANIE NEURONOWEGO MODEU IDENTYFIKACYJNEGO Krzysztof Nowakowski, Piotr Boniecki, Andrzej Przybylak Instytut Inżynierii Rolniczej, Uniwersytet
Sztuczne sieci neuronowe w zastosowaniu do modelowania fazy wznoszenia samolotu
Paulina Stańczyk 1, Anna Stelmach 2 Wydział Transportu Politechniki Warszawskiej Sztuczne sieci neuronowe w zastosowaniu do modelowania fazy wznoszenia samolotu 1. WPROWADZENIE W ostatnich latach na świecie,
DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław PŁACZEK* DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI W artykule
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych sieci neuronowych 4
Wojciech Sikora 1 AGH w Krakowie Grzegorz Wiązania 2 AGH w Krakowie Maksymilian Smolnik 3 AGH w Krakowie Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2
InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Przykład optymalizacji struktury sztucznej sieci neuronowej metodą algorytmów genetycznych
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 23, 26 Przykład optymalizacji struktury sztucznej sieci neuronowej metodą algorytmów genetycznych Leszek Grad Zakład Automatyki, Instytut Teleinfo rmatyki i
Drzewa Decyzyjne, cz.2
Drzewa Decyzyjne, cz.2 Inteligentne Systemy Decyzyjne Katedra Systemów Multimedialnych WETI, PG Opracowanie: dr inŝ. Piotr Szczuko Podsumowanie poprzedniego wykładu Cel: przewidywanie wyniku (określania
Inżynieria Rolnicza 3(121)/2010
Inżynieria Rolnicza 3(121)/2010 METODA OCENY NOWOCZESNOŚCI TECHNICZNO- -KONSTRUKCYJNEJ CIĄGNIKÓW ROLNICZYCH WYKORZYSTUJĄCA SZTUCZNE SIECI NEURONOWE. CZ. III: PRZYKŁADY ZASTOSOWANIA METODY Sławomir Francik
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
PRZETWARZANIE GRAFICZNYCH DANYCH EMPIRYCZNYCH DLA POTRZEB EDUKACJI SZTUCZNYCH SIECI NEURONOWYCH, MODELUJĄCYCH WYBRANE ZAGADNIENIA INŻYNIERII ROLNICZEJ
Inżynieria Rolnicza 2(90)/2007 PRZETWARZANIE GRAFICZNYCH DANYCH EMPIRYCZNYCH DLA POTRZEB EDUKACJI SZTUCZNYCH SIECI NEURONOWYCH, MODELUJĄCYCH WYBRANE ZAGADNIENIA INŻYNIERII ROLNICZEJ Krzysztof Nowakowski,
Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW
Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
WYBÓR PUNKTÓW POMIAROWYCH
Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika
NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.
Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural
KARTA PRZEDMIOTU. Dyscyplina:
KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba
ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH
Inżynieria Rolnicza 9(118)/2009 ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
PROGRAM WSPOMAGAJĄCY OCENĘ INWESTYCJI MECHANIZACYJNYCH DOZEM 2
InŜynieria Rolnicza 6/2005 Michał Cupiał, Sylwester Tabor Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie PROGRAM WSPOMAGAJĄCY OCENĘ INWESTYCJI MECHANIZACYJNYCH DOZEM 2 Streszczenie:
ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza
ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego
K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych
METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM
1-2011 PROBLEMY EKSPLOATACJI 205 Zbigniew ZDZIENNICKI, Andrzej MACIEJCZYK Politechnika Łódzka, Łódź ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM Słowa kluczowe
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
Politechnika Lubelska
Politechnika Lubelska Wydział Zarządzania i Podstaw Techniki Temat: Sieć neuronowa do klasyfikacji rodzaju węgla kamiennego. Prowadzący: Wykonał: Dr Popko Artur Marek Harasimiuk ETI 5.3. (gr. lab. 5.5)
REALIZACJA WNIOSKOWANIA DIAGNOSTYCZNEGO ROZPYLACZA OPRYSKIWACZA POLOWEGO W CZASIE RZECZYWISTYM
Inżynieria Rolnicza 11(109)/2008 REALIZACJA WNIOSKOWANIA DIAGNOSTYCZNEGO ROZPYLACZA OPRYSKIWACZA POLOWEGO W CZASIE RZECZYWISTYM Jerzy Langman, Norbert Pedryc Katedra Inżynierii Mechanicznej i Agrofizyki,
WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA
Konopko Henryk Politechnika Białostocka WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA Streszczenie W pracy przedstawiono wyniki symulacji komputerowej
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
InŜynieria Rolnicza 14/2005. Streszczenie
Michał Cupiał Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie PROGRAM WSPOMAGAJĄCY NAWOśENIE MINERALNE NAWOZY 2 Streszczenie Przedstawiono program Nawozy 2 wspomagający nawoŝenie
Sztuczna inteligencja
Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Podstawowe architektury
PRÓBA ZASTOSOWANIA SZTUCZNYCH SIECI NEURONOWYCH DO OCENY NOWOCZESNOŚCI MASZYN ROLNICZYCH
Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PRÓBA ZASTOSOWANIA SZTUCZNYCH SIECI NEURONOWYCH DO OCENY NOWOCZESNOŚCI MASZYN ROLNICZYCH Streszczenie Zastosowano
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
PRÓBA ZASTOSOWANIA SIECI NEURONOWYCH DO PROGNOZOWANIA OSIADAŃ POWIERZCHNI TERENU POWSTAŁYCH NA SKUTEK EKSPLOATACJI GÓRNICZEJ**
Górnictwo i Geoinżynieria Rok 30 Zeszyt 4 2006 Dorota Pawluś* PRÓBA ZASTOSOWANIA SIECI NEURONOWYCH DO PROGNOZOWANIA OSIADAŃ POWIERZCHNI TERENU POWSTAŁYCH NA SKUTEK EKSPLOATACJI GÓRNICZEJ** 1. Wstęp Na
Streszczenie. Słowa kluczowe: towary paczkowane, statystyczna analiza procesu SPC
Waldemar Samociuk Katedra Podstaw Techniki Akademia Rolnicza w Lublinie MONITOROWANIE PROCESU WAśENIA ZA POMOCĄ KART KONTROLNYCH Streszczenie Przedstawiono przykład analizy procesu pakowania. Ocenę procesu
SZTUCZNE SIECI NEURONOWE W MODELOWANIU ZJAWISK ZACHODZĄCYCH NA RYNKU NIERUCHOMOŚCI
Dr Agnieszka MAZUR-DUDZIŃSKA Politechnika Łódzka, Katedra Zarządzania SZTUCZNE SIECI NEURONOWE W MODELOWANIU ZJAWISK ZACHODZĄCYCH NA RYNKU NIERUCHOMOŚCI Streszczenie: Celem referatu jest zastosowanie sztucznych
Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak
2 Rozdział 1 Sztuczne sieci neuronowe. 3 Sztuczna sieć neuronowa jest zbiorem prostych elementów pracujących równolegle, których zasada działania inspirowana jest biologicznym systemem nerwowym. Sztuczną
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE INSTYTUT TECHNOLOGII MECHANICZNEJ Metody Sztucznej Inteligencji Sztuczne Sieci Neuronowe Wstęp Sieci neuronowe są sztucznymi strukturami, których
WPŁYW DAWKI NASION I PRĘDKOŚCI SIEWNIKA NA RÓWNOMIERNOŚĆ RZĘDOWEGO SIEWU NASION PSZENICY
Adam Lipiński Katedra Maszyn Roboczych i Procesów Separacji Uniwersytet Warmińsko-Mazurski w Olsztynie WPŁYW DAWKI NASION I PRĘDKOŚCI SIEWNIKA NA RÓWNOMIERNOŚĆ RZĘDOWEGO SIEWU NASION PSZENICY Streszczenie
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza 5(114)/2009 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ I. ALGORYTMY WYZNACZANIA MODELI ROZMYTYCH Jerzy
MODUŁ KONTROLI WYDATKU ROZPYLACZA OPRYSKIWACZA POLOWEGO
Inżynieria Rolnicza 9(118)/2009 MODUŁ KONTROLI WYDATKU ROZPYLACZA OPRYSKIWACZA POLOWEGO Jerzy Langman, Norbert Pedryc Katedra Inżynierii Mechanicznej i Agrofizyki, Uniwersytet Rolniczy w Krakowie Streszczenie.
