Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów dotychczasowych gimnazjów 26 stycznia 2018 r. zawody II stopnia (rejonowe)
|
|
- Liliana Bednarczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Kod ucznia:. Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów dotychczasowych gimnazjów 26 stycznia 2018 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem do rozwiązywania zadań przeczytaj uważnie polecenia. Brudnopis nie podlega sprawdzeniu. Nie możesz używać kalkulatora. Życzymy Ci powodzenia! Maksymalna liczba punktów: 40. Czas rozwiązywania zadań: 90 minut.... W zadaniach 1 28 wybierz jedną odpowiedź i obwiedź ją kółkiem. W przypadku pomyłki błędną odpowiedź przekreśl i zaznacz kółkiem poprawną. Zadanie 1. (0-1 punkt) Trzy niebieskie papugi zjadają 3 kg ziarna w ciągu trzech dni, pięć zielonych papug zjada 5 kg ziarna w ciągu pięciu dni, a siedem pomarańczowych papug zjada 7 kg ziarna w ciągu siedmiu dni. Które papugi mają największy apetyt? a) pomarańczowe b) niebieskie c) zielone d) Wszystkie mają jednakowy apetyt. Zadanie 2. (0-1 punkt) W pierwszym roku działalności świetlicy osiedlowej odwiedziło ją 4 6 osób, a w kolejnym o 50% więcej. Liczba osób, które odwiedziły świetlicę w drugim roku jej działalności, to a) b) 4 7 c) 0,5 4 7 d) 2 23 Zadanie 3. (0-1 punkt) Ośmioro sąsiadów postanowiło kupić kosiarkę do trawy kosztującą k złotych. Jednak dwóch z nich wycofało się z tego zakupu. O ile złotych wzrosła składka każdego z pozostałych sąsiadów? a) k 24 b) k 8 Zadanie 4. (0-1 punkt) Ile liczb całkowitych leży na osi liczbowej w odległości mniejszej niż 20 od liczby 15? a) 18 b) 20 c) 38 d) 39 Zadanie 5. (0-1 punkt) Wartością wyrażenia a) 4 b) c) k jest liczba d) k 4 c) 4 d) 5 Zadanie 6. (0-1 punkt) Trzykrotność jednej liczby jest równa czterokrotności drugiej liczby. Suma tych liczb wynosi 21. Jaka jest ich różnica? a) 12 b) 9 c) 3 d) 2 Zadanie 7. (0-1 punkt) W urnie są kule białe i czarne, co najmniej 5 sztuk każdego koloru. Marcin wylosował kolejno trzy kule. Ile jest wszystkich możliwych wyników tego doświadczenia losowego? a) 8 b) 6 c) 3 d) 2 1
2 Zadanie 8. (0-1 punkt) Basia zaznaczyła w układzie współrzędnych dwa punkty: A = (5; 2), B = ( 3; 4). Odległość punktu A od punktu B wynosi a) 10 b) 10 c) 3 6 d) 11 Zadanie 9. (0-1 punkt) Średnica podstawy walca, równa 10 cm, jest o 2 cm dłuższa od jego wysokości. Jakie jest pole powierzchni bocznej tego walca? a) 1440π cm 2 b) 640π cm 2 c) 360π cm 2 d) 80π cm 2 Zadanie 10. (0-1 punkt) W sklepie odzieżowym cenę bluzki podwyższono o 30%. Po miesiącu nową cenę obniżono o 30%. Jak zmieniła się końcowa cena bluzki w stosunku do ceny początkowej? a) Nie zmieniła się. b) Cena wzrosła o 9%. c) Cena zmalała o 9%. d) Cena zmalała o 11%. Zadanie 11. (0-1 punkt) Proste na rysunku są styczne do okręgów. Kąt α ma miarę a) b) 90 0 c) 80 0 d) Nie można obliczyć miary kąta. Zadanie 12. (0-1 punkt) Dominik rzuca sześcienną kostką do gry. Które z poniższych zdarzeń jest najmniej prawdopodobne? a) Wypadnie liczba oczek większa niż 4. b) Wypadnie liczba oczek mniejsza niż 4. c) Wypadnie parzysta liczba oczek. d) Wypadnie nieparzysta liczba oczek. Zadanie 13. (0-1 punkt) Odwrotnością wartości wyrażenia (x 2) 2 (2 x) 2 + (x 2)(x + 2) dla x = 0,5 jest a) b) 4 15 c) 4 15 d) Zadanie 14. (0-1 punkt) Babcia Jadzia przygotowuje zalewę do marynowania grzybów. Kupiła w tym celu ocet z 10% zawartością kwasu octowego. Według przepisu zalewa ma mieć 2% zawartości kwasu octowego. Aby otrzymać 2 litry zalewy, babcia Jadzia potrzebuje a) 0,4 l octu 10% i 1,6 l wody. b) 0,04 l octu 10% i 1,96 l wody. c) 0,2 l octu 10% i 1,8 l wody. d) 0,02 l octu 10% i 1,98 l wody. Zadanie 15. (0-1 punkt) Dwie kwadratowe działki są podobne do siebie w skali 2:3. Pole mniejszej z nich wynosi 900 m 2. Ile metrów bieżących metalowej siatki potrzeba na ogrodzenie większej działki? a) 80 m b) 120 m c) 160 m d) 180 m Zadanie 16. (0-1 punkt) Koza pasie się na łące uwiązana do kołka sznurkiem o długości 2 m. O ile procent wzrósłby obszar, na którym wypasa się zwierzę, gdyby sznurek został przedłużony o 20%? a) o 20% b) o 144% c) o 44% d) o 40% 2
3 Zadanie 17. (0-1 punkt) Kropla wody ma objętość m 3. Ile najwięcej takich kropli zmieści się w sześciennym naczyniu o krawędzi długości 10 cm? a) b) 0, c) d) Zadanie 18. (0-1 punkt) Promień równikowy Słońca jest równy km. Ile decymetrów będzie miała średnica Słońca w skali 1: ? a) 696 dm b) 1392 dm c) 6960 dm d) dm Zadanie 19. (0-1 punkt) Podłoga hali, w której odbyły się targi książki, ma kształt kwadratu o przekątnej długości 100 m. Jakie pole powierzchni ma ta podłoga? a) m 2 b) m 2 c) 25 arów d) 50 arów Zadanie 20. (0-1 punkt) Starożytni Egipcjanie stosowali następującą metodę wyznaczania pola koła: od średnicy odejmij wartość liczby π daje opisana wyżej metoda? a) b) średnicy i podnieś wynik do kwadratu. Jaką przybliżoną c) d) Zadanie 21. (0-1 punkt) Trzy koleżanki wybrały się do galerii handlowej. Każda z nich ma całkowitą liczbę złotych, żadna nie ma więcej niż 120 złotych, a średnio mają po 96 złotych. Jaką najmniejszą kwotę może mieć jedna z nich? a) 48 zł b) 54 zł c) 60 zł d) 72 zł Zadanie 22. (0-1 punkt) Jeśli x i y są liczbami dodatnimi, to największą wartość ma wyrażenie a) xy b) x 2 + y 2 c) (x + y) 2 d) x 2 + y(y + x) Zadanie 23. (0-1 punkt) Jaki jest stosunek najdłuższej do najkrótszej przekątnej w ośmiokącie foremnym? a) 2 b) 2 2 c) 2 d) 3 Zadanie 24. (0-1 punkt) Odcinek AC na poniższym rysunku ma długość a) 1,8 cm b) 4,5 cm c) 7,5 cm d) cm Zadanie 25. (0-1 punkt) Punktem symetrycznym do punktu P = (1; 2) względem prostej y = x jest punkt P1 o współrzędnych a) ( 1; 2) b) (1; 2) c) (2; 1) d) ( 1; 2) Zadanie 26. (0-1 punkt) Małgosia wypisała cztery zestawy danych, ale tylko dla jednego z nich mediana wynosi 3, a średnia arytmetyczna 4,5. Który to zestaw? a) 7, 3, 5, 3 b) 5, 3, 8, 2, 3 c) 4, 2, 9, 3 d) 4, 1, 8, 11, 2, 1 3
4 Zadanie 27. (0-1 punkt) Obwód narysowanej figury jest równy a) 16π b) 22π c) 25π d) 55π Zadanie 28. (0-1 punkt) Liczby: MCDXLIV, MDCLXIV, MDCXLIV, MCDLXVI ustawione w kolejności od największej do najmniejszej to a) MCDXLIV, MDCLXIV, MDCXLIV, MCDLXVI b) MCDLXVI, MCDXLIV, MDCLXIV, MDCXLIV c) MDCLXIV, MDCXLIV, MCDLXVI, MCDXLIV d) MDCXLIV, MDCLXIV, MCDXLIV, MCDLXVI W zadaniach oceń prawdziwość zdań, wstawiając X w odpowiednie miejsca tabeli. Zadanie 29. (0-4 punkty) Czy prawdą jest, że następujące figury są przystające? TAK Sześciokąt foremny o boku 2,7 cm oraz sześciokąt foremny o najdłuższej przekątnej równej 5,3 cm. Romb o przekątnych 6 cm i 8 cm oraz romb o krótszej przekątnej równej 6 cm i boku równym 6 cm. Trójkąt prostokątny z kątem 60 0 i z najdłuższym bokiem równym 5,2 dm oraz trójkąt prostokątny z kątem 30 0 i z najkrótszym bokiem równym 2,6 dm. Trójkąt równoramienny o ramionach równych 5 cm i kącie między nimi