Wielkość: px
Rozpocząć pokaz od strony:

Download "http://server.phys.us.edu.pl/~ztpce/"

Transkrypt

1

2 Pokazany poniżej wykaz bardzo dobrych pozycji literatury popularnonaukowej na wskazane tematy można znaleźć na stronie internetowej Zakładu Teorii Pola i Cząstek Elementarnych Instytutu Fizyki Uniwersytetu Śląskiego

3 NAUKA A PSEUDONAUKA 1. A.K.Wróblewski - Prawda i mity w fizyce, Iskry, Warszawa 1987, 2. M. Gardner Nauka, pseudonauka, szarlataneria, Wydawnictwo Pandora 1997, 3. R. P. Feynman Sens tego wszystkiego, Prószyński i S-ka, Warszawa, 1999, 4. R.G.A. Dolby Czy nauce można wierzyć? NIEPEWNOŚĆ WIEDZY, Amber, Sp.z.o.o., 1998, 5. Hy Ruchlis Skąd wiesz, że to prawda - Prószyński i S-ka, Warszawa, 1998, 6. Polska Akademia Nauk - Zbiór Wypowiedzi- O nauce, pseudonauce, paranauce, PWN, 1999.

4 SKŁADNIKI MATERII I ODDZIAŁYWANIA POMIĘDZY NIMI WEDŁUG MODELU STANDARDOWEGO 1. Donald H. Perkins Wstęp do fizyki wysokich energii, PWN, Warszawa 2004, 2. E. Leader, E. Predazzi Wstęp do teorii odziaływań kwarków i leptonów, PWN, Warszawa, 1990, 3. L. Lederman, D. Teresi, Boska cząstka, jeśli Wszechświat jest odpowiedzią, jak brzmi pytanie? Prószyński i S-ka, Warszawa, 2005, 4. F. Close, Kosmiczna cebula, PWN, Warszawa, 1988.

5 RUCH I JEGO OPIS 1.W opracowaniu P. Davisa i J. Browna Duch w atomie Wyd. CIS, Warszawa,1996, 2. R.P. Feynman QED osobliwa teoria światła i materii, PWN, Warszawa, 1992, 3. B. Greene Piękno Wszechświata, Prószyński i S-ka, Warszawa, 2001, 4. R.P. Feynman Sześć łatwych kawałków, Prószyński i S-ka, Warszawa, 1998, 5. B. Greene Struktura kosmosu, Prószyński i S-ka, Warszawa, 2005.

6 PRZESTRZEŃ I CZAS W UJĘCIU POPULARNYM 1.A.Einstein & L. Infeld Ewolucja fizyki, Prószyński i S-ka, Warszawa,1998, 2. B. Greene Struktura Kosmosu, Prószyński i S-ka, Warszawa, 2005, 3. S. Hawking Krótka historia czasu, Zysk i S-ka Wydawnictwo, Poznań, 2005, 4. Encyklopedia PWN Fizyka, Spojrzenie na czas i przestrzeń, PWN, 2002, 5. S.W. Hawking, K.S.Thorne, I. Nowikow,T. Ferris, A. Lightman Przyszłość czasoprzestrzeni, Zysk i S-ka, Wydawnictwo, Poznań,2002.

7 NASZE PRZYZWYCZAJENIA MAKROSKOPOWE A ŚWIAT ATOMÓW 1.R. P. Feynman Charakter praw fizycznych, Prószyński i S-ka, Warszawa,2000, 2. P.C.W. Davies & J.R. Brown Duch w atomie, Wydawnictwo CIS, Warszawa, 1996, 3. A.Einstein & L. Infeld Ewolucja fizyki, Prószyński i S-ka, Warszawa, 1998, 4. P.Atkins Palec Galileusza, Dom Wydawniczy Rebis, Poznań, B. Greene Piękno Wszechświata, Prószyński i S-ka, Warszawa, 2001, 6. R. Penrose Makroświat, mikroświat i ludzki umysł, Prószyński i S- ka, Warszawa, 2001, 7. R.Penrose Nowy umysł cesarza, PWN, Warszawa, 1996.

8 Z CZEGO JESTEŚMY ZBUDOWANI - PODSTAWOWE SKŁADNIKI MATERII I ICH ODDZIAŁYWANIA 1. D.Teresi, L. Lederman Boska cząstka. Jeżeli Wszechświat jest odpowiedzią, jak brzmi pytanie?, Prószyński i S-ka, Warszawa, 2005, 2. R.G. Newton Zrozumieć przyrodę, Prószyński i S-ka, Warszawa, 1996, 3. M.Gell- Mann Kwarki i jaguar, Przyroda z prostotą i złożonością, Wydawnictwo CIS, Warszawa, 1996, 4. F. Wilscek, B. Devine W poszukiwaniu harmonii, wariacje na tematy fizyki współczesnej, Prószyński i S-ka, Warszawa, 2007.

9 BUDOWA WSZECHŚWIATA 1. J. Gribbin W poszukiwaniu wielkiego wybuchu, Zysk i S-ka, Poznań, 2000, 2. T. Ferris Cały ten kram, raport o stanie Wszechświata(ów), Dom Wydawniczy Rebis, Poznań, 1999, 3. A.H. Guth Wszechświat inflacyjny, w poszukiwaniu nowej teorii pochodzenia kosmosu, Prószyński i S-ka, Warszawa, 2000, 4. S. Weinberg Pierwsze trzy minuty, współczesny obraz początku Wszechświata, Iskry, Warszawa, 1980, 5. M.Rees Przed początkiem, nasz Wszechświat i inne wszechświaty, Prószyński i S- ka, Warszawa, 1999, 6. T. Padmanabhan Gdy minęły pierwsze trzy minuty, Amber, Sp.z.o.o C.M. Wynn & A.W. Wiggins Pięć największych idei w nauce, Prószyński i S- ka, Warszawa, 1998, 8. N. degrasse Tyson, D. Goldsmith, - Wielki Początek, 14 miliardów lat kosmicznej ewolucji Prószyński i S-ka, Warszawa, 2007

10 BUDOWA WSZECHŚWIATA c.d. 9) Brian Greene STRUKTURA KOSMOSU. Przestrzeń, czas i struktura rzeczywistości, Prószyński i S-ka, Warszawa, 2005, 10) Brian Green PIĘKNO WSZECHŚWIATA, Prószyński i S-ka, Warszawa, 2001, 11) Neil degrasse Tyson, Donald Goldsmith WIELKI POCZĄTEK 14 miliardów lat kosmicznej ewolucji, Prószyński i S-ka, Warszawa, 2007, 12) John M. Charap Objaśnienie Wszechświata, Prószyński i S-ka, Warszawa, 2006.

11 POŻYTKi I ZAGROŻENIA PŁYNĄCE Z ROZWOJU NAUKI bilans pożytków i strat 1. Pod Redakcją Martina Moskovitsa Czy nauka jest dobra, Wydawnictwo CiS, Warszawa, 1997, 2. R. P. Feynman Sens tego wszystkiego, Prószyński i S-ka, Warszawa, 1999, 3. R. P. Feynman Przyjemność poznawania, Prószyński i S-ka, Warszawa, 1999, 4. G.Charpak & R.L.Garwin Błędne ogniki i grzyby atomowe, Wydawnictwo Naukowo -Techniczne, Warszawa, 1999.

12 NAUKA I RELIGIA 1. R. P. Feynman Sens tego wszystkiego, Prószyński i S-ka, Warszawa, 1999, 2. Albert Einstein, Pisma filozoficzne, Wydawnictwo IFiS PAN, Warszawa 1999, 3. Abraham Pais Tu żył Albert Einstein, Prószyński i S-ka, Warszawa, 2005, 4. Einstein w cytatach, zebrała A. Calaprice, Prószyński i S-ka, Warszawa, 1997, 5. J. Życiński Tabletki Bogu nie szkodzą, Tygodnik Powszechny, 31 lipiec 2005, 6. M. Zając Nowy spór o teorię ewolucji Witraż z Darwinem, Tygodnik Powszechny, 24 lipiec 2005, 7. M. Zając Bóg, konieczność i przypadek, rozmowa z ks. prof. Michałem Helerem, Tygodnik Powszechny, 24 lipiec 2005, 8. R. Dawkins Bóg urojony, Wydawnictwo CIC, Warszawa 2007, 9. A. McGrath, J. C. McGrath - Bóg nie jest urojeniem, złudzenia Dawkinsa, Wydawnictwo WAM, Kraków 2007, 10. Hans-Dieter Mutschler, Fizyka i religia, Wydawnictwo WAM, Kraków, 2007.

13

14

15 Co obecnie wiemy o Wszechświecie -makroświat Marek Zrałek Zakład Teorii Pola i Cząstek Elementarnych, Instytut Fizyki, Uniwersytet Śląski Katowice, 4 grudnia, 2007

16

17 Ludzie od zawsze pragnęli zrozumieć pochodzenie Wszechświata

18 Arystoteles, Ptolemeusz - Ziemia centrum kosmosu Kopernik Słońce centrum Wszechświata Newton Gwiazdy sa słońcami podobnymi do naszego, statycznie rozmieszczone w przestrzeni (później uświadomiono sobie, że statyczna konfiguracja musi być niestabilna. Koniec XVIII wieku gwiazdy nie są równomiernie rozmieszczone, tworzą skupisko w kształcie dysku DROGA MLECZNA. Wiliam Herschel potrałił wyznaczyć strukturę dysku (ale układ słoneczny jest w centrum dysku) Początek XX wieku Herlow Shapley znajdujemy się około 2/3 od środka Galaktyki. Ale DM leży w centrum Wszechświata.

19 Edwin Powell Hubble - jedna z gwiazd w Wielkiej Mgławicy w Andromedzie jest odległa lat świetlnych od Ziemi początek astronomii pozagalaktycznej Dopiero w 1952 roku Walter Baage DM jest dość typowa galaktyką Wtedy sformułowano: Zasadę kosmologiczną (czasem nazywaną zasadą kopernikańską)

20 Obecny Wszechświat jest niewobrażalnie wielki

21 C = m/sek ª km/sek Słońce Ziemia 8 minut Promieniowanie elektromagnetyczne kilka miliardów lat świetnych Neutrina lat świetlnych

22 ODLEGŁOŚCI Rok świetlny = 1 light year =1ly = (1 rok = sek) ƒ ( km/sek) = km = 9.5 ƒ km, Najbliższe gwiazdy ---- kilka ly, 1 pc == 1 parsek =3.261ly kpc = 1000 pc, Mpc = pc. Rozmiary naszej Galaktyki Droga Mleczna zawiera około gwiazd mln lat 0.3 kpc 12.5 kpc 8 kpc

23 Znajdujmy się w Grupie Lokalnej o rozmiarach Mpc, najbliższe nam galaktyki to: Wielki Obłok Magelana kpc od DM, Wielka Mgławica w Andromedzie kpc od DM. Na odległościach rzędu 100 Mps dostrzegamy wielkoskalowe struktury. Galaktyki nie są rozłożone równomiernie, tworzone są gromady galaktyk, te grupują się tworząc supergromady powiązane łańcuchami i ścianami galaktyk. Pomiędzy nimi są wielkie pustki (50 Mpc). W małej skali Wszechświat nie jest izotropowy i jednorodny. O wielkoskalowej jednorodności możemy zacząć mówić dopiero na odległościach Mps.

24 Obserwujemy około 100 miliardów galaktyk wielkości Drogi Mlecznej Czy wszystko obserwujemy?

25 Zasada kosmologiczna W dużej skali Wszechświat jest jednorodny i izotropowy. Miejsce, które zajmujemy we Wszechświecie nie jest pod żadnym względem wyróżnione.

26 Mamy ogromną potrzebę wyjaśnienia: Dlaczego Wszechświat istnieje? W jaki sposób stał się takim, jakim go widzimy? Jakie prawa rządzą Jego ewolucją? W ostatnim okresie zaczyna pojawiać się możliwość udzielenia odpowiedzi na te pytania.

27 Standardowy model kosmologiczny

28 Standardowy Model Kosmologiczny Standardowy model kosmologiczny Najlepszy model Wszechświata jakim dysponujemy, Ekspansja galaktyk, Mikrofalowe promieniowanie tła, Pierwotna nukleosynteza Formowanie wielkich struktur.

29 1916 rok - Einstein tworzy OGÓLNĄ TEORIĘ WZGLĘDNOŚCI i podaje zasadnicze równanie: kt αβ = G αβ + Λg αβ 1917 rok Einstein zauważa G że jego równanie nie ma stacjonarnych rozwiązań (Wszechświat się nie rozszerza i nie kurczy, co jest niezgodne z jego równaniem) 1922 rok - Aleksander Friedman (i niezależnie Georges Lemaītre ) podaje rozwiązanie równania bez stałej kosmologicznej

30 Edwin Hubble Ekspansja Wszechświata W 1948 roku uruchomił olbrzymi pięciometrowy teleskop Caltech na Mount Palomar. Mierząc jasność galaktyk wykazał, że im dalej znajduje się galaktyka tym większa jest jej pozorna prędkość. Z obserwacji tych pochodzi Prawo Hubble a wyrażające zależność prędkości galaktyki (v) od jej odległości (d): v = H d

31 George Gamow Nukleosynteza Gamow przyjął, że wszechświat narodził się jako niewyobrażalnie gorący obiekt, z którego podczas ekspansji najpierw powstały jądra, potem najlżejsze atomy: atomy wodoru i helu. Opublikował on swoje prace w 1948 roku. Przeciwnicy tego modelu, starając się go ośmieszyć, rozpowszechnili nazwę: BIG BANG (Wielki Wybuch)

32 Promieniowanie reliktowe W roku 1964 pracownicy Laboratoriów Bella w USA, badając szumy zakłócające pracę anten radiowych, odkryli przypadkowo istnienie w przestrzeni promieniowania elektromagnetycznego o średniej długości fali około 0.1cm. Okazało się, że jest ono emitowane izotropowo, z każdego kierunku odbioru o każdej porze dnia i roku, niezależnie od obrotu Ziemi i jej ruchu wokół Słońca. Musiało więc pochodzić spoza Układu Słonecznego, a nawet spoza naszej Galaktyki, gdyż inaczej zmieniałby się wraz ze zmianą kierunku osi Ziemi. Arno Penzias (z lewej) i Robert Wilson przed anteną w Holmdel w stanie New Jersey, za pomocą której przypadkowo odkryli mikrofalowe promieniowanie tła.

33 ... M Długość fali fotonu. ( a więc jego energia) rośnie w raz z ekspansją Wszechświata..

34 Wielki Wybuch Krótka Historia Wszechświata (model gorącego wybuchu) K K K K K 10 9 K 3000K 18K 3K s s s 10-6 s 1s 3min lat Miliard lat 15 miliardów lat W chwili Wielkiego Wybuchu Wszechświat miał zerowy promień, a zatem nieskończenie wysoką temperaturę. W miarę jak wzrastał promień temperatura promieniowania spadała. Gdy promień Wszechświata wzrasta dwukrotnie temperatura spada o połowę Krótka historia czasu Stephen Hawking

35 Śledzimy etapy powstawania obecnego Wszechświata

36

37 t < sek 32 0 T > 10 K Era Plancka Pianka czasoprzestrzenna, Mini czarne dziury, Tunele czasoprzestrzenna

38 Era wielkiej unifikacji i plazmy kwarkowo -gluonowej Zwykła, niekwantowa czasoprzestrzeń, zaczyna obowiązywać OTW, zaczęła się w momencie oddzielenia GUT od grawitacji

39 Na początku tej ery - INFLACJA Wszechświat rozszerza się przynajmniej razy W tym okresie uformowała się asymetria materia - antymateria (BARIOGENEZA) na miliard par jedna cząstka więcej Mamy stan plazmy kwarkowo gluonowej + leptony, z małą przewagą cząstek Pod koniec tej ery oddzielają się oddziaływania słabe od elektromagnetycznych

40 Era hadronowa Kwarki i gluony przestają być swobodne powstają hadrony Materia przestaje być w równowadze z antymaterią Nieliczne zachowane hadrony tworzą obecny Wszechświat

41 Nukleosynteza Wraz ze spadkiem temperatury protony i neutrony przestają być w równowadze i powstają lekkie jądra Można wyznaczyć ilość lekkich pierwiastków we Wszechświecie

42 Przed Cząstki we Wszechświecie fotony neutrina Po liczba/cm 3 protony elektrony neutrony ciemna materia

43 Związek pomiędzy energią i temperaturą: k T = E gdzie k stała Boltzmana k = 8.6 x 10 5 ev/1 0 K, ΔE = k (T + 1) k T = k/1 0 K, Związek pomiędzy czasem i energią: 1 MeV kt = const t stąd 1 0 K = 8.6 x 10 5 ev, 1000 GeV energia zderzenia pp w Batavii w Fermilab, K = 0.86 x 10 6 ev = 0.86 MeV, 1 GeV = 1000 MeV, 1000 GeV = K t = sek Śledzimy eksperymentalnie Wielki Wybuch po t = sek

44 Po okresie Bariogenezy????? GeV K --- t = sek e, μ, τ, ν e, ν μ, ν τ 1000 oraz GeV --- u, 10 d, 16 0 K --- c, t = 10 s, -12 sek t, b e, μ, τ, ν e, ν μ, ν τ oraz u, d, c, s, t, b a także W +, W -, Z 0, γ, gluony, a także W +, W -, Z 0, γ, gluony nie ma równowagi cząstki- antycząstki rozpad i kreacja par Wszechświat rozszerza się maleje temperatura maleje energia zderzeń

45 2 E = 100 GeV K sek Elektrosłabe przejście fazowe Kwarki, leptony, cząstki W i Z nabywają masę, Te same cząstki co poprzednio ale już posiadające masę. E = 1 GeV K sek u, d, e +, e -, γ, ν e,ν e 3 E = 1 GeV K sek Rozpadły się ciężkie kwarki i leptony, u, d, e +, e -, γ, ν e, Powstają nukleony, nie ma swobodnych kwarków, p = uud, n = ddu

46 U d

47 ale n p + e - + ν, zmniejsza się liczba neutronów, n + e + p + ν, p + ν n + e + Jądra jeszcze nie powstają. 4 E = 1 MeV n + e +? p + ν, p + ν? n + e + E = 1 MeV K sek 0 K sek Reakcje n p przestają zachodzić, Neutrina zaczynają się zachowywać jak cząstki swobodne, 75 % protonów, 25% neutronów

48 5 E = 0.1 MeV K min Proces e + e - 2 γ zachodzi, proces odwrotny 2 γ e + e - już nie, Zaczyna się tworzyć deuter (D = pn) oraz tryt (T = nnp): n + p D, D + n E T = 0.1 MeV a --- także K D min + p 3 He 2, Powstaje Hel i Lit: D + D 4 He 2, T + p 3 He 2, n + 3 He 2, 4 He 2 oraz 3 He He 2 7 Be 4 + γ 7 Li 3 + p, Nie istnieją stabilne jądra z A = 5 i A = 8, energia zbyt mała aby pokonać barierę kulombowską koniec pierwotnej nukleosyntezy, E

49 Wszystkie neutrony są włączone w jądra helu i trochę litu, Było 87% protonów i 13% neutronów, stąd 13% + 13% = 26% jąder helu oraz 74% protonów, Mamy dużo fotonów (miliard na każdy nukleon), Elektrony i jądra nie tworzą jeszcze atomów. Długi okres nic się specjalnego nie dzieje, dopiero gdy 6 E = 13.6 ev K lat Fotony przestają oddziaływać z jądrami i elektronami mikrofalowe promieniowanie tła, Mamy wodór oraz hel ( trochę deuteru, trytu, helu 3 litu).

50 Obecny Wszechświat wygląda trochę inaczej obserwujemy we Wszechświecie całą tablicę Mendelejewa, (rozpowszechnienie pierwiastków) Wszystkie inne pierwiastki powyżej LITU powstały w gwiazdach, Jak powstały gwiazdy, galaktyki, gromady galaktyk? na arenę wkracza oddziaływanie GRAWITACYJNE, Małe fluktuacje gęstości materii: COBE (1992) - pierwsze fluktuacje, WMAP (2003) - promieniowanie mikrofalowe nie jest izotropowe, Pierwiastki od litu do żelaza powstawały w gwiazdach, (energia wiązania na nukleon) Pierwiastki cięższe od żelaza powstawały w trakcie wybuchów supernowych.

51 Krzywa rozpowszechniania pierwiastków chemicznych Krzywa rozpowszechniania pierwiastków chemicznych wg Camerona (1973), w górze na prawo schematyczny kontur krzywej z zaznaczeniem lokalnych maksimów i minima Li-Be-B

52 Penzias i Wilson (1965) COBE WMAP (1992) (2003) ΔT/T = 10-5

53 Energia wiązania nukleonu w jądrze Zależność średniej energii wiązania przypadającej na jeden nukleon w jądrze w funkcji liczby masowej A jądra

54 W 1974 roku G. Smoot przysłał do NASA projekt aby zmierzyć mapę CMB i poszukiwać tam odstępstw od jednorodnego rozkładu potrzebną dla potwierdzenia możliwości tworzenia galaktyk. Pod koniec lat 80 tych J. Mather budował spektrometr FIRAS (Far Infrared Absolute Spectrophotometer) a G. Smoot spektrometr DRM (Differential Microwafe Radiometer). W 1986 roku po wypadku Challengera, prace z wysłaniem satelity zostały wstrzymane. Muther przekonał NASA aby jednak wysłać satelitę z aparaturą badawczą. W Listopadzie 1989 COBE wystartował z FIRAS oraz z DRM. Pierwsze wyniki Mathera T = K. Później mapa nieba z DRM pokazała odstępstwa od izotropowego rozkładu z precyzją 10 ppm. Wskazywało to na możliwość tworzenia galaktyk i ograniczyło wiele różnych modeli rozpatrywanych wcześniej. Satelita COBE pracował do 1993 roku. W 2003 roku następca COBE salelita WMAP (Wilkinson Microwave Anisotropy Probe) dał jeszcze dokładniejsze wyniki ( T = 10-5 K).

55 Gwiazdy pierwszej generacji ---- paliwo wodór i hel, Grawitacyjne przyciąganie rośnie temperatura wnętrza, Zapala się wodór: 4 p 4 He e ν + 2 γ, Gdy T > K zapala się hel: 4 He He 2 8 Be 4 ale po t = sek rozpada się na 2 ( 4 He 2 ), Duża gęstość, może powstać węgiel: 8 Be He 2 12 C 6 + g, szansa jest duża bo istnieje stan wzbudzony węgla o energii MeV. Bardzo mało Litu (L), Berylu (Be) oraz Boru (B),

56 Mając stabilny węgiel powstają tlen, azot i neon: 12 C He 2 16 O 8 + g, 16 O He 2 20 Ne 10 + g, 12 C He 1 14 N 7 + g, Dalej zapala się węgiel i tlen: 12 C C 6,,, 12 C O 8, powstają sód (Na), magnes (Mg), krzem (Si), fosfor (P) i siarka (S), Dla cięższych jąder bariera kulombowska jest zbyt duża Jądra powyżej żelaza produkowane są w inny sposób n + A X Z A+1 Y Z + g A+1 W Z+1 + e + ν, Wybuchy supernowych roznoszą ciężkie pierwiastki.

57 Mówiliśmy o gwiazdach I generacji, gwiazdy II generacji powstają w trochę inny sposób ciężkie pierwiastki są już rozrzucone przez wybuchy supernowych, Dalej pracują siły grawitacji dając galaktyki, gromady galaktyk i planety wokół gwiazd, Na planetach powstało życie, znamy przynajmniej jedną taką Planetę Co działo się po Wielkim Wybuchu do czasu t = sek pozostaje niewyjaśnione (brak teorii, są hipotezy), Plany doświadczalne: LHC, p + p, E = GeV (t = sek), sonda PLANCK, promieniowanie reliktowe, teleskopy np. ALMA (Atacama)

58 Standardowy model kosmologiczny PROBLEMY Ciemna materia, Ciemna energia, Asymetria materia antymateria, Promieniowanie kosmiczne o wielkiej energii, Rozbłyski gama, Inflacja.

59 The Energy Budget of the Universe http-- ~evans-masterclass-future.ppt

60 Teoria Wielkiego wybuchu nie zajmuje się samym wybuchem Nie mówi co wybuchło, Dlaczego wybuch nastąpił,.jak to się stało. Niemal każda cywilizacja w historii oferowała jakąś odpowiedź na te pytania w ramach mitologii lub religii.

61 Fizyka cząstek elementarnych i kosmologia są teoriami nierozłącznie związanymi z sobą, Marzy nam się stworzenie Teorii Ostatecznej czy wtedy znajdziemy odpowiedzi na pytania wyjaśniające status życia i inteligencji? czy znajdziemy w niej uzasadnienie moralności lub jej braku? czy zostanie rozstrzygnięta kwestia dobra i zła, tego co etyczne, a co nie etyczne? czy nastąpi konflikt pomiędzy nauką i religią? a może nauka i religia będą się wzajemnie uzupełniać?

62 Ouroborus - ilustruje ścisły związek między przestrzenią wewnętrzną mikroświatem a przestrzenią zewnętrzną -wszechświatem W starożytnej Grecji i Egipcie symboliczny wąż połykający własny ogon, stale sam się pożera i odradza...reprezentuje jedność całego bytu, materialnego i duchowego, który nigdy nie znika, lecz stale zmienia się w odwiecznym cyklu zniszczenia i powtórnych narodzin.

63 Z pewnością pozostaną pytania egzystencjalne. Pytania o życiu, świadomości religii, etyce i moralności. Pytanie, czy realny jest scenariusz zaproponowany przez M.Tegmarka i J.A.Wheelera (arxiv:quant-ph/ ). Wiemy, że doświadczenie Boga jest wydarzeniem równie rzeczywistym, jak doznanie własnej osobowości lub bezpośrednich wrażeń zmysłowych. Ale w czasoprzestrzennym obrazie świata nie ma miejsca na nic takiego. Nie odnajduję Boga nigdzie, ani w czasie, ani w przestrzeni: tak mówi każdy uczciwy przyrodnik. Tym samym ściąga na siebie oskarżenia tych, w których katechizmie jest powiedziane: Bóg jest duchem. E. Schrödinger, Czym jest życie, Pruszyński i S-ka, W-wa,1998.

64 Czy kiedykolwiek przestaniemy mówić o: Jasnowidztwie, telekinezie, telepatii, astrologii, latających talerzach, uffo, parafizyce, magii, parapsychologii, postrzeganiu pozazmysłowym.....a może życie nasze byłoby wtedy zbyt nudne.

65 Co obecnie wiemy o Wszechświecie -makroświat Dziękuję za uwagę!

66

http://server.phys.us.edu.pl/~ztpce/

http://server.phys.us.edu.pl/~ztpce/ Pokazany poniżej wykaz bardzo dobrych pozycji literatury popularnonaukowej na wskazane tematy można znaleźć na stronie internetowej Zakładu Teorii Pola i Cząstek Elementarnych Instytutu Fizyki Uniwersytetu

Bardziej szczegółowo

STRUKTURA MATERII PO WIELKIM WYBUCHU

STRUKTURA MATERII PO WIELKIM WYBUCHU Wykład I STRUKTURA MATERII -- -- PO WIELKIM WYBUCHU Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego, że znajdują się one w jakiejś książce. (...) Nigdy

Bardziej szczegółowo

NUKLEOSYNTEZA I PROMIENIOWANIE RELIKTOWE

NUKLEOSYNTEZA I PROMIENIOWANIE RELIKTOWE NUKLEOSYNTEZA I PROMIENIOWANIE RELIKTOWE Cieszyn, 17 Listopada, 2006 Marek Zrałek, Instytut Fizyki, UŚl 1 Tegoroczna Nagroda Nobla z fizyki została przyznana dwóm fizykom amerykańskim, otrzymali ją John

Bardziej szczegółowo

Historia najważniejszych idei w fizyce

Historia najważniejszych idei w fizyce Historia najważniejszych idei w fizyce Wykład 1 WSTĘP Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego, że znajdują się one w jakiejś książce. (...)

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm

Bardziej szczegółowo

Historia najważniejszych idei w fizyce

Historia najważniejszych idei w fizyce Historia najważniejszych idei w fizyce Wykład 10 BUDOWA WSZECHŚWIATA (od Ptolemeusza po ciemną energię) Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego,

Bardziej szczegółowo

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. 1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne

Bardziej szczegółowo

Galaktyka. Rysunek: Pas Drogi Mlecznej

Galaktyka. Rysunek: Pas Drogi Mlecznej Galaktyka Rysunek: Pas Drogi Mlecznej Galaktyka Ośrodek międzygwiazdowy - obłoki molekularne - możliwość formowania się nowych gwiazd. - ekstynkcja i poczerwienienie (diagramy dwuwskaźnikowe E(U-B)/E(B-V)=0.7,

Bardziej szczegółowo

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 15 Maria Krawczyk, Wydział Fizyki UW 12.01. 2010 Ciemny Wszechświat Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743

Bardziej szczegółowo

Historia Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków

Historia Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków Historia Wszechświata w (dużym) skrócie Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków wczesny Wszechświat późny Wszechświat z (przesunięcie ku czerwieni; redshift)

Bardziej szczegółowo

oraz Początek i kres

oraz Początek i kres oraz Początek i kres Powstanie Wszechświata szacuje się na 13, 75 mld lat temu. Na początku jego wymiary były bardzo małe, a jego gęstość bardzo duża i temperatura niezwykle wysoka. Ponieważ w tej niezmiernie

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW

Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW Prof. Henryk Drozdowski Wydział Fizyki UAM Dedykuję ten wykład o pochodzeniu materii wszystkim czułym sercom,

Bardziej szczegółowo

10.V Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

10.V Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 10 Maria Krawczyk, Wydział Fizyki UW Ciemny Wszechświat 10.V. 2010 Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 13 Początki Wszechświata c.d. Nukleosynteza czas Przebieg pierwotnej nukleosyntezy w czasie pierwszych kilkunastu minut. Krzywe ukazują stopniowy

Bardziej szczegółowo

- mity, teorie, eksperymenty

- mity, teorie, eksperymenty Święto Uniwersytetu Warszawskiego, 27.11 11.2008 Początek Wszechświata - mity, teorie, eksperymenty Grzegorz Wrochna Instytut Problemów w Jądrowych J im. A.Sołtana Warszawa / Świerk wrochna@ipj.gov.pl

Bardziej szczegółowo

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Historia Wszechświata Pod koniec fazy inflacji, około 10-34 s od Wielkiego Wybuchu, dochodzi do przejścia fazowego, które tworzy prawdziwą próżnię i

Bardziej szczegółowo

Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN

Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział

Bardziej szczegółowo

Tworzenie protonów neutronów oraz jąder atomowych

Tworzenie protonów neutronów oraz jąder atomowych Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała

Bardziej szczegółowo

Elementy kosmologii. D. Kiełczewska, wykład 15

Elementy kosmologii. D. Kiełczewska, wykład 15 Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Pomiary parametrów kosmologicznych: WMAP SNIa Asymetria materii i antymaterii Rozszerzający

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 11 Początki Wszechświata Początki Wszechświata Dane obserwacyjne Odkrycie Hubble a w 1929 r. Promieniowanie tła w 1964 r. (Arno Penzias i Robert

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych

Bardziej szczegółowo

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie

Bardziej szczegółowo

Materia i jej powstanie Wykłady z chemii Jan Drzymała

Materia i jej powstanie Wykłady z chemii Jan Drzymała Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań

Bardziej szczegółowo

Wielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi?

Wielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi? Wielki Wybuch czyli podróż do początku wszechświata Czy może się to zdarzyć na Ziemi? Świat pod lupą materia: 10-4 m kryształ: 10-9 m ρ=2 3 g/cm 3 atom: 10-10 m jądro: 10-14 m nukleon: 10-15 m (1fm) ρ=10

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

I etap ewolucji :od ciągu głównego do olbrzyma

I etap ewolucji :od ciągu głównego do olbrzyma I etap ewolucji :od ciągu głównego do olbrzyma Spalanie wodoru a następnie helu i cięższych jąder doprowadza do zmiany składu gwiazdy i do przesunięcia gwiazdy na wykresie H-R II etap ewolucji: od olbrzyma

Bardziej szczegółowo

Wszechświat: spis inwentarza. Typy obiektów Rozmieszczenie w przestrzeni Symetrie

Wszechświat: spis inwentarza. Typy obiektów Rozmieszczenie w przestrzeni Symetrie Wszechświat: spis inwentarza Typy obiektów Rozmieszczenie w przestrzeni Symetrie Curtis i Shapley 1920 Heber D. Curtis 1872-1942 Mgławice spiralne są układami gwiazd równoważnymi Drodze Mlecznej Mgławice

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 16 stycznia 2018 A.F.Żarnecki

Bardziej szczegółowo

Kosmologia. Elementy fizyki czastek elementarnych. Wykład IX. Prawo Hubbla

Kosmologia. Elementy fizyki czastek elementarnych. Wykład IX. Prawo Hubbla Kosmologia Wykład IX Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Prawo

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata Wszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 8 stycznia 2019 A.F.Żarnecki WCE Wykład 12 8 stycznia 2019 1 / 50 Ciemna

Bardziej szczegółowo

PROJEKT KOSMOLOGIA PROJEKT KOSMOLOGIA. Aleksander Gendarz Mateusz Łukasik Paweł Stolorz

PROJEKT KOSMOLOGIA PROJEKT KOSMOLOGIA. Aleksander Gendarz Mateusz Łukasik Paweł Stolorz PROJEKT KOSMOLOGIA Aleksander Gendarz Mateusz Łukasik Paweł Stolorz 1 1. Definicja kosmologii. Kosmologia dział astronomii, obejmujący budowę i ewolucję wszechświata. Kosmolodzy starają się odpowiedzieć

Bardziej szczegółowo

Cząstki elementarne z głębin kosmosu

Cząstki elementarne z głębin kosmosu Cząstki elementarne z głębin kosmosu Grzegorz Brona Zakład Cząstek i Oddziaływań Fundamentalnych, Uniwersytet Warszawski 24.09.2005 IX Festiwal Nauki Co widzimy na niebie? - gwiazdy - planety - galaktyki

Bardziej szczegółowo

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako

Bardziej szczegółowo

Neutrina z supernowych. Elementy kosmologii

Neutrina z supernowych. Elementy kosmologii Neutrina z supernowych Obserwacja neutrin z SN1987A Kolaps grawitacyjny Własności neutrin z kolapsu grawitacyjnego Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza

Bardziej szczegółowo

[C [ Z.. 2 ]

[C [ Z.. 2 ] [CZ. 2] MODELE KOSMOLOGICZNE FRIEDMANA TRZY MOśLIWE PRZYSZŁE E LOSY WSZECHŚWIATA WIATA I EKSPANSJI KOSMOLOGICZNEJ Skoro kosmologiczna ekspansja miała początek przed ok. 14 mld. Lat to spróbuj buj- my

Bardziej szczegółowo

Wszechświat. Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła

Wszechświat. Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła Wszechświat Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła Opis relatywistyczny W mech. Newtona czas i przestrzeń są

Bardziej szczegółowo

Ewolucja Wszechświata

Ewolucja Wszechświata Ewolucja Wszechświata Wykład 6 Mikrofalowe promieniowanie tła Rozseparowanie materii i promieniowania 380 000 lat Temperatura 3000 K Protony i jądra przyłączają elektrony (rekombinacja) tworzą się atomy.

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wszechświat czastek elementarnych Wykład 15: Ciemna Strona Wszechświata prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych

Bardziej szczegółowo

Od wielkiego wybuchu do gwiazd neutronowych fizyka relatywistycznych zderzeń ciężkojonowych

Od wielkiego wybuchu do gwiazd neutronowych fizyka relatywistycznych zderzeń ciężkojonowych Od wielkiego wybuchu do gwiazd neutronowych fizyka relatywistycznych zderzeń ciężkojonowych From Big-Bang to neutron stars- physcis with relatyvistic heavy ion collisions Piotr Salabura Program Zderzenia

Bardziej szczegółowo

Wpływ wyników misji Planck na obraz Wszechświata

Wpływ wyników misji Planck na obraz Wszechświata Wpływ wyników misji Planck na obraz Wszechświata Sławomir Stachniewicz, IF PK 1. Skąd wiemy, jaki jest Wszechświat? Nasze informacje na temat Wszechświata pochodzą z dwóch źródeł: z obserwacji i z modeli

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu

Bardziej szczegółowo

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku

Bardziej szczegółowo

Dr Tomasz Płazak. CIEMNA ENERGIA DOMINUJĄCA WSZECHŚWIAT (Nagroda Nobla 2011)

Dr Tomasz Płazak. CIEMNA ENERGIA DOMINUJĄCA WSZECHŚWIAT (Nagroda Nobla 2011) Dr Tomasz Płazak CIEMNA ENERGIA DOMINUJĄCA WSZECHŚWIAT (Nagroda Nobla 2011) SŁOŃCE i ZIEMIA 2 Wszechświat OBSERWOWALNY 3 ZABICIE IDEI LOKALNEGO ( ZWYKŁEGO ) WIELKIEGO WYBUCHU Powinno być tak c Promieniowanie

Bardziej szczegółowo

Ekspansja Wszechświata

Ekspansja Wszechświata Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera

Bardziej szczegółowo

Wykłady z Geochemii Ogólnej

Wykłady z Geochemii Ogólnej Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

GRAWITACJA I ELEMENTY ASTRONOMII

GRAWITACJA I ELEMENTY ASTRONOMII MODUŁ 1 SCENARIUSZ TEMATYCZNY GRAWITACJA I ELEMENTY ASTRONOMII OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES PODSTAWOWY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI

Bardziej szczegółowo

Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15:

Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15: Reakcje syntezy lekkich jąder są podstawowym źródłem energii wszechświata. Słońce - gwiazda, która dostarcza energii niezbędnej do życia na naszej planecie Ziemi, i w której 94% masy stanowi wodór i hel

Bardziej szczegółowo

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 1

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 1 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 1 7.X.2009 Informacje ogólne o wykładzie Fizyka cząstek elementarnych Odkrycia Skąd ten tytuł wykładu? Wytłumaczenie dlaczego Wszechświat wygląda

Bardziej szczegółowo

Wielki Wybuch Autor tekstu: Paweł Dudek

Wielki Wybuch Autor tekstu: Paweł Dudek Wielki Wybuch Autor tekstu: Paweł Dudek Teoria Wielkiego Wybuchu wyjaśnia ewolucję Wszechświata w czasie oraz zakłada, że przestrzeń rozszerza się i ochładza. Tłumaczy, że w przeszłości Wszechświat był

Bardziej szczegółowo

MODEL WIELKIEGO WYBUCHU

MODEL WIELKIEGO WYBUCHU MODEL WIELKIEGO WYBUCHU JAKO TEORIA POWSTANIA WSZECHŚWIATA OPRACOWANIE Poznań 2007 Teoria Wielkiego Wybuchu Wstęp "WIELKI WYBUCH gwałtowna eksplozja bardzo gorącego i bardzo skondensowanego Wszechświata

Bardziej szczegółowo

- Cząstka Higgsa - droga do teorii wszystkiego

- Cząstka Higgsa - droga do teorii wszystkiego - Cząstka Higgsa - droga do teorii wszystkiego Bohdan Grządkowski Uniwersytet Warszawski Wydział Fizyki Instytut Fizyki Teoretycznej 19 maja 2014 Uniwersytet Szczeciński Plan Model Standardowy oddziaływań

Bardziej szczegółowo

Teoria grawitacji. Grzegorz Hoppe (PhD)

Teoria grawitacji. Grzegorz Hoppe (PhD) Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości

Bardziej szczegółowo

Ewolucja w układach podwójnych

Ewolucja w układach podwójnych Ewolucja w układach podwójnych Tylko światło Temperatura = barwa różnica dodatnia różnica równa 0 różnica ujemna Jasnośd absolutna m M 5 log R 10 pc Diagram H-R Powstawanie gwiazd Powstawanie gwiazd ciśnienie

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro

Bardziej szczegółowo

Ciemna strona wszechświata

Ciemna strona wszechświata Ciemna strona wszechświata Letnia Szkoła Fizyki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Letnia Szkoła Fizyki U.W. Ciemna strona

Bardziej szczegółowo

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki Jest to początek czasu, przestrzeni i materii tworzącej wszechświat. Podstawę idei Wielkiego Wybuchu stanowił model rozszerzającego się wszechświata opracowany w 1920 przez Friedmana. Obecnie Wielki Wybuch

Bardziej szczegółowo

1100-3Ind06 Astrofizyka

1100-3Ind06 Astrofizyka 1100-3Ind06 Astrofizyka 2016/2017 Michał Jaroszyński (+Tomasz Bulik +Igor Soszyński ) Różne informacje mogą znajdować się na: http://www.astrouw.edu.pl/~mj Zasady zaliczeń: Pozytywny wynik w teście otwartym

Bardziej szczegółowo

Kosmologia. Elementy fizyki czastek elementarnych. Wykład VIII. Prawo Hubbla

Kosmologia. Elementy fizyki czastek elementarnych. Wykład VIII. Prawo Hubbla Kosmologia Wykład VIII Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Prawo

Bardziej szczegółowo

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Cząstki i siły. Piotr Traczyk. IPJ Warszawa Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała

Bardziej szczegółowo

Czarne dziury. Grażyna Karmeluk

Czarne dziury. Grażyna Karmeluk Czarne dziury Grażyna Karmeluk Termin czarna dziura Termin czarna dziura powstał stosunkowo niedawno w 1969 roku. Po raz pierwszy użył go amerykański uczony John Wheeler, przedstawiając za jego pomocą

Bardziej szczegółowo

FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne

FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne TEMAT (rozumiany jako lekcja) 1.1. Kinematyka ruchu jednostajnego po okręgu 1.2. Dynamika ruchu jednostajnego po okręgu 1.3. Układ Słoneczny

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne zostały sporządzone z wykorzystaniem

Bardziej szczegółowo

Ewolucja Wszechświata

Ewolucja Wszechświata Ewolucja Wszechświata Wykład 6 Mikrofalowe promieniowanie tła Rozseparowanie materii i promieniowania 380 000 lat Temperatura 3000 K Protony i jądra przyłączają elektrony (rekombinacja) tworzą się atomy.

Bardziej szczegółowo

NUKLEOGENEZA. Barbara Becker

NUKLEOGENEZA. Barbara Becker Barbara Becker NUKLEOGENEZA nukleony - wspólna nazwa dla protonów i neutronów jako składników jąder atomowych geneza - pochodzenie, rodowód - zespół warunków powstania i rozwoju danego zjawiska Układ okresowy

Bardziej szczegółowo

NIEPRZEWIDYWALNY WSZECHŚWIAT

NIEPRZEWIDYWALNY WSZECHŚWIAT ARTYKUŁY Zagadnienia Filozoficzne w Nauce XXXVII / 2005, s. 41 52 Marek DEMIAŃSKI Instytut Fizyki Teoretycznej Uniwersytet Warszawski NIEPRZEWIDYWALNY WSZECHŚWIAT Trudno dokładnie określić datę powstania

Bardziej szczegółowo

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1 Wykres Herzsprunga-Russela (H-R) 2012-06-07 Reakcje termojądrowe - B.Kamys 1 Proto-gwiazdy na wykresie H-R 2012-06-07 Reakcje termojądrowe - B.Kamys 2 Masa-jasność, temperatura-jasność n=3.5 2012-06-07

Bardziej szczegółowo

Ewolucja Wszechświata

Ewolucja Wszechświata Ewolucja Wszechświata Wykład 1 Wszechświat Modele Wszechświata Program: Początek Wszechświata a fizyka cząstek elementarnych Inflacja Nukleosynteza pierwotna Promieniowanie reliktowe Galaktyki Ewolucja

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Wszechświat na wyciągnięcie ręki

Wszechświat na wyciągnięcie ręki Wszechświat na wyciągnięcie ręki Minęło już całkiem sporo czasu, odkąd opuściłam mury I LO w Gorzowie Wlkp. Już tam wiedziałam, że będę studiować astronomię, ponieważ zawsze chciałam się dowiedzieć, jak

Bardziej szczegółowo

Po 1 mld lat (temperatura Wszechświata ok. 10 K) powstają pierwsze gwiazdy.

Po 1 mld lat (temperatura Wszechświata ok. 10 K) powstają pierwsze gwiazdy. Nukleosynteza Mirosław Kwiatek Skrót ewolucji materii we Wszechświecie: Dominacja promieniowania: Wg. Gamowa (1948) Wszechświat powstał jako 10-wymiarowy i po 10-43 sekundy rozpadł się na 4- i 6-wymiarowy.

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

INAUGURACJA ROKU AKADEMICKIEGO 2006/2007 WYDZIAŁ MATEMATYCZNO FIZYCZNY UNIWERSYTETU SZCZECIŃSKIEGO

INAUGURACJA ROKU AKADEMICKIEGO 2006/2007 WYDZIAŁ MATEMATYCZNO FIZYCZNY UNIWERSYTETU SZCZECIŃSKIEGO INAUGURACJA ROKU AKADEMICKIEGO 2006/2007 WYDZIAŁ MATEMATYCZNO FIZYCZNY UNIWERSYTETU SZCZECIŃSKIEGO Wczoraj, dziś i jutro Wszechświata. Czyli od jabłka Newtona i eksperymentu Cavendisha, do satelitów Ziemi,

Bardziej szczegółowo

Gwiazdy neutronowe. Michał Bejger,

Gwiazdy neutronowe. Michał Bejger, Gwiazdy neutronowe Michał Bejger, 06.04.09 Co to jest gwiazda neutronowa? To obiekt, którego jedna łyżeczka materii waży tyle ile wszyscy ludzie na Ziemi! Gwiazda neutronowa: rzędy wielkości Masa: ~1.5

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

LHC i po co nam On. Piotr Traczyk CERN

LHC i po co nam On. Piotr Traczyk CERN LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC

Bardziej szczegółowo

Granice fizyki 1. Marek Demiański Instytut Fizyki Teoretycznej Uniwersytet Warszawski

Granice fizyki 1. Marek Demiański Instytut Fizyki Teoretycznej Uniwersytet Warszawski 4 Granice fizyki 1 Marek Demiański Instytut Fizyki Teoretycznej Uniwersytet Warszawski Wstęp Wiek dwudziesty był okresem burzliwego rozwoju fizyki, zarówno teoretycznej jak i doświadczalnej. Spowodowało

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Podstawy astrofizyki i astronomii

Podstawy astrofizyki i astronomii Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 20 marca 2018 th.if.uj.edu.pl/ odrzywolek/ andrzej.odrzywolek@uj.edu.pl A&A Wykład 4 Standardowy

Bardziej szczegółowo

fizyka w zakresie podstawowym

fizyka w zakresie podstawowym mi edukacyjne z przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej Poziom Kategoria celów Zakres Poziom podstawowy - Uczeń opanował pewien zakres WIADOMOŚCI Poziom ponadpodstawowy

Bardziej szczegółowo

PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY

PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY PROGRAMY NAUCZANIA Z FIZYKI REALIZOWANE W RAMACH PROJEKTU INNOWACYJNEGO TESTUJĄCEGO Zainteresowanie uczniów fizyką kluczem do sukcesu PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY

Bardziej szczegółowo

Kosmologia. Elementy fizyki czastek elementarnych. Wykład X. Prawo Hubbla

Kosmologia. Elementy fizyki czastek elementarnych. Wykład X. Prawo Hubbla Kosmologia Wykład X Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Przypadek

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Elementy kosmologii. Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza

Elementy kosmologii. Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza Rozszerzający się Wszechświat W 1929 Hubble zaobserwował

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Astronomia ogólna 2 Kod modułu kształcenia 04-ASTR1-ASTROG90-1Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

Powstanie pierwiastków we Wszechświecie

Powstanie pierwiastków we Wszechświecie 16 FOTON 98, Jesień 2007 Powstanie pierwiastków we Wszechświecie Lucjan Jarczyk Instytut Fizyki UJ Otaczający nas świat zbudowany jest z niezliczonej wręcz liczby różnych substancji. Ich powstanie to domena

Bardziej szczegółowo

Cząstki elementarne Odkrycia Prawa zachowania Cząstki i antycząstki

Cząstki elementarne Odkrycia Prawa zachowania Cząstki i antycząstki Wszechświat cząstek elementarnych WYKŁAD 3 Cząstki elementarne Odkrycia Prawa zachowania Cząstki i antycząstki 4.III.2009 Fizyka cząstek elementarnych Wiek XX niezwykły y rozwój j fizyki, pojawiły y się

Bardziej szczegółowo

Zderzenie galaktyki Andromedy z Drogą Mleczną

Zderzenie galaktyki Andromedy z Drogą Mleczną Zderzenie galaktyki Andromedy z Drogą Mleczną Katarzyna Mikulska Zimowe Warsztaty Naukowe Naukowe w Żninie, luty 2014 Wszyscy doskonale znamy teorię Wielkiego Wybuchu. Wiemy, że Wszechświat się rozszerza,

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić.

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarne dziury są to obiekty nie do końca nam zrozumiałe. Dlatego budzą ciekawość

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I GRAWITACJA opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać ruchy

Bardziej szczegółowo

Początek Wszechświata najwspanialszy eksperyment fizyczny

Początek Wszechświata najwspanialszy eksperyment fizyczny Początek Wszechświata najwspanialszy eksperyment fizyczny Krzysztof A. Meissner Instytut Fizyki Teoretycznej, Uniwersytet Warszawski Grzegorz Wrochna Instytut Problemów Jądrowych im. A.Sołtana, 05-400

Bardziej szczegółowo

Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego

Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Prolog Teoria z niczego Dla danego obiektu możemy określić: - Ilość światła - widmo -

Bardziej szczegółowo