PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ"

Transkrypt

1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ 1

2 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY V SZKOŁY PODSTAWOWEJ Materiał przedstawia Przedmiotowe Zasady Oceniania z matematyki dla klasy V szkoły j. W systemie zawarte są: zasady współpracy nauczyciela z klasą, wymagania edukacyjne oraz kryteria ocen na poszczególne stopnie. Jest to materiał, z którym nauczyciel przedmiotu musi zapoznać na początku roku szkolnego uczniów w klasie oraz rodziców, aby zarówno jedni i drudzy byli świadomi tego, jak będzie wyglądać współpraca nauczyciela z klasą, jakie umiejętności będą u uczniów kształtowane, a także jak i za co uczniowie będą oceniani. Przedmiotowe zasady oceniania z matematyki 1. Każdy uczeń jest oceniany sprawiedliwie.. Ocenie podlegają następujące formy aktywności ucznia: - wypowiedź ustna, - prace pisemne: testy i sprawdziany kompetencji, prace klasowe, zadania domowe, sprawdziany, kartkówki, - wykonywanie ćwiczeń praktycznych, - aktywność, - szczególne osiągnięcia.. Każdy uczeń powinien być oceniany w ciągu semestru co najmniej: - razy wypowiedź ustna, - razy prace klasowe, - 1 raz zadanie domowe, - razy sprawdziany.

3 Dokumentowanie oceniania odbywa się poprzez: zapisy w e-dzienniku, arkuszach ocen, odnotowanie oceny w zeszycie przedmiotowym ucznia. Uczeń ma prawo do bieżącej informacji dotyczącej jego postępów oraz wskazania kierunków poprawy. Ocenianie ma charakter cyfrowy w skali 1. Prace pisemne ocenia się punktowo. Dla ustalenia ocen cyfrowych stosowane są progi przeliczeniowe według następującej skali: Celujący 97% - 100% Bardzo dobry 8% - 9% Dobry 70% - 8% Dostateczny 0% - 9% Dopuszczający 0% - 9% Niedostateczny 0% - 9%. Prace klasowe, sprawdziany, kartkówki oraz odpowiedzi ustne są obowiązkowe.. Jeżeli uczeń opuścił pracę klasową z przyczyn losowych, to ma obowiązek ją napisać w ciągu dwóch tygodni od rozdania prac.. Uczeń może poprawić ocenę z pracy klasowej w ciągu tygodnia od dnia oddania sprawdzonych prac. 7. Przy poprawianiu prac klasowych i pisania w drugim terminie kryteria ocen nie zmieniają się, a ocena wpisana jest do e-dziennika. 8. Krótkie sprawdziany mogą obejmować materiał z trzech lekcji. 9. Uczniowie nieobecni na krótkich sprawdzianach mogą być odpytywani ustnie. 10. Krótkie sprawdziany nie podlegają poprawie. 11. Nie ma możliwości poprawienia ocen tydzień przez klasyfikacją. 1. Nie ocenia się uczniów do trzech dni po dłuższej usprawiedliwionej nieobecności w szkole. 1. Uczeń, który opuścił więcej niż 0% lekcji może nie być klasyfikowany z przedmiotu. 1. Każdy uczeń ma prawo do zaliczania mu dodatkowych punktów (ocen) za wykonane prace nadobowiązkowe. 1. Uczeń ma prawo trzykrotnie w ciągu semestru zgłosić nieprzygotowanie do lekcji (nie dotyczy prac klasowych i sprawdzianów). 1. Każda ocena cząstkowa, którą otrzymuje uczeń ma ustaloną wagę. Formy aktywności Waga oceny Test diagnostyczny. Osiągnięcie wysokiego wyniku w konkursie przedmiotowym etap wojewódzki,

4 wykonywanie zadań wykraczających poza podstawę programową. Praca klasowa, sprawdzian. Kartkówka Odpowiedź ustna Czytanie teksu ze zrozumieniem. Rozumienie tekstu słuchanego. Prezentacja multimedialna. Praca samodzielna na lekcji. Praca w grupach. Aktywność na lekcji Inne (np. przygotowanie do zajęć). Zadania domowe 1 Wykonanie pomocy dydaktycznych, praca na rzecz szkoły w ramach przedmiotu. 1 Śródroczne i roczne oceny klasyfikacyjne z obowiązujących zajęć edukacyjnych ustalają nauczyciele prowadzący te zajęcia na podstawie średniej ważonej ocen cząstkowych zapisanych w dzienniku elektronicznym LIBRUS Synergia według następującej skali: Ocena Średnia ważona Niedostateczny 1,0 i mniej Dopuszczający od 1,1 do,0 Dostateczny od,1 do,0 Dobry od,1 do,0 Bardzo dobry od,1 do,0 Celujący od,1 do,00 Roczna ocena klasyfikacyjna z obowiązujących zajęć ustalana jest na podstawie średniej ważonej ocen cząstkowych uzyskanych w ciągu roku szkolnego (średnia roczna).

5 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności te zostały odniesione do sformułowanych w podstawie programowej wymagań szczegółowych. W zamieszczonej tabeli umiejętności te przypisane poszczególnym rozdziałom zostały odniesione do poszczególnych ocen szkolnych zgodnie z przyjętymi w programie nauczania Matematyka z pomysłem założeniami, aby ocenę: - dopuszczającą otrzymywał uczeń, który nabył większość umiejętności sprzyjających osiągnięciu wymagań podstawowych i potrafi je wykorzystać w sytuacjach typowych, - dostateczną otrzymywał uczeń, który nabył wszystkie umiejętności sprzyjające osiągnięciu wymagań podstawowych i potrafi je wykorzystać w sytuacjach typowych, - dobrą otrzymywał uczeń, który nabył wszystkie umiejętności sprzyjające osiągnięciu wymagań podstawowych, niektóre umiejętności sprzyjające osiągnięciu wymagań ponadpodstawowych i potrafi je wykorzystać w sytuacjach typowych, - bardzo dobrą otrzymywał uczeń, który nabył wszystkie umiejętności sprzyjające osiągnięciu wymagań podstawowych i potrafi je wykorzystywać w sytuacjach nietypowych oraz nabył niektóre umiejętności sprzyjające osiągnięciu wymagań ponadpodstawowych i potrafi je wykorzystać w sytuacjach typowych, - celującą otrzymywał uczeń, który nabył wszystkie umiejętności sprzyjające osiągnięciu wymagań podstawowych i ponadpodstawowych i potrafi je wykorzystywać w sytuacjach nietypowych.

6 Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki w sytuacjach praktycznych liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej (.1); dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach, takich jak np lub (.1); szacuje wyniki działań (.1); dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe w sytuacjach problemowych (.1); Dodawanie i odejmowanie pisemne powtórzenie dodaje liczby naturalne wielocyfrowe pisemnie bez przekroczenia progu (.); odejmuje liczby naturalne wielocyfrowe pisemnie bez przekroczenia progu (.); dodaje liczby naturalne wielocyfrowe pisemnie (.); odejmuje liczby naturalne wielocyfrowe pisemnie (.); Mnożenie i dzielenie pisemne powtórzenie mnoży liczbę naturalną przez liczbę naturalną jednocyfrową pisemnie (.); dzieli liczbę naturalną przez liczbę naturalną jednocyfrową pisemnie

7 Wymagania Wymagania ponad Mnożenie pisemne liczb wielocyfrowych mnoży liczbę naturalną przez liczbę naturalną dwucyfrową pisemnie(.); mnoży liczbę naturalną przez liczbę naturalną trzycyfrową pisemnie (.); mnoży liczby wielocyfrowe pisemnie (R); Dzielenie pisemne liczb przez liczby wielocyfrowe dzieli liczbę naturalną przez liczbę naturalną dwucyfrową pisemnie(.); dzieli liczbę naturalną przez liczbę naturalną trzycyfrową pisemnie (.); Wyrażenia arytmetyczne i zadania tekstowe I stosuje reguły dotyczące kolejności wykonywania działań (.11); czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe (1.1); wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania(1.); dostrzega zależności między podanymi informacjami (1.); dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania (1.); do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu stosuje reguły dotyczące kolejności wykonywania działań w wyrażeniach o skomplikowanej budowie (.11); weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania (1.); 7

8 Wymagania Wymagania ponad arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody (1.); Zamiana jednostek. Liczby dziesiętne zapisuje wyrażenia dwumianowane w postaci ułamka dziesiętnego i odwrotnie (.); zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr (1.); zamienia i prawidłowo stosuje jednostki masy: gram, kilogram, dekagram, tona (1.7); Dodawanie pisemne liczb dziesiętnych dodaje ułamki dziesiętne w pamięci (w najprostszych przykładach) (.); dodaje ułamki dziesiętne pisemnie (.); Odejmowanie pisemne liczb dziesiętnych odejmuje ułamki dziesiętne w pamięci (w najprostszych przykładach) (.); odejmuje ułamki dziesiętne pisemnie (.); 8

9 Wymagania Wymagania ponad Powtórzenie 1 Dział. Ułamki zwykłe. Działania na ułamkach zwykłych Uczeń: Cechy podzielności przez,, 10, 100, 1000 rozpoznaje liczby naturalne podzielne przez (.7); rozpoznaje liczby naturalne podzielne przez, 10, 100 (.7); stosuje cechy podzielności przez,, 10, 100 (.7); prowadzi proste Rozumowania nt. podzielności liczb (.7); prowadzi Rozumowania nt. podzielności liczb (.7); Cechy podzielności przez i 9 rozpoznaje liczby naturalne podzielne przez (.7); rozpoznaje liczby naturalne podzielne przez 9 (.7); stosuje cechy podzielności przez, 9 (.7); prowadzi proste rozumowania nt. podzielności liczb (.7); prowadzi rozumowania nt. podzielności liczb (.7); Liczby pierwsze i złożone rozpoznaje liczbę złożoną, gdy jest ona jednocyfrowa lub dwucyfrowa (.8); rozpoznaje liczbę złożoną, gdy na istnienie dzielnika wskazuje poznana cecha podzielności (.8); rozpoznaje liczbę pierwszą dwucyfrową (.9); rozkłada liczby dwucyfrowe na czynniki pierwsze (.9); rozkłada liczby na czynniki pierwsze (R); stosuje rozkład liczby na czynniki pierwsze w sytuacjach typowych (R); stosuje rozkład liczby na czynniki pierwsze w sytuacjach nietypowych (R); 9

10 Wymagania Wymagania ponad Sprowadzanie ułamków zwykłych do wspólnego mianownika skraca i rozszerza ułamki zwykłe (.); sprowadza ułamki zwykłe do wspólnego mianownika (.); Porównywanie ułamków zwykłych odczytuje ułamki zwykłe zaznaczone na osi liczbowej (.7); porównuje ułamki zwykłe (.1); zaznacza ułamki zwykłe na osi liczbowej (.7); Dodawanie ułamków zwykłych dodaje ułamki zwykłe o mianownikach jednocyfrowych (.1); dodaje ułamki zwykłe o mianownikach dwucyfrowych, a także liczby mieszane (.1); Odejmowanie ułamków zwykłych odejmuje ułamki zwykłe o mianownikach jednocyfrowych (.1); odejmuje ułamki zwykłe o mianownikach dwucyfrowych, a także liczby mieszane (.1); Działania na ułamkach zwykłych mnoży ułamki zwykłe o mianownikach jednocyfrowych (.1); mnoży ułamki zwykłe o mianownikach dwucyfrowych, a także liczby mieszane (.1); oblicza ułamek danej liczby naturalnej (.); oblicza wartości prostych wyrażeń arytmetycznych, stosując reguły dotyczące kolejności wykonywania działań (.7); oblicza ułamek danego ułamka (R); oblicza ułamek liczby mieszanej (R); 10