równym oraz trójkąt równoramienny o podstawie równej 10 cm i kątach przy niej równych 3 0. Zadanie 30. (0-4 punkty) Kąt rozwarcia stożka ma miarę Różnica długości tworzącej i promienia podstawy wynosi 6 cm. Oceń, czy prawdziwe są poniższe informacje. TAK NIE Tworząca stożka ma długość 6 cm. Pole przekroju osiowego stożka wynosi 36 3 cm 2. Pole powierzchni bocznej stożka jest równe 0,72π dm 2. Objętość stożka wynosi 72π 3 cm 3. NIE Zadanie 31. (0-4 punkty) Czy podane informacje o liczbach są prawdziwe? Tylko jedna spośród liczb: 8, 12, 2 5, jest wymierna. Trzy liczby spośród podanych w ramce są mniejsze od liczby π , TAK NIE Liczbę można zapisać jako Liczba będąca wynikiem działania: 1 2 jest ujemna. 4
5 Brudnopis (nie podlega sprawdzeniu) 5
6 Brudnopis (nie podlega sprawdzeniu) 6
Konkurs przedmiotowy z matematyki dla uczniów szkół podstawowych 23 marca 2018 r. zawody II stopnia (rejonowe)
Kod ucznia:. Liczba punktów:. Konkurs przedmiotowy z matematyki dla uczniów szkół podstawowych 23 marca 2018 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki.
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 12 stycznia 2017 r. zawody II stopnia (rejonowe)
Kod ucznia:. Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 12 stycznia 2017 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki. Przed
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 lutego 2016 r. zawody II stopnia (rejonowe)
Kod ucznia:. Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 1 lutego 016 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki. Przed
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 23 lutego 2017 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 2 lutego 2017 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:
WPISUJE UCZEŃ KOD UCZNIA PESEL OGÓLNOPOLSKI PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 016/017 0.0.017 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka
WYPEŁNIA UCZEŃ PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10
Konkurs przedmiotowy z matematyki dla uczniów szkół podstawowych 9 marca 2019 r. zawody III stopnia (wojewódzkie)
Kod ucznia:. Liczba punktów:. Konkurs przedmiotowy z matematyki dla uczniów szkół podstawowych 9 marca 2019 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki.
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY 18 listopada 2013 r. godz. 13:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania: 30
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 28.02.2019 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r.
KOD Nr zad. 1 2 3 4 5 6 7 8 9 10 11 12 Razem Max liczba pkt. 3 3 3 3 3 3 3 3 4 3 3 6 40 Liczba pkt. Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r. Przeczytaj uważnie
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 23 stycznia 2015 r. zawody II stopnia (rejonowe)
Kod ucznia:. Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 23 stycznia 2015 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki. Przed
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki.
Matematyk Roku gminny konkurs matematyczny. FINAŁ 19 maja 2017 KLASA TRZECIA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 07 - gminny konkurs matematyczny FINAŁ 9 maja 07 KLASA TRZECIA. Przed Tobą zestaw 0 zadań konkursowych. Zanim rozpoczniesz pracę nad
13:00 13:30 14:00 14:30 15:00 15:30 godzina. Które z poniższych zdań jest fałszywe? Wybierz właściwą odpowiedź spośród podanych.
Zadanie. (0 ) Zastęp harcerzy wyruszył z przystanku autobusowego do obozowiska. Na wykresie przedstawiono zależność między odległością harcerzy od obozowiska a czasem wędrówki. odległość od obozowiska
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte
... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
.......................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem
Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.
Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m
Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów dotychczasowych gimnazjów 8 stycznia 2019 r. zawody II stopnia (rejonowe)
Kod ucznia:. Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów dotychczasowych gimnazjów 8 stycznia 2019 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP WOJEWÓDZKI 13 marca 2017 roku
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 016/017 ETAP WOJEWÓDZKI 13 marca 017 roku 1. Przed Tobą zestaw 15 zadań konkursowych.. Na ich rozwiązanie masz 10 minut. Piętnaście minut
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.
WOJEWÓDZKI KONKURS MATEMATYCZNY ROK SZKOLNY 2018/2019
KOD UCZNIA Imię i nazwisko ucznia (Wpisuje Wojewódzka Komisja Konkursowa po rozkodowaniu prac) Czas rozwiązywania: 90 minut... Informacje: WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów szkół podstawowych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE
Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 2 marca 2011 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 2 marca 20 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu Matematycznego. Przed przystąpieniem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut
MATEMATYKA LUTY 04 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane 4 odpowiedzi: A, B,
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut
kod ucznia Zadanie 1-10 11 12 13 14 15 suma punkty (wypełnia komisja) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut 1. Otrzymujesz do rozwiązania 10
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019
Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 018/019 Instrukcja dla ucznia 1. Sprawdź,
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut
punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO ETAP III - WOJEWÓDZKI Kod ucznia 24 marca 2017 roku godz. 13:00 Suma punktów Czas pracy: 90 minut Liczba punktów do
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 08/09.0.09 R.. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw
Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA
Imię i nazwisko:.. Klasa:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA 1. Przed Tobą zestaw 20 zadań konkursowych.
Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka
Wypełnia uczeń PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10 stron.
Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:
Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 2015 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 205 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 3 zadań.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Czas 90 minut
pieczęć szkoły pesel ucznia nazwisko imiona Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Czas 90 minut 1. Otrzymujesz do
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP SZKOLNY - 8 listopada 2016 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 016/017 ETAP SZKOLNY - listopada 016 roku 1. Przed Tobą zestaw 1 zadań konkursowych.. Na ich rozwiązanie masz 90 minut. Piętnaście
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO ETAP II POWIATOWY (online) 25 stycznia 2017 roku godz. 10:00 Czas pracy: 60 minut Liczba punktów do uzyskania: 50
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM
rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNI ZESPÓŁ NDZORUJĄCY KOD UCZNI PESEL miejsce na naklejkę UZUPEŁNI ZESPÓŁ NDZORUJĄCY Uprawnienia ucznia do: dostosowania
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej
Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.
Strona 1 z 12 liczba osób Informacje do zadań 1. i 2. W dwóch dziesięcioosobowych grupach uczniów przeprowadzono test sprawności notując czas (w sekundach) wykonywania ćwiczenia. Wyniki przedstawia poniższy
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
III WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
III WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP III - WOJEWÓDZKI 2 marca 2019 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania:
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 206/207 MATEMATYKA Informacje dla ucznia. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony
Test na koniec nauki w klasie trzeciej gimnazjum
3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5
Matematyk Roku gminny konkurs matematyczny. ETAP DRUGI 27 marca 2015 KLASA PIERWSZA
Imię i nazwisko:.. Klasa:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 05 - gminny konkurs matematyczny ETAP DRUGI 7 marca 05 KLASA PIERWSZA. Przed Tobą zestaw 0 zadań konkursowych. Zanim
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny
KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 31 stycznia 2008 r.
KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 3 3 4 5 4 5 48 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 11 marca 2016 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 11 marca 2016 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Małopolski Konkurs Matematyczny r. etap szkolny
Kod ucznia Miejsce na metryczkę ucznia Drogi Uczniu! Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap szkolny rok szkolny 2019/2020 1. Przed Tobą zestaw 17
14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.
Zadanie 1. (0 1) Turysta A szedł ze schroniska w kierunku szczytu, natomiast turysta B schodził ze szczytu w kierunku schroniska. Obaj szli tym samym szlakiem i tego samego dnia. Wykresy przedstawiają,
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MMA-RD1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 150 minut ARKUSZ II STYCZEŃ ROK 003 Instrukcja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2016/2017 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny