Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 7. prof. dr hab. Aleksander Filip Żarnecki

Podobne dokumenty
Elementy fizyki czastek elementarnych

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 4. prof. dr hab. Aleksander Filip Żarnecki

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 8. prof. dr hab. Aleksander Filip Żarnecki

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW

Elementy fizyki czastek elementarnych

Elementy fizyki czastek elementarnych

Elementy fizyki czastek elementarnych

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników

Theory Polish (Poland)

Akceleratory. Instytut Fizyki Jądrowej PAN 1

Fizyka cząstek elementarnych

Wybrane zagadnienia fizyki jądrowej i cząstek elementarnych. Seweryn Kowalski

Akceleratory. Urządzenia do wytwarzania strumieni cząstek o znacznej energii kinetycznej

Źródła cząstek. Naturalne: Sztuczne. Promieniowanie kosmiczne Różne źródła neutrin. Akceleratory Reaktory. D. Kiełczewska wykład 2 1

Dynamika relatywistyczna

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

Zderzenia relatywistyczne

Źródła cząstek. Naturalne: Sztuczne. Promieniowanie kosmiczne Różne źródła neutrin. Akceleratory Reaktory. D. Kiełczewska wykład 2

Podstawy fizyki kwantowej i budowy materii

Zderzenia relatywistyczne

Akceleratory (Å roda, 16 marzec 2005) - Dodał wtorek

Jak fizycy przyśpieszają cząstki?

Źródła cząstek o wysokich energiach. Promieniowanie kosmiczne. Akceleratory. Ograniczenia na energię maksymalną. Parametry wiązek.

W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński

Wstęp do Akceleratorów wykład dla uczniów. Mariusz Sapiński CERN, Departament Instrumentacji Wiązki 22 marca 2010

Wstęp do fizyki akceleratorów

Jak działają detektory. Julia Hoffman

Wstęp do Akceleratorów wykład dla nauczycieli. Mariusz Sapiński CERN, Departament Wiązek 12 kwietnia 2010

Fizyka cząstek elementarnych i oddziaływań podstawowych

VI. 6 Rozpraszanie głębokonieelastyczne i kwarki

Perspektywy fizyki czastek elementarnych

Na tropach czastki Higgsa

Oddziaływanie promieniowania jonizującego z materią

Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39

Wszechświat czastek elementarnych

Wszechświat cząstek elementarnych

Akceleratory i detektory czastek

Wszechświat cząstek elementarnych

Sławomir Wronka, r

Źródła cząstek o wysokich energiach

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA

Wszechświat czastek elementarnych

Wstęp do Akceleratorów. Mariusz Sapiński CERN BE/BI 24 listopada 2009

Wstęp do akceleratorów

Akceleratory wokół nas

Metody i narzędzia. Tydzień 2

cz. 1. dr inż. Zbigniew Szklarski

Sylwa czyli silva rerum na temat fizyki cz astek elementarnych

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Wszechświat cząstek elementarnych

UNIWERSYTET MIKOŁAJA KOPERNIKA W TORUNIU

Akceleratory wokół nas Aleksander Filip Żarnecki, Wydział Fizyki UW. A.F.Żarnecki Akceleratory wokół nas 3 marca / 50

Dynamika relatywistyczna

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne

Wszechświat czastek elementarnych

Promieniowanie jonizujące

Wszechświat czastek elementarnych

Poziom nieco zaawansowany Wykład 2

Fizyka 3. Konsultacje: p. 329, Mechatronika

dr inż. Zbigniew Szklarski

Podstawy fizyki wykład 8

Promieniowanie jonizujące

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Oddziaływanie cząstek z materią

Dynamika relatywistyczna

Odp.: F e /F g = 1 2,

Grzegorz Wrochna Narodowe Centrum Badań Jądrowych Z czego składa się Wszechświat?

Promieniowanie jonizujące

Akceleratory Cząstek

Słowniczek pojęć fizyki jądrowej

Wszechświat Cząstek Elementarnych dla Humanistów Początki fizyki cząstek

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Promieniowanie jonizujące

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Promieniowanie kosmiczne składa się głównie z protonów, z niewielką. domieszką cięższych jąder. Przechodząc przez atmosferę cząstki

Jak działają detektory. Julia Hoffman

Ramka z prądem w jednorodnym polu magnetycznym

Szczególna teoria względności

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne

Promieniowanie jonizujące

Eksperyment ALICE i plazma kwarkowo-gluonowa

czastki elementarne Czastki elementarne

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI.

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

III. EFEKT COMPTONA (1923)

Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012

Metody liniowe wielkiej częstotliwości

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe

AKCELERATORY I DETEKTORY WOKÓŁ NAS

Witamy w CERNie. Bolesław Pietrzyk LAPP Annecy (F) Wykład przygotowany przez polskich fizyków w CERNie.

Fizyka cząstek elementarnych. Tadeusz Lesiak

Podstawowe własności jąder atomowych

WSTĘP DO FIZYKI JADRA ATOMOWEGOO Wykład 12. IV ROK FIZYKI - semestr zimowy Janusz Braziewicz - Zakład Fizyki Atomowej IF AŚ

Energetyka konwencjonalna odnawialna i jądrowa

Transkrypt:

Źródła czastek prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Wykład 7 Wprowadzenie Naturalne źródła czastek Źródła promieniotwórcze, promieniowanie kosmiczne Akceleratory czastek Akceleratory elektrostatyczne, liniowe i kołowe Współczesne akceleratory i ich ograniczenia

Wprowadzenie Pole elektryczne Prawo Coulomba siła oddziaływania między ładunkami: Gdy opisujemy ruch czastki pod wpływem siły Coulomba wygodnie jest wprowadzic pojęcie "pola elektrycznego" E: + + + + + + + + + + + + + + + E F q<0 Siła działajaca na ładunek q: gdzie: k c = 1 4πε 0 9 10 9 Nm 2 C 2 F = E q Wszechświat Czastek Elementarnych, wykład 7 1

Wprowadzenie Pole magnetyczne Wytwarzane między biegunami magnesów lub elektromagnesów Czastka naładowana poruczajaca się w płaszczyźnie prostopadłej do pola: Na czastkę działa siła Lorenza: F B = Q v B Siła działa prostopadle do kierunku ruchu - nie zmienia prędkości (pędu, energii) czastki, a jedynie kierunek jej ruchu! Wszechświat Czastek Elementarnych, wykład 7 2

Jednostki Energia Naturalna jednostka w fizyce czastek jest 1 elektronowolt 1 ev - energia jaka zyskuje czastka o ładunku 1 e (ładunek elementarny) przy przejściu różnicy potencjału 1 V. Jednostki pochodne: 1 e = 1.6 10 19 C 1 ev = 1.6 10 19 J kilo 1 kev = 10 3 ev mega 1 MeV = 10 6 ev giga 1 GeV = 10 9 ev tera 1 TeV = 10 12 ev = 1.6 10 7 J Wszechświat Czastek Elementarnych, wykład 7 3

Jednostki Masa Masa jest równoważna energii spoczynkowej czastki: Gdzie prędkość światła: E = mc 2 c c 299 792 458 m/s Ó Ò µ 3 10 8 m/s Ale w fizyce czastek powszechnie przyjmujemy c 1. Jednostkę energii możemy wtedy przyjać też za jednostkę masy (E = mc 2 ; c 1) Przykładowe masy: 1 ev/c 2 1 ev = 1.8 10 36 kg elektron e 511 kev 9.1 10 31 kg proton p 938 MeV 1.7 10 27 kg Wszechświat Czastek Elementarnych, wykład 7 4

Źródła czastek Pierwiastki radioaktywne Promieniotwórczość odkrył H. Becquerel w roku 1896. Sole uranu emitowały promieniowanie, które zaciemniało płytę fotograficzna. Poczatkowo przypuszczano, że emitowane jest promieniowanie X (Röntgen, 1895). Na poczatku XX wieku wyodrębniono 3 rodzaje promieniowania: α, β i γ. Dziś wiemy, że sa to: α - jadra helu (2p2n) β - elektrony β + - pozytony γ - fotony Wszechświat Czastek Elementarnych, wykład 7 5

Źródła czastek Pierwiastki radioaktywne Rodzaje promieniotwórczości naturalnej pierwszy zaobserwował Rutherford badajac przenikliwość promieniowania. Moga też być rozdzielone w polu magnetycznym Badania z użyciem źródeł promieniotwórczych doprowadziły do wielu ważnych odkryć (np. doświadczenie Rutherforda - odkrycie jadra atomowego) Podstawowa wada źródeł promieniotwórczych była mała energia emitowanych czastek. Wszechświat Czastek Elementarnych, wykład 7 6

Promieniowanie kosmiczne Poczatkowo uważane było za przejaw naturalnej promieniotwórczości Ziemi. Dopiero w 1912 roku Victor Hess pokazał, że obserwowane czastki pochodza z kosmosu. Natężenie promieniowania rosło wraz z wysokościa... Pierwotne promieniowanie kosmiczne Promieniowanie obserwowane poza atmosfera ziemska Skład (pomijajac neutrina): protony (jadra H) 86% czastki α (jadra He) 13% cięższe jadra 1% neutrony, elektrony, fotony 1% Taki jak "skład Wszechświata"... Wszechświat Czastek Elementarnych, wykład 7 7

Wtórne promieniowanie kosmiczne Promieniowanie kosmiczne Promieniowanie pierwotne oddziałuje w atmosferze Ziemi. Produkowane sa liczne czastki wtórne, głównie piony i kaony, które nastepnie rozpadaja się produkujac głównie miony, a w dalszej kolejności elektrony. Docieraja do powierzchni Ziemi miony µ ± 70% elektrony e ± 25% protony, piony π ± 3% Łacznie około 180 na m 2 s Nie liczac bardzo licznych neutrin, o których jeszcze będzie mowa... Wszechświat Czastek Elementarnych, wykład 7 8

Promieniowanie kosmiczne Do lat 50 XX w. badanie oddziaływań promieniowania kosmicznego z materia było jednym z głównych kierunków badań. Wciaż pozostaje ważnym źródłem danych. Okazuje się, że przestrzeń kosmiczna wypełniona jest czastkami o energiach dochodzacych do 5 10 19 ev 10 J (!!!). Niestety czastek o najwyższych energiach jest ich bardzo mało... Wciaż nie rozumiemy skad to promieniowanie pochodzi i jak może powstawać... Wszechświat Czastek Elementarnych, wykład 7 9

Akceleratory Dlaczego je budujemy? Chcielibyśmy badać oddziaływania czastek w dobrze kontrolowanych warunkach: znać rodzaj zderzajacej się czastki, jej energię i dokładny moment zderzenia. Wiemy też, że oddziaływania czastek zależa od ich energii. Przykład - anihilacja e + e : e + e µ + µ Aby wyprodukować nowe czastki musimy spełnić zasadę zachowania enerii - dostarczyć energię wystarczajac a do nadania im masy. Im wyższa masa czastki, która chcemy wyprodukować, tym większa musi być energia zderzajacych się czastek. Wszechświat Czastek Elementarnych, wykład 7 10

Akceleratory elektrostatyczne Akceleratory W 1919 roku Rutherford wskazał na korzyści z przyspieszania czastek. Najprostszym akceleratorem czastek jest pole elektrostatyczne: np. kondensator q>0 E Problemem jest uzyskanie odpowiednio wysokiej różnicy napięć: generator Cockrofta-Waltona (1932): 750 kv generator Van de Graaffa (1931): 1.5 MV U + W pewnych dziedzinach wciaż używane Uzyskiwana energia: E = E + U q Wszechświat Czastek Elementarnych, wykład 7 11

Akceleratory Generator Cockrofta-Waltona Schemat Współczesne urzadzenie Wszechświat Czastek Elementarnych, wykład 7 12

Akceleratory Generator Van de Graaffa Schemat Historia Współczesne urzadzenie Obecnie różnice napięć jakie potrafimy wytwarzać ograniczone sa do rzędu 30 MV E 30 MeV zbyt mało dla fizyki czastek... Wszechświat Czastek Elementarnych, wykład 7 13

Akceleratory Akcelerator liniowy Idea: Gustav Ising 1924. Pierwsze urzadzenia: Rolf Wideroe 1927, Lawrence 1931. Czastka przechodzi przez kolejne kondensatory Przy odpowiednim dobraniu długości kolejnych elementów i częstości napięcia zasilajacego, czastka trafia zawsze na pole przyspieszajace. q>0 E zwielokrotnienie uzyskiwanych energii Częstość jest zazwyczaj stała. Długości kolejnych elementów rosna proporcjonalnie do prędkości czastki. U Dla E m, prędkość β 1: L=const. Wszechświat Czastek Elementarnych, wykład 7 14

Akceleratory Liniowy akcelerator protonów w ośrodku Fermilab (USA) Lioniowy akcelerator protonów przy CERN SPS Wszechświat Czastek Elementarnych, wykład 7 15

Wnęka rezonansowa Akceleratory W praktyce do przyspieszania czastek wykorzystujemy tzw. wnęki rezonansowe: Klistron Wewnatrz wnęki wytwarzana jest stojaca fala elektromagnetyczna. Długość fali/wnęki jest tak dobrana, że czastka zawsze trafia na pole przyspieszajace. Częstości rzędu 1 GHz - mikrofale. Wnęki rezonansowe pozwalaja uzyskiwać natężenia pola rzędu 10 MV/m dla uzyskania energii 1 GeV potrzebny jest akcelerator liniowy o długości 100 m Wszechświat Czastek Elementarnych, wykład 7 16

Wnęka rezonansowa Wszechświat Czastek Elementarnych, wykład 7 17

Akceleratory Wnęka rezonansowa w LHC Częstość pracy 400MHz Łacznie 16 wnęk, 8 wnęk na wiazkę Napięcie przyspieszajace: 2 MV na wnękę Przekaz energii: 16 MeV na okrażenie Wszechświat Czastek Elementarnych, wykład 7 18

Akceleratory Akcelerator kołowy Zamiast używać wielu wnęk możemy wykorzystać pole magnetyczne do zapętlenia czastki. Schemat pogladowy: B Czastki moga przechodzić przez wnękę przyspieszajac a wiele razy... E Pierwszy tego typu akcelerator (cyklotron) zbudował w 1931 roku Ernest Lawrence U Wszechświat Czastek Elementarnych, wykład 7 19

Akceleratory Cyklotron Ernest Lawrence Schemat Pierwszy cyklotron Wszechświat Czastek Elementarnych, wykład 7 20

Akceleratory Synchrotron 1955 Rosnace pole magnetyczne utrzymuje czastki na stałej orbicie Wszechświat Czastek Elementarnych, wykład 7 21

Akceleratory Tunel LHC Wszechświat Czastek Elementarnych, wykład 7 22

Akceleratory Akcelerator kołowy W praktyce akceleratory kołowe zbudowane sa z wielu powtarzajacych się segmentów: Każdy segment składa się z Schemat akceleratora: wnęk przyspieszajacych (A) magnesów zakrzywiajacych (B) układów ogniskujacych (F) F A B Wszechświat Czastek Elementarnych, wykład 7 23

Ogniskowanie Akceleratory Magnesy wytwarzajace jednorodne pole magnetyczne (dipole) zakrzywiaja tory czastek. Magnesy wytwarzajace pole zmieniajaco się liniowo (kwadrupole) ogniskuja wiazke! Pojedynczy magnes kwadrupolowy: ogniskowanie w jednym kierunku, deogniskowanie w drugim. Układ dwóch magnesów może zogniskować w obu płaszczyznach! Opracowanie tej metody (tzw. silne ogniskowanie ) umożliwiło rozwój dużych akceleratorów. Wszechświat Czastek Elementarnych, wykład 7 24

HERA, DESY, Niemcy Wszechświat Czastek Elementarnych, wykład 7 25

Akceleratory Kolejne etapy w rozwoju fizyki czastek sa nierozerwalnie zwiazane z budowa nowych akceleratorów, o coraz wyższych energiach. Niestety, mechanizm przyspieszania czastek pozostał niezmieniony - akceleratory musza być coraz większe i coraz... kosztowniejsze. Wszechświat Czastek Elementarnych, wykład 7 26

Akceleratory Największe akceleratory Badania fizyki czastek z wykorzystaniem akceleratorów koncentruja się w kilku dużych ośrodkach na całym świecie: CERN w Genewie (LEP, SPS, LHC) DESY w Hamburgu (HERA) Fermilab pod Chicago (Tevatron) SLAC w Stanford, Kalifornia (SLC) KEK w Japoni Wszechświat Czastek Elementarnych, wykład 7 27

LEP/LHC Akceleratory Największym zbudowanym dotad akceleratorem był LEP. Zbudowany w CERN pod Genewa miał obwód ok. 27 km. W tym samym tunelu (!) działa obecnie LHC. Przeciwbieżne wiazki protonów o energii 7 TeV. W każdej 2800 "paczek" po 10 11 protonów. Energia jednej paczki: 10 5 J Samochód osobowy jadacy ok. 60 km/h Całkowita zgromadzona energia: 6 10 8 J Zderzenia paczek co 25 ns (40 milionów na sekundę) Wszechświat Czastek Elementarnych, wykład 7 28

LHC, CERN, Genewa Wszechświat Czastek Elementarnych, wykład 7 29

Tevatron, Fermilab, USA Wszechświat Czastek Elementarnych, wykład 7 30

KEK Japonia Wszechświat Czastek Elementarnych, wykład 7 31

DESY, Hamburg Wszechświat Czastek Elementarnych, wykład 7 32

SLAC Stanford, USA Wszechświat Czastek Elementarnych, wykład 7 33

Ograniczenia Akceleratory Aby uzyskiwać coraz wyższe energie zderzajacych się wiazek musimy budować coraz większe i większe akceleratory... Dlaczego!? Co ogranicza energie uzyskiwane w akceleratorach? W przypadku kołowych akceleratorów protonów pole magnetyczne Pole magnetyczne musi rosnać wraz ze wzrostem energii wiazki, aby utrzymywać czastki wewnatrz rury akceleratora. W praktyce jednak nie jesteśmy w stanie wytworzyć pól silniejszych niż B max 10 T. W przypadku akceleratorów kołowych e ± : przyspieszajace pole elektryczne Elektrony kraż ace po orbicie traca energie na promieniowanie hamowania. Energia która możemy dostarczyć jest proporcjonalna do obwodu akceleratora i średniego pola przyspieszajacego jakie potrafimy wytworzyć. Wszechświat Czastek Elementarnych, wykład 7 34

Projekt akceleratora kołowego e + e o energii 1000 GeV Wszechświat Czastek Elementarnych, wykład 7 35

Akceleratory ILC Wszystko wskazuje na to, że LHC będzie ostatnim akceleratorem kołowym. Kolejnym będzie prawdopodobnie akcelerator liniowy e + e ILC - International Linear Collider Wszechświat Czastek Elementarnych, wykład 7 36

Kolajdery Większość budowanych obecnie akceleratorów to "kolajdery". Jeden/dwa akceleratory przyspieszajace a następnie zderzajace ze soba czastki z dwóch przeciwbieżnych wiazek. W ten sposób uzyskujemy dużo wyższa "energię dostępna": E = 4E 1 E 2 E = 2E 1 m 2 Ð Û Þ ÔÖÞ Û ÒÝ Ð Þ ÖÞ Ò Þ Ø Û Þ Þ ÔÓÞÝÛ Þ Ø Ø ÖÞ µ Jest jednak wysoka "cena", która musimy zapłacić. W przypadku zderzeń wiazki z tarcza praktycznie wszystkie czastki oddziałuja. W przypadku wiazek przeciwbieżnych jedynie nieliczne - bardzo trudno jest uzyskać odpowiednia częstość zderzeń. Wszechświat Czastek Elementarnych, wykład 7 37

Kolajdery Świetlność Świetlność L określa liczbę reakcji zachodzacych w jednostce czasu. Wraz ze wzrostem energii zderzenia potrzebujemy coraz większych świetlności! Świetlność zależy od: częstości przecięć wiazek (liczby paczek/pulsów) liczby czastek w paczce poprzecznych rozmiarów wiazki Problem zwłaszcza w akceleratorach liniowych: po jednym przecięciu wiazka tracona konieczne jest uzyskanie bardzo małych rozmiarów poprzecznych wiazek. LEP: σ x 300 µm σ y 8 µm Proj. ILC: σ x 0.5 µm σ y 5 nm (!) Wszechświat Czastek Elementarnych, wykład 7 38

Kolajdery Do końca 2011 roku wiazki LHC będa prawdopodobnie rozpędzane tylko do 3.5 TeV. Dlaczego? LHC to niezwykle skomplikowane urzadzenie, a jednocześnie najmniejszy bład może mieć katastrofalne skutki. Energia zmagazynowama w magnesach sięga 10 GJ! Wszechświat Czastek Elementarnych, wykład 7 39

Kolajdery Energia zmagazynowama w magnesach LHC (przy nominalnej energii 7 TeV) odpowiada energii Airbusa A380 lecacego 700 km/h. Nie stać nas na pomyłkę... Energia zmagazynowana w jednej wiazce (przy docelowej intensywności) odpowiada 90 kg TNT (lub 15 kg czekolady). Mniej, ale też może narobić dużo szkody... Wszechświat Czastek Elementarnych, wykład 7 40

Pierwszy przypadek z detektora CMS @ 7 TeV Wszechświat Czastek Elementarnych, wykład 7 41