MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

Podobne dokumenty
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:

MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA

Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności.

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

Wymagania edukacyjne z matematyki w klasie piątej

Wymagania na poszczególne oceny szkolne w klasie V

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

Wymagania na poszczególne oceny szkolne

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23

Wymagania na poszczególne oceny szkolne

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

Wymagania edukacyjne z matematyki w klasie 5

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA

Wymagania na poszczególne oceny szkolne KLASA V

II. Działania na liczbach naturalnych. Uczeń:

Rozkład materiału nauczania. Klasa 5

WYMAGANIA EGZAMINACYJNE DLA KLASY V

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA

Wymagania programowe z matematyki w klasie V.

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

Wymagania na poszczególne oceny szkolne

Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019. Treści nauczania według podstawy programowej klasa IV klasa V klasa VI

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne

Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV

Wymagania na poszczególne oceny szkolne

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r.

Wymagania na poszczególne oceny szkolne KLASA VI

Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie

Wymagania edukacyjne z matematyki- klasa 4

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne. Matematyka

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI

SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)

Wymagania na poszczególne oceny szkolne

MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa.

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne

WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV:

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne

MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)

Treści nauczania. Klasa 6

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Matematyka Plan wynikowy klasa 6

Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem

DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.)

WYMAGANIA Z MATEMATYKI DLA KL. 6. Uczeń kończący klasę szóstą:

WYMAGANIA EDUKACYNE Z MATEMATYKI ODDZIAŁ 4

I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ

Wymagania z matematyki dla klasy VI na poszczególne oceny

Przedmiotowy system oceniania z matematyki w klasach IV VI

odczytuje z diagramów dane, zapisane za pomocą ułamków zwykłych, ułamków dziesiętnych lub liczb całkowitych odczytuje dane z procentowych diagramów:

Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI

Wymagania z matematyki dla klasy IV na poszczególne oceny

Wymagania szczegółowe treści nauczania edukacji matematycznej dla I etapu edukacyjnego (klasy I-III szkoły podstawowej edukacja wczesnoszkolna)

Wymagania edukacyjne z matematyki dla klasy VI opracowane na podstawie programu Matematyka z plusem

Treści nauczania. Klasa 5

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V

Wymagania edukacyjne z matematyki : Matematyka z plusem GWO

Wymagania na poszczególne oceny szkolne

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi

Lista działów i tematów

Wymagania z matematyki dla klasy V na poszczególne oceny

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ

4. Program a treści nauczania

Wymagania edukacyjne z matematyki dla klasy IV opracowane na podstawie programu Matematyka z plusem

Transkrypt:

MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBY NATURALNE I UŁAMKI 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby naturalne wielocyfrowe; 2) interpretuje liczby naturalne na osi liczbowej; 3) porównuje liczby naturalne; 2. Działania na liczbach naturalnych. Uczeń 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach takich jak np. 230 + 80 lub 4600 1200, liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową ( ) w pamięci (w najprostszych przykładach) ( ) 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; 6) porównuje różnicowo i ilorazowo liczby naturalne; 10) oblicza kwadraty i sześciany liczb naturalnych; 11) stosuje reguły dotyczące kolejności wykonywania działań; 12) szacuje wyniki działań. 4. Ułamki zwykłe i dziesiętne. Uczeń: 7) zaznacza ułamki zwykłe i dziesiętne na osi liczbowej oraz odczytuje ułamki zwykłe i dziesiętne zaznaczone na osi liczbowej; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 2) dodaje ułamki dziesiętne w pamięci (w najprostszych przykładach) ( ); 5) oblicza ułamek danej liczby naturalnej; 6) oblicza kwadraty i sześciany ułamków ( ) dziesiętnych ( ); 7) oblicza wartości prostych wyrażeń arytmetycznych, stosując reguły dotyczące kolejności wykonywania działań; 8) wykonuje działania na ułamkach dziesiętnych, używając własnych, poprawnych strategii ( ); 9) szacuje wyniki działań. 14. Zadania tekstowe. Uczeń:

2. Działania pisemne na ułamkach dziesiętnych. 1) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; 2) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe ( ); 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 2) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie ( ); 14. Zadania tekstowe. Uczeń: 1) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; 2) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe ( ); 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 3. Potęgowanie liczb*. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 6) oblicza kwadraty i sześciany ułamków zwykłych i dziesiętnych oraz liczb mieszanych; 4. Działania na ułamkach zwykłych. 4. Ułamki zwykłe i dziesiętne. Uczeń: 1) opisuje część danej całości za pomocą ułamka; 2) przedstawia ułamek jako iloraz liczb naturalnych, a iloraz liczb naturalnych jako ułamek; 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki zwykłe do wspólnego mianownika; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; 6) zapisuje wyrażenia dwumianowane w postaci ułamka dziesiętnego i odwrotnie; 7) zaznacza ułamki zwykłe ( ) na osi liczbowej oraz odczytuje ułamki zwykłe ( ) zaznaczone na osi liczbowej;

5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 1) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 14. Zadania tekstowe. Uczeń: 1) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; 2) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę 5. Ułamki zwykłe i dziesiętne. z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe; 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 4. Ułamki zwykłe i dziesiętne. Uczeń: 1) opisuje część danej całości za pomocą ułamka; 2) przedstawia ułamek jako iloraz liczb naturalnych, a iloraz liczb naturalnych jako ułamek; 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki zwykłe do wspólnego mianownika; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; 7) zaznacza ułamki zwykłe na osi liczbowej oraz odczytuje ułamki zwykłe zaznaczone na osi liczbowej; 8) zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego; 9) zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na ułamki dziesiętne skończone dowolną metodą (przez rozszerzanie ułamków zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora); 10) zapisuje ułamki zwykłe o mianownikach innych niż wymienione w pkt. 9 w postaci rozwinięcia dziesiętnego nieskończonego (z użyciem trzech kropek po ostatniej cyfrze), dzieląc licznik przez mianownik w pamięci lub za pomocą kalkulatora; 12) porównuje ułamki (zwykłe i dziesiętne). 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 1) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 2) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach),

6. Rozwinięcia dziesiętne ułamków zwykłych. pisemnie i za pomocą kalkulatora (w trudniejszych przykładach); 3) wykonuje nieskomplikowane rachunki, w których występują jednocześnie ułamki zwykłe i dziesiętne; 4) porównuje różnicowo ułamki; 8) wykonuje działania na ułamkach dziesiętnych, używając własnych, poprawnych strategii lub za pomocą kalkulatora; 14. Zadania tekstowe. Uczeń: 1) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; 2) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe ( ); 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 4. Ułamki zwykłe i dziesiętne. Uczeń: 8) zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego; 9) zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na ułamki dziesiętne skończone dowolną metodą (przez rozszerzanie ułamków zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora); 10) zapisuje ułamki zwykłe o mianownikach innych niż wymienione w pkt. 9 w postaci rozwinięcia dziesiętnego nieskończonego (z użyciem trzech kropek po ostatniej cyfrze), dzieląc licznik przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 4) porównuje różnicowo ułamki; FIGURY NA PŁASZCZYŹNIE 1. Proste, odcinki, okręgi, koła. 7. Proste i odcinki. Uczeń: 1) rozpoznaje i nazywa figury: punkt, prosta, półprosta, odcinek; 2) rozpoznaje odcinki i proste prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych; 5) wie, że aby znaleźć odległość punktu od prostej, należy znaleźć długość odpowiedniego odcinka prostopadłego; 9. Wielokąty, koła i okręgi. Uczeń: 6) wskazuje na rysunku, a także rysuje cięciwę, średnicę, promień koła i okręgu.

2. Trójkąty, czworokąty i inne wielokąty. 9. Wielokąty, koła i okręgi. Uczeń: 1) rozpoznaje i nazywa trójkąty ostrokątne, prostokątne i rozwartokątne, równoboczne i równoramienne; 4) rozpoznaje i nazywa kwadrat, prostokąt, romb, równoległobok, trapez; 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu; 11. Obliczenia w geometrii. Uczeń: 1) oblicza obwód wielokąta o danych długościach boków 3. Kąty. 8. Kąty. Uczeń: 1) wskazuje w kątach ramiona i wierzchołek; 2) mierzy kąty mniejsze od 180 stopni z dokładnością do 1 stopnia; 3) rysuje kąt o mierze mniejszej niż 180 stopni; 4) rozpoznaje kąt prosty, ostry i rozwarty; 5) porównuje kąty; 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 4. Kąty w trójkątach i czworokątach. 11. Obliczenia w geometrii. Uczeń: 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. 8. Kąty. Uczeń: 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 9. Wielokąty, koła i okręgi. Uczeń: 3) stosuje twierdzenie o sumie kątów trójkąta; 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu; 11. Obliczenia w geometrii. Uczeń: 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. LICZBY NA CO DZIEŃ 1. Kalendarz i czas. 12. Obliczenia praktyczne: Uczeń: 3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach; 4) wykonuje proste obliczenia kalendarzowe na dniach, tygodniach, miesiącach, latach; 2. Jednostki długości i jednostki masy. 12. Obliczenia praktyczne. Uczeń: 6) zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 7) zamienia i prawidłowo stosuje jednostki masy: gram, kilogram, dekagram, tona;

3. Skala na planach i mapach. 12. Obliczenia praktyczne. Uczeń: 8) oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali, oraz długość odcinka w skali, gdy dana jest jego rzeczywista długość; 4. Zaokrąglanie liczb. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: 4) zaokrągla liczby naturalne; 4. Ułamki zwykłe i dziesiętne. Uczeń: 11) zaokrągla ułamki dziesiętne; 5. Kalkulator. 2. Działania na liczbach naturalnych. Uczeń: 2) dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową pisemnie, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); 4. Ułamki zwykłe i dziesiętne. Uczeń: 9) zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na ułamki dziesiętne skończone dowolną metodą (( ) lub za pomocą kalkulatora); 6. Odczytywanie informacji z tabel i diagramów. 7. Odczytywanie danych przedstawionych na wykresach. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 2) dodaje odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci ( ) i za pomocą kalkulatora; 8) wykonuje działania na ułamkach dziesiętnych, używając własnych, poprawnych strategii lub za pomocą kalkulatora; 13. Elementy statystyki opisowej. Uczeń: 1) gromadzi i porządkuje dane; 2) odczytuje i interpretuje dane przedstawione w tekstach, tabelach, diagramach i na wykresach. 13. Elementy statystyki opisowej. Uczeń: 1) gromadzi i porządkuje dane; 2) odczytuje i interpretuje dane przedstawione w tekstach, tabelach, diagramach i na wykresach. PRĘDKOŚĆ, DROGA, CZAS 1. Droga. 12. Obliczenia praktyczne. Uczeń: 6) zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 9) w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie, ( ) 2. Prędkość. 12. Obliczenia praktyczne. Uczeń: 6) zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr,

kilometr; 9) w sytuacji praktycznej oblicza: ( ) prędkość przy danej drodze i danym czasie, ( ) stosuje jednostki prędkości: km/h, m/s 3. Czas. 12. Obliczenia praktyczne. Uczeń: 3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach; 6) zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 9) w sytuacji praktycznej oblicza: ( ) czas przy danej drodze i danej prędkości; 4. Droga, prędkość, czas. 12. Obliczenia praktyczne. Uczeń: 3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach; 6) zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 9) w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie, prędkość przy danej drodze i danym czasie, czas przy danej drodze i danej prędkości; stosuje jednostki prędkości: km/h, m/s POLA WIELOKĄTÓW 1. Pole prostokąta. 11. Obliczenia w geometrii. Uczeń: 2) oblicza pola: kwadratu, prostokąta ( ) przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m 2, cm 2, km 2, mm 2, dm 2, ar, hektar (bez zamiany jednostek w trakcie obliczeń); 2. Pole równoległoboku i rombu. 11. Obliczenia w geometrii. Uczeń: 2) oblicza pola: ( ), rombu, równoległoboku,( ) przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m 2, cm 2, km 2, mm 2, dm 2, ar, hektar (bez zamiany jednostek w trakcie obliczeń); 3. Pole trójkąta. 11. Obliczenia w geometrii. Uczeń: 2) oblicza pola: ( ) trójkąta ( ) przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m 2, cm 2, km 2, mm 2, dm 2, ar, hektar (bez zamiany jednostek w trakcie obliczeń); 4. Pole trapezu. 11. Obliczenia w geometrii. Uczeń: 2) oblicza pola: ( ) trapezu, przedstawionych na rysunku (w tym na własnym rysunku

pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m 2, cm 2, km 2, mm 2, dm 2, ar hektar (bez zmiany jednostek w trakcie obliczeń); PROCENTY 1. Procenty i ułamki. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 5) oblicza ułamek danej liczby naturalnej; 12. Obliczenia praktyczne. Uczeń: 1) interpretuje 100% danej wielkości jako całość, 50% - jako połowę, 25% - jako jedną czwartą, 10% jako jedną dziesiątą, a 1% - jako setną część danej wielkości liczbowej; 2. Jaki to procent? 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń 5) oblicza ułamek danej liczby naturalnej; 3. Jaki to procent? (cd.) Obliczenia za pomocą kalkulatora*. 12. Obliczenia praktyczne. Uczeń: 1) interpretuje 100% danej wielkości jako całość, 50% - jako połowę, 25% - jako jedną czwartą, 10% jako jedną dziesiątą, a 1% - jako setną część danej wielkości liczbowej; 2) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 10%, 20%; 4. Ułamki zwykłe i dziesiętne. Uczeń: 10) zapisuje ułamki zwykłe o mianownikach innych niż wymienione w pkt 9 w postaci rozwinięcia dziesiętnego nieskończonego (.) dzieląc licznik przez mianownik (...)pomocą kalkulatora; 11) zaokrągla ułamki dziesiętne; 12. Obliczenia praktyczne. Uczeń: 1) interpretuje 100% danej wielkości jako całość, 50% - jako połowę, 25% - jako jedną czwartą, 10% jako jedną dziesiątą, a 1% - jako setną część danej wielkości liczbowej; 2) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 10%, 20%; 4. Diagramy procentowe. 12. Obliczenia praktyczne. Uczeń: 1) interpretuje 100% danej wielkości jako całość, 50% - jako połowę, 25% - jako jedną czwartą, 10% jako jedną dziesiątą, a 1% - jako setną część danej wielkości liczbowej; 13. Elementy statystyki opisowej. Uczeń: 1) gromadzi i porządkuje dane; 2) odczytuje i interpretuje dane przedstawione w tekstach, tabelach, diagramach i na wykresach.

5. Obliczenia procentowe. 12. Obliczenia praktyczne. Uczeń: 1) interpretuje 100% danej wielkości jako całość, 50% - jako połowę, 25% - jako jedną czwartą, 10% jako jedną dziesiątą, a 1% - jako setną część danej wielkości liczbowej; 2) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 10%, 20%; 6.Obliczanie liczby, gdy dany jest jej procent*. 12. Obliczenia praktyczne. Uczeń: 1) interpretuje 100% danej wielkości jako całość, 50% - jako połowę, 25% - jako jedną czwartą, 10% jako jedną dziesiątą, a 1% - jako setną część danej wielkości liczbowej; 2) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 10%, 20%; 7. Obniżki i podwyżki. 12. Obliczenia w praktyce. Uczeń: 2) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 10%, 20%; LICZBY DODATNIE I LICZBY UJEMNE 1. Liczby dodatnie i liczby ujemne. 3. Liczby całkowite. Uczeń: 1) podaje praktyczne przykłady stosowania liczb ujemnych; 2) interpretuje liczby całkowite na osi liczbowej; 3) oblicza wartość bezwzględną; 4) porównuje liczby całkowite; 2. Dodawanie i odejmowanie. 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki pamięciowe na liczbach całkowitych. 3. Mnożenie i dzielenie. 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki pamięciowe na liczbach całkowitych WYRAŻENIA ALGEBRAICZNE I RÓWNANIA 1. Zapisywanie wyrażeń algebraicznych. 2. Obliczanie wartości wyrażeń algebraicznych. 3. Upraszczanie wyrażeń algebraicznych. 6. Elementy algebry. Uczeń: 1) korzysta z nieskomplikowanych wzorów, w których występują oznaczenia literowe, zamienia wzór na formę słowną; 2) stosuje oznaczenia literowe nieznanych wielkości liczbowych i zapisuje proste wyrażenia algebraiczne na podstawie informacji osadzonych w kontekście praktycznym; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 7) oblicza wartości prostych wyrażeń arytmetycznych, stosując reguły dotyczące kolejności wykonywania działań; 6. Elementy algebry. Uczeń: 1) korzysta z nieskomplikowanych wzorów, w których występują oznaczenia literowe, zamienia wzór na formę słowną; 2) stosuje oznaczenia literowe nieznanych wielkości liczbowych i zapisuje proste wyrażenia

algebraiczne na podstawie informacji osadzonych w kontekście praktycznym; 4. Zapisywanie równań. 6. Elementy algebry. Uczeń: 2) stosuje oznaczenia literowe nieznanych wielkości liczbowych i zapisuje proste wyrażenia algebraiczne na podstawie informacji osadzonych w kontekście praktycznym; 5. Liczba spełniająca równanie. 6. Elementy algebry. Uczeń: 3) rozwiązuje równania pierwszego stopnia z jedną niewiadomą występującą po jednej stronie równania (poprzez zgadywanie, dopełnianie lub wykonanie działania odwrotnego 6. Rozwiązywanie równań. 6. Elementy algebry. Uczeń: 3) rozwiązuje równania pierwszego stopnia z jedną niewiadomą występującą po jednej stronie równania (poprzez zgadywanie, dopełnianie lub wykonanie działania odwrotnego). 7. Zadania tekstowe. 6. Elementy algebry. Uczeń: 2) stosuje oznaczenia literowe nieznanych wielkości liczbowych i zapisuje proste wyrażenia algebraiczne na podstawie informacji osadzonych w kontekście praktycznym; 3) rozwiązuje równania pierwszego stopnia z jedną niewiadomą występującą po jednej stronie równania (poprzez zgadywanie, dopełnianie lub wykonanie działania odwrotnego). FIGURY PRZESTRZENNE 1. Rozpoznawanie figur przestrzennych. 14. Zadania tekstowe. Uczeń: 1) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; 2) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe; 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 10. Bryły. Uczeń: 1) rozpoznaje graniastosłupy proste, ostrosłupy, walce, stożki i kule w sytuacjach praktycznych i wskazuje te bryły wśród innych modeli brył; 2. Prostopadłościany i sześciany. 10. Bryły. Uczeń: 2) wskazuje wśród graniastosłupów prostopadłościany i sześciany i uzasadnia swój wybór; 4) rysuje siatki prostopadłościanów; 11. Obliczenia w geometrii. Uczeń: 3) stosuje jednostki pola: m 2, cm 2, km 2, mm 2, dm 2 ( ) (bez zamiany jednostek w trakcie obliczeń); 4) oblicza (.) pole powierzchni prostopadłościanu przy danych długościach krawędzi; 3. Graniastosłupy proste. 10. Bryły. Uczeń:

1) rozpoznaje graniastosłupy proste ( ) wskazuje te bryły wśród innych modeli brył; 3) rozpoznaje siatki graniastosłupów prostych ( ); 11. Obliczenia w geometrii. Uczeń: 3) stosuje jednostki pola: m 2, cm 2, km 2, mm 2, dm 2 ( ) (bez zamiany jednostek w trakcie obliczeń); 4) oblicza objętość i pole powierzchni prostopadłościanu przy danych długościach krawędzi; 4. Objętość graniastosłupa. 11. Obliczenia w geometrii. Uczeń: 4) oblicza objętość i pole powierzchni prostopadłościanu przy danych długościach krawędzi; 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ; 5. Ostrosłupy. 10. Bryły. Uczeń: 1) rozpoznaje graniastosłupy proste, ostrosłupy, ( ) i wskazuje te bryły wśród innych modeli brył; 3) rozpoznaje siatki graniastosłupów prostych i ostrosłupów; KONSTRUKCJE GEOMETRYCZNE 1. Konstruowanie trójkątów o danych bokach. 9. Wielokąty, koła, okręgi Uczeń: 2) konstruuje trójkąt o trzech danych bokach; ustala możliwość zbudowania trójkąta (na podstawie nierówności trójkąta); 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu; 2. Proste prostopadłe*. 9. Wielokąty, koła, okręgi Uczeń: 1) rozpoznaje i nazywa trójkąty ostrokątne, prostokątne i rozwartokątne, równoboczne i równoramienne; 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu; 3. Proste równoległe*. 9. Wielokąty, koła, okręgi Uczeń: 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu; 4. Przenoszenie kątów*. 5. Konstrukcje różnych trójkątów*. 9. Wielokąty, koła, okręgi Uczeń: 2) konstruuje trójkąt o trzech danych bokach; ustala możliwość zbudowania trójkąta (na podstawie nierówności trójkąta); 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu; UKŁAD WSPÓŁRZĘDNYCH* 1. Punkty w układzie współrzędnych. 2. Długości odcinków i pola figur.

Na ocenę dopuszczającą uczeń: wykonuje (zwykle poprawnie) działania arytmetyczne niezłożone rachunkowo (zwłaszcza przy nowo poznanych metodach obliczeń wymagamy tylko najprostszych przykładów), rozwiązuje najprostsze zadania tekstowe, łatwe zarówno pod względem złożoności tekstu, jak i złożoności obliczeń, rozumie najważniejsze pojęcia matematyczne, konieczne do formułowania i rozwiązywania prostych zadań, wykonuje rysunki prostych figur geometrycznych, dokonuje pomiarów długości, rozwiązuje najprostsze zadania geometryczne. Na ocenę dostateczną uczeń: wykonuje (na ogół poprawnie) działania arytmetyczne niezbyt złożone rachunkowo, rozwiązuje proste zadania tekstowe, rozumie pojęcia matematyczne, stosuje je w prostych przypadkach, wykonuje rysunki figur geometrycznych; posługuje się cyrklem, linijką, ekierką i kątomierzem, wykonuje i czyta rysunki przestrzenne, odpowiada na ich podstawie na proste pytania, rozwiązuje proste zadania geometryczne. Na ocenę dobrą uczeń: sprawnie wykonuje działania arytmetyczne, także bardziej złożone rachunkowo, rzadko popełniając pomyłki, rozwiązuje typowe zadania tekstowe, rozumie i stosuje pojęcia matematyczne, wykonuje rysunek potrzebny do rozwiązania zadania geometrycznego, także bardziej złożonego, i na jego podstawie rozwiązuje zadanie. Na ocenę bardzo dobrą uczeń: sprawnie i niemal bezbłędnie wykonuje działania arytmetyczne, także nowo poznane, bardzo rzadko popełniając pomyłki, rozwiązuje również trudniejsze zadania tekstowe, wyszukując dane w złożonym tekście, rozumie pojęcia matematyczne, stosuje je też w nietypowych sytuacjach, rysuje figury geometryczne o zadanych własnościach, odpowiada na pytania dotyczące figur przestrzennych na podstawie rysunków lub siatek, w niektórych wypadkach samodzielnie znajduje metodę rozwiązania zadania, rozwiązuje trudniejsze zadania geometryczne. Na ocenę celującą uczeń: rozwiązuje nietypowe, trudne zadania, wymagające oryginalnego podejścia i rozumowania