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
WPŁYW WIELKOŚCI NASION NA NIEZBĘDNĄ DŁUGOŚĆ PRZEWODU PNEUMATYCZNEGO W PROCESIE EKSPANDOWANIA NASION
InŜynieria Rolnicza / Henryk Konopko Politechnika Białostocka WPŁYW WIELKOŚCI NASION NA NIEZBĘDNĄ DŁUGOŚĆ PRZEWODU PNEUMATYCZNEGO W PROCESIE EKSPANDOWANIA NASION Streszczenie Celem pracy było określenie
Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman
Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej
WPŁYW LICZBY ZMIENNYCH NA JAKOŚĆ DZIAŁANIA NEURONOWEGO MODELU DO IDENTYFIKACJI MECHANICZNYCH USZKODZEŃ ZIARNIAKÓW KUKURYDZY
Inżynieria Rolnicza 6(104)/2008 WPŁYW ICZBY ZMIENNYCH NA JAKOŚĆ DZIAŁANIA NEURONOWEGO MODEU DO IDENTYFIKACJI MECHANICZNYCH USZKODZEŃ ZIARNIAKÓW KUKURYDZY Krzysztof Nowakowski, Piotr Boniecki Instytut Inżynierii
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie
SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH Jakub Karbowski Gimnazjum nr 17 w Krakowie KRAKÓW 2017 1. Spis treści 2. WSTĘP 2 3. SIECI NEURONOWE 2 3.1. Co to są sieci neuronowe... 2
Optymalizacja systemów
Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
MATLAB Neural Network Toolbox przegląd
MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study
Klasa I szkoły ponadgimnazjalnej matematyka
Klasa I szkoły ponadgimnazjalnej matematyka. Informacje ogólne Badanie osiągnięć uczniów I klas odbyło się 7 września 2009 r. Wyniki badań nadesłało 2 szkół. Analizie poddano wyniki 992 uczniów z 4 klas
Oprogramowanie Systemów Obrazowania SIECI NEURONOWE
SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
ZAŁOśENIA WEJŚCIOWE DO PROGRAMU OPTYMALIZUJĄCEGO DOBÓR LICZBY ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTW ROLNICZYCH
InŜynieria Rolnicza 14/2005 Maciej Kuboń, Michał Cupiał Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie ZAŁOśENIA WEJŚCIOWE DO PROGRAMU OPTYMALIZUJĄCEGO DOBÓR LICZBY ŚRODKÓW TRANSPORTOWYCH
ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OPISU PRZENIKALNOŚCI ELEKTRYCZNEJ MĄKI
Inżynieria Rolnicza 2(120)/2010 ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OPISU PRZENIKALNOŚCI ELEKTRYCZNEJ MĄKI Deta Łuczycka Instytut Inżynierii Rolniczej, Uniwersytet Przyrodniczy we Wrocławiu Katarzyna
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW
Systemy liczenia. 333= 3*100+3*10+3*1
Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=
WYKORZYSTANIE ALGORYTMÓW ROZPOZNAWANIA OBRAZU W BADANIACH NAUKOWYCH NA PRZYKŁADZIE PROGRAMU ZIEMNIAK-99
Inżynieria Rolnicza 6(94)/2007 WYKORZYSTANIE ALGORYTMÓW ROZPOZNAWANIA OBRAZU W BADANIACH NAUKOWYCH NA PRZYKŁADZIE PROGRAMU ZIEMNIAK-99 Michał Cupiał Katedra Inżynierii Rolniczej i Informatyki, Akademia
Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.48 WIESŁAWA MALSKA Wykorzystanie testu Levene a i testu Browna-Forsythe
ĆWICZENIE 5: Sztuczne sieci neuronowe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
MODEL NEURONOWY ZMIAN TEMPERATURY PODCZAS KONWEKCYJNEGO SUSZENIA ZRĘBKÓW WIERZBY ENERGETYCZNEJ
Inżynieria Rolnicza 11(109)/2008 MODEL NEURONOWY ZMIAN TEMPERATURY PODCZAS KONWEKCYJNEGO SUSZENIA ZRĘBKÓW WIERZBY ENERGETYCZNEJ Bogusława Łapczyńska-Kordon, Sławomir Francik, Zbigniew Ślipek Katedra Inżynierii
WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH
Wpływ obróbki termicznej ziemniaków... Arkadiusz Ratajski, Andrzej Wesołowski Katedra InŜynierii Procesów Rolniczych Uniwersytet Warmińsko-Mazurski w Olsztynie WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ
Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania:
Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania: 1. Opisać problem geologiczny, który naleŝy rozwiązać (rozpoznanie
MODELOWANIE PROCESU EKSPLOATACJI OBIEKTÓW TECHNICZNYCH ZA POMOCĄ DYNAMICZNYCH SIECI BAYESOWSKICH
InŜynieria Rolnicza 12/2006 Grzegorz Bartnik, Andrzej Kusz, Andrzej W. Marciniak Katedra Podstaw Techniki Akademia Rolnicza w Lublinie MODELOWANIE PROCESU EKSPLOATACJI OBIEKTÓW TECHNICZNYCH ZA POMOCĄ DYNAMICZNYCH
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
Podstawy Sztucznej Inteligencji
Politechnika Łódzka Katedra Informatyki Stosowanej Podstawy Sztucznej Inteligencji Laboratorium Ćwiczenie 2 Wykorzystanie środowiska Matlab do modelowania sztucznych sieci neuronowych Opracowali: Dr hab
Laboratorium Programowanie Obrabiarek CNC. Nr H04
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie Obrabiarek CNC Nr H04 Programowanie zarysów swobodnych FK Opracował: Dr inŝ. Wojciech Ptaszyński Poznań, 06 stycznia
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
OPTYMALIZACJA PARAMETRÓW PRACY PNEUMATYCZNEGO SEPARATORA KASKADOWEGO
InŜynieria Rolnicza 7/2006 Zbigniew Oszczak Katedra InŜynierii i Maszyn SpoŜywczych Akademia Rolnicza w Lublinie OPTYMALIZACJA PARAMETRÓW PRACY PNEUMATYCZNEGO SEPARATORA KASKADOWEGO Streszczenie W pracy
1. Podstawowe pojęcia
1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany
ANALIZA TWARDOŚCI SELERA W CZASIE SUSZENIA
Inżynieria Rolnicza 13/2006 Katedra Inżynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie ANALIZA TWARDOŚCI SELERA W CZASIE SUSZENIA Wstęp Streszczenie W pracy przedstawiono próbę zastosowania
METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH
Inżynieria Rolnicza 6(115)/2009 METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Uniwersytet Rolniczy w Krakowie
METODA OCENY NOWOCZESNOŚCI TECHNICZNO- -KONSTRUKCYJNEJ CIĄGNIKÓW ROLNICZYCH WYKORZYSTUJĄCA SZTUCZNE SIECI NEURONOWE CZ. I: ZAŁOŻENIA METODY
Inżynieria Rolnicza 9(118)/2009 METODA OCENY NOWOCZESNOŚCI TECHNICZNO- -KONSTRUKCYJNEJ CIĄGNIKÓW ROLNICZYCH WYKORZYSTUJĄCA SZTUCZNE SIECI NEURONOWE CZ. I: ZAŁOŻENIA METODY Sławomir Francik Katedra Inżynierii
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach
KOMPUTEROWE WSPOMAGANIE DOBORU OŚWIETLENIA NA STANOWISKACH PRACY
InŜynieria Rolnicza 14/2005 Halina Pawlak Katedra Podstaw Techniki Akademia Rolnicza w Lublinie KOMPUTEROWE WSPOMAGANIE DOBORU OŚWIETLENIA NA STANOWISKACH PRACY Streszczenie W artykule przedstawiono zasady
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych
Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Sebastian Kokot XXI Krajowa Konferencja Rzeczoznawców Majątkowych, Międzyzdroje 2012 Rzetelnie wykonana analiza rynku nieruchomości
Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.
Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu
WSTAWIANIE GRAFIKI DO DOKUMENTU TEKSTOWEGO
WSTAWIANIE GRAFIKI DO DOKUMENTU TEKSTOWEGO Niezwykle uŝyteczną cechą programu Word jest łatwość, z jaką przy jego pomocy moŝna tekst wzbogacać róŝnymi obiektami graficznymi, np. zdjęciami, rysunkami czy
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS
Journal of KONES Internal Combustion Engines 2005, vol. 12, 3-4 THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Mariusz Topolski Politechnika Wrocławska,