11 Wymagania Wymagania ponad Powtórzenie Dział. Wielokąty Uczeń: Klasyfikacja trójkątów. Własności trójkątów rozpoznaje i nazywa trójkąty ostrokątne, prostokątne i rozwartokątne (9.1); rozpoznaje i nazywa trójkąty równoboczne i równoramienne (9.1); konstruuje trójkąt o trzech danych bokach (9.); ustala możliwość zbudowania trójkąta (na podstawie nierówności trójkąta) (9.); stosuje twierdzenie o sumie kątów trójkąta (9.); oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów (11.); stosuje nierówność trójkąta do rozwiązywania zadań w sytuacjach typowych (9.); stosuje nierówność trójkąta do rozwiązywania zadań w sytuacjach nietypowych (9.); stosuje Nierówność trójkąta do rozwiązywania zadań problemowych (9.); Pole trójkąta rozpoznaje i nazywa trójkąty ostrokątne, prostokątne i rozwartokątne (9.1); rozpoznaje i nazywa trójkąty równoboczne i równoramienne (9.1); stosuje jednostki pola: m², cm², km², mm², dm² (bez zamiany jednostek w trakcie obliczeń) (11.); oblicza pole trójkąta przedstawionego na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych(11.); stosuje wzór na pole trójkąta do obliczenia długości jednego boku lub wysokości trójkąta (11.); stosuje jednostki pola: m², cm², km², mm², dm², ar, hektar (11.); 11

12 Wymagania Wymagania ponad zamienia jednostki długości: metr, centymetr, decymetr, milimetr, kilometr (1.); Klasyfikacja czworokątów. Własności czworokątów rozpoznaje i nazywa kwadrat, prostokąt (9.); rozpoznaje i nazywa romb, równoległobok (9.); rozpoznaje i nazywa trapez (9.); zna najważniejsze własności kwadratu, prostokąta (9.); zna najważniejsze własności rombu, równoległoboku (9.); zna najważniejsze własności trapezu (9.); stosuje najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu (9.); oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów (11.); Pole równoległoboku i rombu oblicza pola: rombu i równoległoboku, przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) (11.); oblicza pola: rombu i równoległoboku, w sytuacjach praktycznych (11.); stosuje wzór na pole równoległoboku do obliczenia długości jednego boku lub wysokości w sytuacjach typowych (11.); stosuje wzór na pole rombu do obliczenia stosuje wzór na pole równoległoboku do obliczenia długości jednego boku lub wysokości w sytuacjach nietypowych (11.); stosuje wzór na pole rombu do obliczenia długości jednej przekątnej w sytuacjach 1

13 Wymagania Wymagania ponad długości jednej przekątnej w sytuacjach typowych (11.); nietypowych (11.); Pole trapezu oblicza pole trapezu przedstawionego na rysunku (w tym na własnym rysunku pomocniczym) (11.); oblicza pole trapezu w sytuacjach praktycznych (11.); stosuje wzór na pole trapezu do obliczenia długości jednego boku lub wysokości (11.); Zamiana jednostek pola stosuje jednostki pola: m², cm², km², mm², dm², ar, hektar (bez zamiany jednostek w trakcie obliczeń) (11.); zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr(1.); zamienia jednostki pola (R); Powtórzenie Dział. Ułamki dziesiętne. Działania na ułamkach dziesiętnych Mnożenie liczb dziesiętnych mnoży ułamki dziesiętne w pamięci (w najprostszych przykładach) (.); mnoży ułamki dziesiętne za pomocą kalkulatora (w trudniejszych przykładach) (.); mnoży ułamki dziesiętne pisemnie (.); oblicza kwadraty i sześciany ułamków dziesiętnych (.); mnoży ułamki dziesiętne w pamięci (w prostych przykładach) (.); 1

14 Wymagania Wymagania ponad Dzielenie liczb dziesiętnych dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach) (.); dzieli ułamki dziesiętne za pomocą kalkulatora (w trudniejszych przykładach) (.); dzieli ułamki dziesiętne pisemnie (.); dzieli ułamki dziesiętne w pamięci (w prostych przykładach) (.); Wyrażenia arytmetyczne i zadania tekstowe II oblicza wartości prostych wyrażeń arytmetycznych, stosując reguły dotyczące kolejności wykonywania działań (.7); do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody (1.); oblicza wartości wyrażeń Arytmetycznych o skomplikowanej budowie, stosując reguły dotyczące kolejności wykonywania działań (.7); Liczby dziesiętne a liczby mieszane. Zaokrąglanie liczb zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego (.8); przedstawia ułamki zwykłe o mianownikach 10, 100, 1000 itd. zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na ułamki dziesiętne skończone dowolną metodą (przez rozszerzanie ułamków 1

15 Wymagania Wymagania ponad w postaci ułamków dziesiętnych skończonych (.9); zaokrągla liczby naturalne (1.); zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora) (.9); zapisuje ułamki zwykłe o mianownikach innych niż wymienione w pkt.9 w postaci rozwinięcia dziesiętnego nieskończonego (z użyciem trzech kropek po ostatniej cyfrze), dzieląc licznik przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora (.10); zaokrągla ułamki dziesiętne (.11); Katy wierzchołkowe, kąty przyległe Dział. Figury geometryczne. Skala i plan. Bryły Uczeń: stosuje twierdzenie o sumie kątów trójkąta(9.); rozpoznaje kąt wklęsły i pełny (R); Konstrukcje geometryczne rozpoznaje kąty wierzchołkowe i kąty przyległe (8.); mierzy kąty mniejsze od 180 stopni z dokładnością do 1 stopnia (8.); korzysta z własności kątów Wierzchołkowych i przyległych (8.); rysuje kąt o mierze mniejszej niż 180 stopni (8.); rozpoznaje kąty odpowiadające (R); 1

16 Wymagania Wymagania ponad Plan, mapa, skala oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali (1.8); oblicza długość odcinka w skali, gdy dana jest jego rzeczywista długość (1.8); do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody (1.); wskazuje skalę, w której jeden odcinek jest obrazem drugiego (1.8); stosuje własności odcinków przed stawionych w skali w sytuacjach typowych (R); stosuje Własności odcinków przed stawionych w skali w sytuacjach nietypowych (R); Prostopadłościan, sześcian rozpoznaje graniastosłupy proste w sytuacjach praktycznych i wskazuje te bryły wśród innych modeli brył (10.1); wskazuje wśród Graniastosłupów Prostopadłościany i sześciany i uzasadnia swój wybór (10.); rozpoznaje siatki graniastosłupów prostych (10.); rysuje siatki prostopadłościanów (10.); rysuje siatki graniastosłupów (R); Powtórzenie 1

17 Wymagania Wymagania ponad Obliczanie upływu czasu wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach (1.); wykonuje proste obliczenia kalendarzowe na dniach, tygodniach, miesiącach, latach (1.); Dział. Obliczanie upływu czasu Uczeń: szacuje wyniki działań (.1); 17

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA V

Wymagania na poszczególne oceny szkolne KLASA V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie piątej

Wymagania edukacyjne z matematyki w klasie piątej Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1. TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe.

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.) Matematyka w otaczającym nas świecie Gra tabliczka mnożenia Karta pracy 1 Po IV klasie szkoły podstawowej Ślimak gra edukacyjna z tabliczką mnożenia 1. Zastosowania matematyki w sytuacjach praktycznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Działania pamięciowe Potęgowanie 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności.

Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Liczby naturalne. Działania na liczbach naturalnych. Proste i odcinki. Kąty. Koła i okręgi. Działania pisemne na liczbach

Bardziej szczegółowo

II. Działania na liczbach naturalnych. Uczeń:

II. Działania na liczbach naturalnych. Uczeń: TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY V

WYMAGANIA EGZAMINACYJNE DLA KLASY V TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1. TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 4. II. 07.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA TEMAT.LICZBY I DZIAŁANIA LICZBA GODZ. LEKCYJN YCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ I. Liczby

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ

ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY VI SZKOŁY PODSTAWOWEJ Materiał przedstawia Zasady Oceniania z matematyki dla klasy VI szkoły podstawowej.

Bardziej szczegółowo

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23 TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka

Bardziej szczegółowo

Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka

Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej z przedmiotu matematyka 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń 1) odczytuje i zapisuje liczby naturalne

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe

Bardziej szczegółowo

Wymagania programowe z matematyki w klasie V.

Wymagania programowe z matematyki w klasie V. Wymagania programowe z matematyki w klasie V. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: zapisuje i odczytuje liczby naturalne wielocyfrowe; interpretuje liczby naturalne na osi liczbowej;

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE

WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN TEMAT LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (11 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i

Bardziej szczegółowo

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne. Matematyka

Wymagania na poszczególne oceny szkolne. Matematyka Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas 22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb

Bardziej szczegółowo

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych

Bardziej szczegółowo

Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV

Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV i ponadpodstawowe z matematyki w SP9 Klasa IV Rozdział DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM 1. Zbieranie i prezentowanie danych 2. Rzymski system zapisu liczb 3. Obliczenia kalendarzowe

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne 1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasy 4 6. Wymagania podstawowe Uczeń: DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM

Matematyka Matematyka z pomysłem Klasy 4 6. Wymagania podstawowe Uczeń: DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM Opis założonych osiągnięć ucznia Wymagania programowe, które stanowią oczekiwane osiągnięcia uczniów zostały podzielone na wymagania podstawowe (bazowe dla przedmiotu) i wymagania ponadpodstawowe (rozszerzające

Bardziej szczegółowo

Rozkład materiału nauczania. Klasa 5

Rozkład materiału nauczania. Klasa 5 1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne 1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania edukacyjne z matematyki- klasa 4

Wymagania edukacyjne z matematyki- klasa 4 Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające

Bardziej szczegółowo

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA VI

Wymagania na poszczególne oceny szkolne KLASA VI Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (12 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019. Treści nauczania według podstawy programowej klasa IV klasa V klasa VI

Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019. Treści nauczania według podstawy programowej klasa IV klasa V klasa VI Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019 W tabeli przedstawiono informacje, w których klasach według program Matematyka z plusem realizowane są poszczególne wymagania.

Bardziej szczegółowo

SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)

SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,

Bardziej szczegółowo

MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBY NATURALNE I UŁAMKI 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA PRZEDMIOTOWY SYSTEM OCENIANIA Szkoła Podstawowa 1 w Damnie klasa 5 rok szkolny 2017/2018 przedmiot: matematyka nauczyciel: Joanna Rusak 1. FORMY I ZASADY SPRAWDZANIA OSIĄGNIĘĆ EDUKACYJNYCH UCZNIÓW: a)

Bardziej szczegółowo

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r.

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r. PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ W DNIU 27 SIERPNIA 2012 r. (ze zmianami) Cele kształcenia wymagania ogólne I. Sprawność rachunkowa.

Bardziej szczegółowo

Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie

Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie ZAKRES MATERIAŁU KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2016/2017 ETAP SZKOLNY Cele edukacyjne: Rozwijanie zdolności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem mgr Mariola Jurkowska mgr Aleksandra Baster Szkoła Podstawowa nr 164 w Krakowie Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem Uczeń otrzyma ocenę dopuszczającą,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym

Bardziej szczegółowo

MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA

MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA 2018-09-01 MATEMATYKA klasa V Podstawa programowa SZKOŁA BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Dział 1. Działania na ułamkach zwykłych i dziesiętnych wykonuje działania na ułamkach dziesiętnych z pomocą kalkulatora; mnoży ułamki zwykłe

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w klasach IV VI

Przedmiotowy system oceniania z matematyki w klasach IV VI Przedmiotowy system oceniania z matematyki w klasach IV VI Przedmiotowy system oceniania ( w skrócie PSO ) jest zgodny z Ustawą o systemie oświaty z dnia 7 września 1991 roku ( ze zmianami), oraz Rozporządzeniem

Bardziej szczegółowo

MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa.

MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa. MATEMATYKA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV:

WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV: WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV: Na każdym poziomie obowiązują także wszystkie wymagania z poziomów niższych.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Liczby dodatnie i ujemne Dodawanie liczb całkowitych Mnożenie i dzielenie liczb całkowitych

Bardziej szczegółowo

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi Rozkład materiału nauczania. Matematyka wokół nas Klasa 4 DZIAŁANIA NA LICZBACH NATURALNYCH (22 h) 1 Liczby naturalne. Oś liczbowa 1. 1 ) odczytuje i zapisuje liczby naturalne wielocyfrowe 1. 2 ) interpretuje

Bardziej szczegółowo

OGÓLNE WYMAGANIA EDUKACYJNE Z MATEMATYKI

OGÓLNE WYMAGANIA EDUKACYJNE Z MATEMATYKI OGÓLNE WYMAGANIA EDUKACYJNE Z MATEMATYKI Wymagania edukacyjne z matematyki na poszczególne oceny Ocenę niedostateczną otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie

Bardziej szczegółowo

odczytuje z diagramów dane, zapisane za pomocą ułamków zwykłych, ułamków dziesiętnych lub liczb całkowitych odczytuje dane z procentowych diagramów:

odczytuje z diagramów dane, zapisane za pomocą ułamków zwykłych, ułamków dziesiętnych lub liczb całkowitych odczytuje dane z procentowych diagramów: Matematyka Klasa V Wymagania programowe podstawowe Uczeń : zapisuje słownie i czyta duże liczby zapisane w systemie dziesiątkowym porównuje liczby naturalne i porządkuje je rosnąco lub malejąco, używa

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu

Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu Wymagania z matematyki klasa V Matematyka z plusem Wymagania Lp. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu 1. Czyta ze zrozumieniem treści zadań. 2. Sprawdza uzyskane rozwiązania. C/D + + + 3. Znajduje

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas 1 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 6 Nr lekcji Temat lekcji Zagadnienie do realizacji wg podstawy programowej LICZBY NATURALNE (8

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY V SZKOŁY PODSTAWOWEJ Materiał przedstawia Przedmiotowe Zasady Oceniania z matematyki dla

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.)

DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.) DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.) 1 PSO i kontrakt z uczniami. 1 Matematyka w otaczającym nas świecie 1 Karta pracy 1 Po I etapie edukacyjnym 1 Ślimak gra edukacyjna

Bardziej szczegółowo

Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI

Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI I WYMAGANIA EDUKACYJNE Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej

Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej Dział I Liczby naturalne Dostateczna Zna pojęcie dzielnika liczby naturalnej. Podaje dzielniki liczb naturalnych. Rozpoznaje liczby

Bardziej szczegółowo

Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4

Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Anna Konstantynowicz, Adam Konstantynowicz, Bożena Kiljańska, Małgorzata Pająk, Grażyna Ukleja [ ] 2. Szczegółowe cele kształcenia

Bardziej szczegółowo

Zasady Oceniania Przedmiot: Matematyka

Zasady Oceniania Przedmiot: Matematyka I. Kontrakt między nauczycielem i uczniem Zasady Oceniania Przedmiot: Matematyka 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Prace klasowe, sprawdziany i odpowiedzi ustne są obowiązkowe.

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa, klasy 4 8. Plan wynikowy z rozkładem materiału Klasa 5

Matematyka z kluczem. Szkoła podstawowa, klasy 4 8. Plan wynikowy z rozkładem materiału Klasa 5 Matematyka z kluczem Szkoła podstawowa, klasy 4 8 Plan wynikowy z rozkładem materiału Klasa 5 Plan wynikowy Klasa 5 Matematyka z kluczem Temat lekcji Punkty z podstawy programowej z dnia Lp. Wymagania

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy 4 Szkoły Podstawowej poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: Matematyka

Bardziej szczegółowo

Treści nauczania. Klasa 6

Treści nauczania. Klasa 6 . Klasa 6 2. Działania na liczbach naturalnych Obliczenia pamięciowe i pisemne Podzielność liczb naturalnych przez 2, 3, 5, 9, 10, 25*, 100 Średnia arytmetyczna* wykonuje działania na liczbach naturalnych

Bardziej szczegółowo

Wymagania z matematyki dla klasy IV na poszczególne oceny

Wymagania z matematyki dla klasy IV na poszczególne oceny Wymagania z matematyki dla klasy IV na poszczególne oceny Treści nauczania w klasie IV na podstawie podstawy programowej I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. 1) zapisuje i doczytuje

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo