ROUGH SET BASED DECISION SUPPORT
|
|
- Justyna Rogowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 ROUGH SET BASED DECISION SUPPORT Roman Słowiński Laboratory of Intelligent Decision Support Systems Institute of Computing Science Poznań University of Technology Roman Słowiński
2 Motywacje Wzrasta przepaść między generowaniem danych a ich zrozumieniem Odkrywanie wiedzy z danych (ang. Knowledge Discovery, Data Mining) OWD jest procesem identyfikowania przez indukcję: prawdziwych, nietrywialnych, potencjalnie użytecznych, bezpośrednio zrozumiałych wzorców w danych Wzorzec = reguła, trend, zjawisko, prawidłowość, anomalia, hipoteza, funkcja, itp. Wzorce są użyteczne dla wyjaśniania sytuacji opisanych przez dane oraz do predykcji przyszłych sytuacji 2
3 Motywacje odkrywanie wzorców Przykład danych diagnostycznych 176 autobusów (obiektów) 8 symptomów (atrybutów) Globalny stan techniczny: 3 dobry(użytkować) 2 do przeglądu 1 do remontu (wycofać) Odkryć wzorce = znaleźć zależności między symptomami a stanem technicznym Wzorce wyjaśniają decyzje eksperta i wspomagają diagnozowanie nowych przypadków 3
4 Introduction Discovering knowledge from data means to find concise classification patterns that agree with situations described by the data The situations are described by a set of attributes, called also properties, features, characteristics, etc. The attributes may be either on condition or decision side of the description, corresponding to input or output of a decision situation The situations may be objects, states, examples, etc. It will be convenient to call them objects from now We present a knowledge discovery method for multiattribute decision making, based on the concept of rough sets (Pawlak 1982) Rough set theory provides a framework for dealing with inconsistent or ambiguous data in knowledge discovery As the inconsistency and ambiguity follow from information granulation, the core idea of rough sets is that of granular approximation 4
5 Classical Rough Set Approach (CRSA) Example Classification of basic traffic signs There exist three main classes of traffic signs corresponding to: warning (W), interdiction (I), order (O). These classes may be distinguished by such attributes as the shape (S) and the principal color (PC) of the sign Finally, we give few examples of traffic signs 5
6 CRSA example of traffic signs 6
7 CRSA example of traffic signs Granules of knowledge: W={a} Class, I={b,c} Class, O={d} Class {a} S,PC, {b} S,PC, {c,d} S,PC Explanation of classification in terms of granules generated by S and PC class W includes sign a certainly and no other sign possibly class I includes sign b certainly and signs b, c and d possibly class O includes no sign certainly and signs c and d possibly Lower and upper approximation of the classes by attributes S and PC: lower_appx. S,PC (W)={a}, upper_appx. S,PC (W)={a} lower_appx. S,PC (I)={b}, upper_appx. S,PC (I)={b,c,d} lower_appx. S,PC (O)=, upper_appx. S,PC (O)={c,d} boundary S,PC (I)=upper_appx. S,PC (I) lower_appx. S,PC (I)={c,d} boundary S,PC (O)=upper_appx. S,PC (O) lower_appx. S,PC (O)={c,d} The quality of approximation: 2/4 7
8 CRSA example of traffic signs To increase the quality of approximation (decrease the ambiguity) we add a new attribute secondary color (SC) The granules: {a} S,PC,SC, {b} S,PC,SC, {c} S,PC,SC, {d} S,PC,SC Quality of approximation: 4/4=1 8
9 CRSA example of traffic signs Are all three attributes necessary to characterize precisely the classes W, I, O? The granules: {a} PC,SC, {b} PC,SC, {c} PC,SC, {d} PC,SC Quality of approximation: 4/4=1 9
10 CRSA example of traffic signs The granules: {a} S,SC, {b,c} S,SC, {d} S,SC Reducts of the set of attributes: {PC, SC} and {S, SC} Intersection of reducts is the core: {SC} 10
11 CRSA example of traffic signs The minimal representation of knowledge contained in the Table decision rules Decision rules are classification patterns discovered from data contained in the table 11
12 CRSA example of traffic signs Alternative set of decision rules 12
13 CRSA example of traffic signs Decision rules induced from the original table Rules #1 & #2 certain rules induced from lower approximations of W and I Rule #3 approximate rule induced from the boundary of I and O 13
14 CRSA example of traffic signs Useful results: a characterization of decision classes (even in case of inconsistency) in terms of chosen attributes by lower and upper approximation, a measure of the quality of approximation indicating how good the chosen set of attributes is for approximation of the classification, reduction of knowledge contained in the table to the description by relevant attributes belonging to reducts, the core of attributes indicating indispensable attributes, decision rules induced from lower and upper approximations of decision classes show classification patterns existing in data. 14
15 CRSA formal definitions Approximation space U = finite set of objects (universe) C = set of condition attributes D = set of decision attributes C D= X C = X D = C X q q= 1 D X q q= 1 condition attribute space decision attribute space 15
16 CRSA formal definitions Indiscernibility relation in the approximation space x is indiscernible with y by P C in X P iff x q =y q for all q P x is indiscernible with y by R D in X D iff x q =y q for all q R I P (x), I R (x) equivalence classes including x I D makes a partition of U into decision classes Cl={Cl t, t=1,...,n} Granules of knowledge are bounded sets: I P (x) in X P and I R (x) in X R (P C and R D) Classification patterns to be discovered are functions representing granules I R (x) by granules I P (x) 16
17 CRSA illustration of formal definitions Example Investments Sales Effectiveness 40 17,8 High Objects = firms High High High High High High Medium Medium Medium Medium Medium Medium Low 11 2 Low 10 9 Low 5 13 Low 17
18 CRSA illustration of formal definitions 40 attribute 1 (Investment) Objects in condition attribute space attribute 2 (Sales) 18
19 CRSA illustration of formal definitions 40 a 1 Indiscernibility sets Quantitative attributes are discretized according to perception of the user a 2 19
20 CRSA illustration of formal definitions 40 a 1 Granules of knowlegde are bounded sets I P (x) a 2 20
21 CRSA illustration of formal definitions 40 a 1 Lower approximation of class High a 2 21
22 CRSA illustration of formal definitions 40 a 1 Upper approximation of class High a 2 22
23 CRSA illustration of formal definitions 40 a 1 Lower approximation of class Medium a 2 23
24 CRSA illustration of formal definitions 40 a 1 Upper approximation of class Medium a 2 24
25 CRSA illustration of formal definitions 40 a 1 Boundary set of classes High and Medium a 2 25
26 CRSA illustration of formal definitions 40 a 1 Lower = Upper approximation of class Low a 2 26
27 CRSA formal definitions Inclusion and complementarity properties of rough approximations Accuracy measures Accuracy and quality of approximation of X U by attributes P C Quality of approximation of classification Cl={Cl t, t=1,...n} by attributes P C γ ( Cl) n = t = 1 ( ) P Cl Rough membership of x U to X U, givenp C P μ P X ( x) = X I P U t I P ( x) ( x) 27
28 CRSA formal definitions Monotonicity property with respect to the cardinality of P C: for any R P C it holds: R ( X ) P( X ), R( X ) P( X ) Cl-reduct of P C, denoted by RED Cl (P), is a minimal subset P' of P which keeps the quality of classification Cl unchanged, i.e. P' ( Cl) γ ( Cl) γ = P Cl-core is the intersection of all the Cl-reducts of P: CORE ( P) I REDCl ( P) Cl = 28
29 CRSA decision rules induced from rough approximations Certain decision rule supported by objects from lower approximation of Cl t (discriminant rule) if x q 1 = r q 1 and x q 2 = r q 2 and... x q p = r q p, then x Cl t Possible decision rule supported by objects from upper approximation of Cl t (partly discriminant rule) if x q 1 = r q 1 and x q 2 = r q 2 and... x q p = r q p, then x Cl t Approximate decision rule supported by objects from the boundary of Cl t if x q = rq and xq = rq and... xq = rq, then x p p Cl t or Cl s or... Cl u where { q } ( ) 1,q2,...,qp C, rq,rq,...,rq Vq Vq... Vq p 1 2 p 1 2 Cl t,cl s,...,cl u are classes to which belong inconsistent objects supporting this rule Rule strength percentage of objects in U supporting the rule 29
30 Measures characterizing decision rules in system S= U, C, D Support of a rule Φ Ψ : Strength of a rule Φ Ψ : supp S S ( Φ Ψ ) ( Φ, Ψ ) ( ) supp card U, S σ = ( Φ, Ψ ) = card( Φ Ψ ) S Certainty (or confidence) factor of a rule Φ Ψ (Łukasiewicz, 1913): Coverage factor of a rule Φ Ψ : (, Ψ ) ( Φ, Ψ ) ( Φ ) Relation between certainty, coverage and Bayes theorem: cer cov S S Φ = (, Ψ ) Φ = supps card supps card S ( Φ, Ψ ) ( Ψ ) S cer S ( Φ, Ψ ) = Pr( Ψ Φ ) = Pr Pr ( Ψ Φ ) ( Φ ), cov S ( Φ, Ψ ) = Pr( ΦΨ ) = Pr Pr ( Φ Ψ ) ( Ψ ) 30
31 CRSA summary of useful results Characterization of decision classes (even in case of inconsistency) in terms of chosen attributes by lower and upper approximation Measure of the quality of approximation indicating how good the chosen set of attributes is for approximation of the classification Reduction of knowledge contained in the table to the description by relevant attributes belonging to reducts The core of attributes indicating indispensable attributes Decision rules induced from lower and upper approximations of decision classes show classification patterns existing in data 31
32 Algorytm indukcji reguł decyzyjnych z przybliżeń klas decyzyjnych LEM2 Definicje i oznaczenia: Przykład obiekt z tablicy S= U, C, D B niepuste dolne lub górne przybliżenie, lub brzeg klasy decyzyjnej Cl t, czyli zbiór przykładów pozytywnych q atrybut ze zbioru C V q dziedzina wartości atrybutu q C (q=v q ) warunek elementarny części warunkowej reguły, q C, v q V q t = (q,v q ) para atrybut-wartość tworząca warunek elementarny (q=v q ) [t] zbiór przykładów spełniających odpowiedni warunek elementarny (q=v q ) T zbiór par t atrybut-wartość zwany koniunkcją, tworzący część warunkową reguły: (q 1 =v q1 ) (q 2 =v q2 ) (q p =v qp ) [T] zbiór przykładów spełniających koniunkcję (q 1 =v q1 ) (q 2 =v q2 ) (q p =v qp ), czyli zbiór przykładów pokrytych przez T 32
33 Algorytm LEM2 Zbiór B zależy od koniunkcji T par atrybut-wartość wtedy i tylko wtedy, gdy Koniunkcja T jest minimalna wtedy i tylko wtedy, gdy B zależy od T, a usunięcie dowolnej pary t powoduje, że B nie zależy od koniunkcji T = T-{t} T jest zbiorem koniunkcji T stanowiącym tzw. lokalne pokrycie zbioru B wtedy i tylko wtedy, gdy spełnione są następujące warunki: każda koniunkcja T T jest minimalna U T T [ T ] = B [ T ] = [ t] B T jest zbiorem o najmniejszej liczbie koniunkcji T ( ) Koniunkcja T T dla B = C Cl t tworzy regułę decyzyjną pewną: Jeżeli (x q1 =v q1 ) (x q2 =v q2 ) (x qp =v qp ), to x należy do Cl t ( ) Koniunkcja T T dla B = C Cl t tworzy regułę decyzyjną możliwą: I t T Jeżeli (x q1 =v q1 ) (x q2 =v q2 ) (x qp =v qp ), to x być może należy do Cl t 33
34 Algorytm LEM2 ( ) Koniunkcja T T dla B = Bn C Cl t tworzy regułę decyzyjną przybliżoną: Jeżeli (x q1 =v q1 ) (x q2 =v q2 ) (x qp =v qp ), to x należy do Cl t Cl s Cl u Algorytm LEM2 buduje pojedyncze lokalne pokrycie T dla każdej klasy decyzyjnej, a dokładniej, dla każdego dolnego lub górnego przybliżenia klasy Cl t, lub brzegu klasy Cl t (zbioru B) Algorytm LEM2 uruchamia się dla danego zbioru B, a w wyniku otrzymuje się minimalny zbiór reguł pokrywających wszystkie obiekty z tego zbioru 34
35 Algorytm LEM2 Procedure LEM2 (input: zbiór B, output: pojedyncze lokalne pokrycie T dla zbioru B); begin G:= B; {zbiór przykładów nie pokrytych dotychczas przez koniunkcje T T} T:= ; {zbiór koniunkcji T tworzący aktualne pokrycie zbioru B G} while G begin T:= ; {koniunkcja warunków elementarnych będąca kandydatem na część warunkową reguły} T(G):= {t : [t] G }; {zbiór potencjalnych warunków elementarnych dla nie pokrytych przykładów} while T = or [T] B do 35
36 Algorytm LEM2 while T = or [T] B do begin wybierz warunek t T(G) taki, że wyrażenie [T {t}] G ma wartość maksymalną; jeśli więcej niż jeden z warunków maksymalizuje powyższe wyrażenie, to wybierz ten, dla którego [T {t}] ma wartość minimalną; w przypadku niejednoznaczności wybierz pierwszy z rozważanych warunków; T:= T {t}; {dołącz najlepszy warunek t do koniunkcji T} G:= G [t]; {ogranicz zbiór przykładów dostarczających nowych warunków elementarnych} T(G):= {w : [w] G }; {uaktualnij listę potencjalnych warunków elementarnych} T(G):= T(G) T; {usuń z listy warunki elementarne już wybrane do tworzonej koniunkcji} end {while [T] B} 36
37 Algorytm LEM2 end {while [T] B} for każdy warunek elementarny t T do if [T {t}] B then T:= T {t}; {usuń nadmiarowe warunki} T:= T {T}; G:= B T T [T]; end {while G } for każda koniunkcja T T do if K T-{T} [K] = B then T:= T {T}; {usuń nadmiarowe reguły} utwórz zbiór reguł R na podstawie wszystkich koniunkcji T T; end {procedure} 37
38 Przykład Przykłady (obiekty) Atrybuty warunkowe Decyzja Temperatura Hemoglobina Ciśnienie Dotlenienie Samopoczucie a niska dobra niskie dobre Słabe b niska dobra normalne złe Słabe c normalna b.dobra niskie b.dobre Słabe d normalna b.dobra niskie b.dobre Dobre e niska b.dobra normalne b.dobre Dobre f niska b.dobra normalne dobre Dobre g normalna dobra normalne b.dobre Dobre h normalna niska wysokie b.dobre Złe i wysoka b.dobra wysokie dobre Złe 38
39 Przykład C-dolne przybliżenie klasy Słabe samopoczucie: B = {a, b} T(G) = {(Temperatura=niska), (Hemoglobina=dobra), (Ciśnienie=niskie), (Ciśnienie=normalne), (Dotlenienie=dobre), (Dotlenienie=złe)} B = G = {a, b} Pokrycia warunków elementarnych: [T {t}], [T {t}] G, [T {t}] [(Temperatura=niska)] = {a, b, e, f}, 2, 4 [(Hemoglobina=dobra)] = {a, b, g}, 2, 3 T(G) [(Ciśnienie=niskie)] = {a, c, d}, 1, 3 [(Ciśnienie=normalne)] = {b, e, f, g}, 1, 4 [(Dotlenienie=dobre)] = {a, f, i}, 1, 3 [(Dotlenienie=złe)] = {b}, 1, 1 Procedura wybiera warunki (Temperatura=niska), (Hemoglobina=dobra) ponieważ ich pokrycia mają maksymalny przekrój z G Z powodu remisu stosuje się kryterium minimalnej liczności pokrycia, więc wybrany zostaje (Hemoglobina=dobra) 39
40 Przykład T = {(Hemoglobina=dobra)} Nadal G = {a, b}, ponieważ G [(Hemoglobina=dobra)] = G T(G) = T(G) T = {(Temperatura=niska), (Ciśnienie=niskie), (Ciśnienie=normalne), (Dotlenienie=dobre), (Dotlenienie=złe)} Ponieważ [(Hemoglobina=dobra)] B, potrzebna jest następna iteracja Tym razem wybrany zostaje warunek elementarny (Temperatura=niska), bo pokrycie tego warunku ma maksymalny przekrój z G T = {(Hemoglobina=dobra), (Temperatura=niska)} T = T Ponieważ [T] = [B], zatem pojedyncze lokalne pokrycie B dokonane jest za pomocą jednej reguły: Jeżeli (Hemoglobina=dobra) (Temperatura=niska), to Słabe samopoczucie 40
41 Przykład Zbiór reguł pewnych wygenerowanych przez LEM2: Jeżeli (Hemoglobina=dobra) (Temperatura=niska), to Słabe samopoczucie {a,b}, cert=1, cov=2/3, strength=2/9 Jeżeli (Hemoglobina=b.dobra) (Ciśnienie=normalne), to Dobre samopoczucie {e,f}, cert=1, cov=1/2, strength=2/9 Jeżeli (Temperatura=normalna) (Hemoglobina=dobra), to Dobre samopoczucie {g}, cert=1, cov=1/4, strength=1/9 Jeżeli (Ciśnienie=wysokie), to Złe samopoczucie {h,i}, cert=1, cov=1, strength=2/9 41
42 Przykład Zbiór reguł możliwych wygenerowanych przez LEM2: Jeżeli (Ciśnienie=niskie), to Słabe samopoczucie {a,c,d}, cert=2/3, cov=2/3, strength=3/9 Jeżeli (Dotlenienie=złe), to Słabe samopoczucie {b}, cert=1, cov=1/3, strength=1/9 Jeżeli (Dotlenienie=b.dobre) (Hemoglobina=b.dobra), to Dobre samopoczucie {c,d,e}, cert=2/3, cov=1/2, strength=3/9 Jeżeli (Dotlenienie=dobre) (Ciśnienie=normalne), to Dobre samopoczucie {f}, cert=1, cov=1/4, strength=1/9 Jeżeli (Temperatura=normalna) (Hemoglobina=dobra), to Dobre samopoczucie {g}, cert=1, cov=1/4, strength=1/9 Jeżeli (Ciśnienie=wysokie), to Złe samopoczucie {h,i}, cert=1, cov=1, strength=2/9 42
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH
WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne
Pojęcia podstawowe. Teoria zbiorów przybliżonych i teoria gier. Jak porównać dwa porządki?
Pojęcia podstawowe Teoria zbiorów przybliżonych i teoria gier Decision Support Systems Mateusz Lango 5 listopada 16 problem decyzyjny decydent analityk model preferencji (3 rodzaje) zbiór wariantów/alternatyw
Inteligentne systemy wspomagania decyzji oparte na wiedzy odkrytej z danych. Roman Słowiński
Inteligentne systemy wspomagania decyzji oparte na wiedzy odkrytej z danych Roman Słowiński Roman Słowiński Motywacje Wzrasta przepaść między generowaniem danych a ich zrozumieniem Odkrywanie wiedzy z
B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Wyk lad 8: Leniwe metody klasyfikacji
Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej System informacyjny System informacyjny SI zdefiniowany
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
ZASTOSOWANIE ZBIORÓW PRZYBLIŻONYCH DO ANALIZY SATYSFAKCJI KLIENTA SERWISU POJAZDÓW
Inżynieria Rolnicza 1(99)/2008 ZASTOSOWANIE ZBIORÓW PRZYBLIŻONYCH DO ANALIZY SATYSFAKCJI KLIENTA SERWISU POJAZDÓW Marek Klimkiewicz, Katarzyna Moczulska Katedra Organizacji i Inżynierii Produkcji, Szkoła
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Aerodynamics I Compressible flow past an airfoil
Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 ) Potential equation in compressible flows Full potential theory Let us introduce
Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards
INSPIRE Conference 2010 INSPIRE as a Framework for Cooperation Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards Elżbieta Bielecka Agnieszka Zwirowicz
European Crime Prevention Award (ECPA) Annex I - new version 2014
European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc
Raport bieżący: 44/2018 Data: 2018-05-23 g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Zawiadomienie o zmianie udziału w ogólnej liczbie głosów w Serinus Energy plc Podstawa prawna: Inne
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and
Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
Anonymous Authentication Using Electronic Identity Documents
Department of Computer Science Faculty of Fundamental Problems of Technology Wroclaw University of Technology Anonymous Authentication Using Electronic Identity Documents by Kamil Kluczniak A thesis submitted
Reguły asocjacyjne w programie RapidMiner Michał Bereta
Reguły asocjacyjne w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Reguły asocjacyjne mają na celu odkrycie związków współwystępowania pomiędzy atrybutami. Stosuje się je często do danych
Systemy decyzyjne. Wykład 3: Wnioskowanie Boolowskie w obliczeniu Redutów i reguł decyzyjnych. Nguyen Hung Son. Nguyen Hung Son () 1 / 61
Systemy decyzyjne Wykład 3: Wnioskowanie Boolowskie w obliczeniu Redutów i reguł decyzyjnych Nguyen Hung Son Nguyen Hung Son () 1 / 61 Spis treści 1 Wprowadzenie do teorii zbiorów przybliżonych Systemy
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia InŜynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,[, S, GD], gdzie: N jest zbiorem wierzchołków
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia InŜynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków
WYKŁAD 6. Reguły decyzyjne
Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł
POLITYKA PRYWATNOŚCI / PRIVACY POLICY
POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka
Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko
Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Katedra Systemów Multimedialnych 2009 Plan wykładu Historia zbiorów przybliżonych System informacyjny i decyzyjny Reguły decyzyjne Tożsamość
17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL
17-18 września 2016 Spółka Limited w UK Jako Wehikuł Inwestycyjny InvestCamp 2016 PL Marek Niedźwiedź A G E N D A Dlaczego Spółka Ltd? Stabilność Bezpieczeństwo Narzędzia 1. Stabilność brytyjskiego systemu
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta www.michalbereta.pl 1. Przekształcenia atrybutów (ang. attribute reduction / transformation, feature extraction). Zamiast wybierad częśd atrybutów
Przykład eksploracji danych Case 1.X
Przykład eksploracji danych Case 1.X JERZY STEFANOWSKI TPD Zaawansowana eksploracja danych edycja 2009/2010 Plan 1. Przykładowe studium przypadki 2. Analiza opisu przypadku 3. Ustalenie celu analizy i
Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji
Raport bieżący: 41/2018 Data: 2018-05-22 g. 08:01 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Przekroczenie progu 5% głosów w SERINUS ENERGY plc Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie -
Logika rozmyta typu 2
Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 http://www.junit.org/ Zofia Kruczkiewicz 1. Aby utworzyć test dla jednej klasy, należy kliknąć prawym przyciskiem myszy w oknie Projects na wybraną
Mirosław Kupczyk miron@man.poznan.pl. Pozna, PCSS, 17-18.01.2005. Szkolenie: "Architektura i uytkowanie klastra Linux IA-64"
Mirosław Kupczyk miron@man.poznan.pl $ %! " # & ' Wzgldy historyczne Naturalna ewolucja systemów luno ze sob powizanych znajdujcych si w jednej oraganizacji, ch współdzielenia zasobów obliczeniowych, danych,
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Ćwiczenia Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Generowanie zbioru reguł asocjacyjnych i decyzyjnych ze statystycznie reprezentatywnym wsparciem i anty-wsparciem
Generowanie zbioru reguł asocjacyjnych i decyzyjnych ze statystycznie reprezentatywnym wsparciem i anty-wsparciem Opiekun naukowy: prof. dr hab. inż. Roman Słowiński Poznań, 30 października 2012 Spis treści
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
Ćwiczenia 2 IBM DB2 Data Studio
Ćwiczenia 2 IBM DB2 Data Studio Temat: Aplikacje w Data Studio 1. Projekty Tworzenie procedur, UDF, trygerów zaczynamy od utworzenia projektu File -> New -> Project wybieramy Data Development Project.
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION Kiedy otrzymana przez Ciebie z Jeunesse, karta płatnicza została zarejestrowana i aktywowana w Joffice, możesz przejść do aktywacji swojego konta płatniczego
KDD and DM 1 W8: REGUŁY DECYZYJNE. Nguyen Hung Son
DM 1 W8: REGUŁY DECYZYJNE Nguyen Hung Son Tematy DM 2 Reguły decyzyjne: prosty opis klas decyzyjnych Problem wyszukiwania reguł decyzyjnych Algorytmy generowania reguł decyzyjnych Sekwencyjne pokrywanie
Camspot 4.4 Camspot 4.5
User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja
Sztuczna inteligencja
POLITECHNIKA KRAKOWSKA WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Sztuczna inteligencja www.pk.edu.pl/~zk/si_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 10: Zbiory przybliżone
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy DZIAŁANIE 3.2 EDUKACJA OGÓLNA PODDZIAŁANIE 3.2.1 JAKOŚĆ EDUKACJI OGÓLNEJ Projekt współfinansowany przez Unię Europejską w
dr Krzysztof Korus partner, radca prawny, ekonomista
Zapraszamy do zapoznania się z fragmentem prezentacji: Problematyka Dyrektywy PSD II w branży telekomunikacyjnej wprowadzenie W razie zainteresowania jej pełną treścią, zapraszamy do kontaktu MMC: Problematyka
WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW
Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy
Zapytanie o cenę: dotyczy:
Łysomice, 26 Października 2017 roku Zapytanie o cenę: dotyczy: jest przygotowanie i przeprowadzenie 4 testów zderzeniowych (crash testów) niezbędnych do uzyskania certyfikatów i oznakowań wyrobów Zamawiającego
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)
Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład Studia Inżynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,[, S, GD], gdzie: N jest zbiorem wierzchołków w odpowiadających
Warsztaty Ocena wiarygodności badania z randomizacją
Warsztaty Ocena wiarygodności badania z randomizacją Ocena wiarygodności badania z randomizacją Każda grupa Wspólnie omawia odpowiedź na zadane pytanie Wybiera przedstawiciela, który w imieniu grupy przedstawia
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Has the heat wave frequency or intensity changed in Poland since 1950?
Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures
ZeroR. Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F
ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 5 T 7 T 5 T 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator ZeroR będzie zawsze odpowiadał T niezależnie
Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.
Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania
Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX
UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu
SG-MICRO... SPRĘŻYNY GAZOWE P.103
SG-MICRO... SG-MICRO 19 SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 32 SG-MICRO 32H SG-MICRO 32R SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 45 SG-MICRO SG-MICRO SG-MICRO 75 SG-MICRO 95 SG-MICRO 0 cylindra body
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki
Effective Governance of Education at the Local Level
Effective Governance of Education at the Local Level Opening presentation at joint Polish Ministry OECD conference April 16, 2012, Warsaw Mirosław Sielatycki Ministry of National Education Doskonalenie
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
STEROWANIA RUCHEM KOLEJOWYM Z WYKORZYSTANIEM METOD SYMULACYJNYCH
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 Uniwersytet Technologiczno-Humanistyczny w Radomiu STEROWANIA RUCHEM KOLEJOWYM Z WYKORZYSTANIEM METOD SYMULACYJNYCH : marzec 2016 Streszczenie:
Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
System optymalizacji produkcji energii
System optymalizacji produkcji energii Produkcja energii jest skomplikowanym procesem na który wpływa wiele czynników, optymalizacja jest niezbędna, bieżąca informacja o kosztach i możliwościach wykorzystania
harmonic functions and the chromatic polynomial
harmonic functions and the chromatic polynomial R. Kenyon (Brown) based on joint work with A. Abrams, W. Lam The chromatic polynomial with n colors. G(n) of a graph G is the number of proper colorings
Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)
Dolny Slask 1:300 000, mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition) Click here if your download doesn"t start automatically Dolny Slask 1:300 000, mapa turystyczno-samochodowa: Plan Wroclawia
E.14 Bazy Danych cz. 18 SQL Funkcje, procedury składowane i wyzwalacze
Funkcje użytkownika Tworzenie funkcji Usuwanie funkcji Procedury składowane Tworzenie procedur składowanych Usuwanie procedur składowanych Wyzwalacze Wyzwalacze a ograniczenia i procedury składowane Tworzenie
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Paweł Lula Cracow University of Economics, Poland pawel.lula@uek.krakow.pl Latent Dirichlet Allocation (LDA) Documents Latent
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych. Warszawa, 15 stycznia 2015 r. Zbigniew Długosz
Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych Warszawa, 15 stycznia 2015 r. Zbigniew Długosz 1 do czego można wykorzystywać bankowość elektroniczną? nowe usługi płatnicze a korzystanie
POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik
POLITECHNIKA WARSZAWSKA Wydział Zarządzania ROZPRAWA DOKTORSKA mgr Marcin Chrząścik Model strategii promocji w zarządzaniu wizerunkiem regionu Warmii i Mazur Promotor dr hab. Jarosław S. Kardas, prof.
OPTYMALIZACJA CZĘŚCIOWYCH REGUŁ ASOCJACYJNYCH WZGLĘDEM LICZBY POMYŁEK
STUDIA INFORMATICA 2016 Volume 37 Number 1 (123) Beata ZIELOSKO Uniwersytet Śląski, Instytut Informatyki Marek ROBASZKIEWICZ EL-PLUS Sp. z o.o. OPTYMALIZACJA CZĘŚCIOWYCH REGUŁ ASOCJACYJNYCH WZGLĘDEM LICZBY
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
ALGORYTM ZACHŁANNY DLA KONSTRUOWANIA CZĘŚCIOWYCH REGUŁ ASOCJACYJNYCH
STUDIA INFORMATICA 2010 Volume 31 Number 2A (89) Beata ZIELOSKO Uniwersytet Śląski, Instytut Informatyki ALGORYTM ZACHŁANNY DLA KONSTRUOWANIA CZĘŚCIOWYCH REGUŁ ASOCJACYJNYCH Streszczenie. W artykule przedstawiono
Ewelina Dziura Krzysztof Maryański
Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład