Układy współrzędnych równikowych
|
|
- Agata Izabela Wierzbicka
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński 15 października 2013
2 Układ współrzędnych sferycznych
3 Taki układ wydaje się prosty. Sytuacja komplikuje się gdy musimy narysować i używać dwóch lub trzech takich układów jednocześnie...
4
5 Oznaczenie najważniejszych punktów i kątów niewiele pomoże...
6 Z E δ N α h W Nd BS t A S
7 Z E δ N α h W Nd A dodanie objaśnień tylko skomplikuje rysunek... BS t A S
8 zenit północny biegun świata miejscowy południk astronomiczny Z punkt wschodu szerokość geograficzna deklinacja E punkt północy kąt godzinny δ t N horyzont astronomiczny punkt Barana α punkt zachodu h W azymut rektascensja Nd nadir A S wysokość równik niebieski punkt południa BS pierwszy wertykał południowy biegun świata
9 Z E δ N α h W Nd BS t A S
10 Z E δ N α h W Nd Usuwamy stopniowo elementy układu horyzontalnego... BS t A S
11 Z δ N t S α BS
12 δ α Na rysunku pozostały tylko elementy układów równikowych... BS t
13 δ α BS
14 δ α Oto układ równikowy równonocny... BS
15 północny biegun świata deklinacja δ równik niebieski α punkt Barana Oto układ równikowy równonocny... rektascensja BS południowy biegun świata
16 BS
17 BS
18 BS
19 BS
20 północny biegun świata obserwator oś świata równik niebieski BS południowy biegun świata
21 BS
22 ? BS
23 ekliptyka BS
24 równik niebieski ekliptyka graphics by Tauʻolunga
25 równik niebieski Ziemia 21 marca ekliptyka graphics by Tauʻolunga
26 ekliptyka punkt Barana BS punkt Barana to punkt równonocy wiosennej
27 punkt Wagi to punkt równonocy jesiennej punkt Wagi ekliptyka punkt Barana BS punkt Barana to punkt równonocy wiosennej
28 północny biegun świata obserwator równik niebieski oś świata punkt Barana BS południowy biegun świata
29 równik niebieski punkt Barana BS
30 równik niebieski punkt Barana BS
31 południk gwiazdy równik niebieski rzut gwiazdy po południku na równik niebieski punkt Barana BS
32 deklinacja południk gwiazdy równik niebieski δ rzut gwiazdy po południku na równik niebieski punkt Barana BS
33 Układ równikowy równonocny deklinacja południk gwiazdy równik niebieski δ α rektascensja rzut gwiazdy po południku na równik niebieski punkt Barana BS
34 północny biegun świata Układ równikowy równonocny deklinacja południk gwiazdy równik niebieski oś świata δ obserwator α rektascensja rzut gwiazdy po południku na równik niebieski punkt Barana BS południowy biegun świata
35 północny biegun świata Układ równikowy równonocny deklinacja południk gwiazdy równik niebieski oś świata δ obserwator α rektascensja rzut gwiazdy po południku na równik niebieski punkt Barana BS południowy biegun świata Jest to układ prawoskrętny
36 deklinacja? δ α rektascensja rzut gwiazdy po południku na równik niebieski równik niebieski BS punkt Barana
37 miejscowy południk astronomiczny Z deklinacja δ N S punkt przecięcia równika niebieskiego z południkiem miejscowym α rektascensja równik niebieski BS punkt Barana rzut gwiazdy po południku na równik niebieski
38 miejscowy południk astronomiczny deklinacja Z kąt godzinny δ N t S α rzut gwiazdy po południku na równik niebieski równik niebieski BS punkt Barana rektascensja
39 Układ równikowy godzinny miejscowy południk astronomiczny Z deklinacja kąt godzinny δ N t S rzut gwiazdy po południku na równik niebieski równik niebieski BS
40 zenit północny biegun świata miejscowy południk astronomiczny Układ równikowy godzinny Z deklinacja kąt godzinny punkt północy δ N t S horyzont astronomiczny równik niebieski punkt południa rzut gwiazdy po południku na równik niebieski BS południowy biegun świata
41 zenit północny biegun świata miejscowy południk astronomiczny Układ równikowy godzinny Z deklinacja kąt godzinny punkt północy δ N t S horyzont astronomiczny równik niebieski punkt południa rzut gwiazdy po południku na równik niebieski BS południowy biegun świata Jest to układ lewoskrętny
42 zenit północny biegun świata miejscowy południk astronomiczny Z deklinacja kąt godzinny punkt północy δ N t S horyzont astronomiczny równik niebieski punkt południa rzut gwiazdy po południku na równik niebieski BS południowy biegun świata
43 zenit północny biegun świata Oba układy równikowe oraz układ horyzontalny Z punkt wschodu szerokość geograficzna deklinacja miejscowy południk astronomiczny E punkt północy δ N horyzont astronomiczny punkt Barana α punkt zachodu h W punkt południa wysokość Nd nadir A S azymut równik niebieski kąt godzinny t rektascensja BS pierwszy wertykał południowy biegun świata
44 Spójrzmy na niebo dziś o północy...
45 15 października 2013, 24:00
46 15 października 2013, 24:00
47 15 października 2013, 24:00
48 15 października 2013, 24:00 Miejscowy południk astronomiczny
49 15 października 2013, 24:00 Miejscowy południk astronomiczny Równik niebieski
50 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
51 Punkt Barana 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
52 Punkt Barana 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
53 Punkt Barana 15 października 2013, 24:00 α δ Ekliptyka Miejscowy południk astronomiczny Równik niebieski Aldebaran ( α Tau ) : deklinacja δ = '09", rektascensja α = 4h36m43s
54 Punkt Barana 16 października 2012, 24:00 α δ Ekliptyka Miejscowy południk astronomiczny Równik niebieski Jowisz: deklinacja δ = '17", rektascensja α = 5h00m04s
55 Punkt Barana 15 października 2013, 24:00 α δ Ekliptyka Miejscowy południk astronomiczny Równik niebieski Rigel ( β Ori ) : deklinacja δ = -8 11'12", rektascensja α = 5h15m12s
56 Punkt Barana 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
57 Punkt Barana 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
58 Punkt Barana 15 października 2013, 24:00 h A Ekliptyka Miejscowy południk astronomiczny Równik niebieski Aldebaran: wysokość h = '48", azymut A = '16"
59 Punkt Barana 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
60 Punkt Barana 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
61 Punkt Barana 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
62 Punkt Barana 15 października 2013, 24:00 Ekliptyka Miejscowy południk astronomiczny Równik niebieski
63 15 października 2013, 24:00 Calisto Jowisz Europa i Ganimedes Księżyce Galileuszowe Jowisza, Io schowany za tarczą planety średnica pola widzenia w okularze ok. 15'
64 15 października 2013, 24:00 Plejady średnica pola widzenia w okularze ok 1.5 stopnia
65 15 października 2013, 24:00 Wielka Mgławica Oriona średnica pola widzenia w okularze ok 1.5 stopnia
66 15 października 2013, 24:00 Mgławica Roseta średnica pola widzenia w okularze ok 2.5 stopnia
67 Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość geograficzna deklinacja miejscowy południk astronomiczny E punkt północy δ N h horyzont astronomiczny kąt godzinny t W A S punkt południa azymut wysokość Nd równik niebieski punkt zachodu nadir BS pierwszy wertykał południowy biegun świata
68 Z
69 Usuńmy pierwszy wertykał... Z
70 Z
71 Usuńmy niewidoczne linie... Z
72 Z
73 90 -φ Z
74 90 -φ Z
75 90 -φ Z deklinacja 90 -δ δ
76 90 -φ 90 -δ Z
77 90 -φ 90 -h = z Z z odległość zenitalna 90 -δ h wysokość
78 90 -φ 90 -δ Z 90 -h = z
79 90 -φ Z 90 -h = z 90 -δ t kąt godzinny
80 90 -φ 90 -δ t Z 90 -h = z
81 90 -φ t Z 90 -h = z 90 -δ A azymut
82 90 -φ A 90 -δ t 90 -h = z
83 90 -φ A 90 -δ t 90 -h = z
84 90 -φ A 90 -δ t 90 -h = z
85 90 -φ Z 360 -A t 90 -h = z 90 -δ
86 90 -φ Z 360 -A t 90 -h = z 90 -δ
87 90 -φ Z 360 -A t 90 -h = z 90 -δ
88 90 -φ Z 360 -A t 90 -h = z 90 -δ Trójkąt paralaktyczny czyli związek między układem równikowym godzinnym a układem horyzontalnym
89 Trójkąt sferyczny
90 Trójkąt paralaktyczny Z
91 Trójkąt paralaktyczny Z -h 90 -φ 90 = z 90 -δ
92 Trójkąt paralaktyczny Z 360 -A -h 90 -φ 90 = z t 90 -δ
93 Trójkąt sferyczny
94 Trygonometria sferyczna sin a sin b sin c = = sin A sin B sin C
95 Układ równikowy godzinny oraz układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość geograficzna deklinacja miejscowy południk astronomiczny E punkt północy δ N h horyzont astronomiczny kąt godzinny t W A S punkt południa azymut wysokość Nd równik niebieski punkt zachodu nadir BS pierwszy wertykał południowy biegun świata
96 zenit północny biegun świata Z punkt wschodu szerokość geograficzna miejscowy południk astronomiczny E punkt północy N h horyzont astronomiczny W A S punkt południa azymut wysokość Nd równik niebieski punkt zachodu nadir BS pierwszy wertykał południowy biegun świata
97 zenit Układ horyzontalny Z miejscowy południk astronomiczny punkt północy N h horyzont astronomiczny A S punkt południa azymut wysokość Nd nadir koło wertykalne gwiazdy
98 zenit Układ horyzontalny Z miejscowy południk astronomiczny punkt północy N S horyzont astronomiczny punkt południa Nd nadir
99 zenit Układ horyzontalny Z horyzont astronomiczny Nd nadir
100 Oba układy równikowe δ α BS t
101 Oba układy równikowe δ α BS t
102 kąt godzinny i rektascensja α BS t
103 kąt godzinny i rektascensja α BS t
104 kąt godzinny i rektascensja t BS α
105 kąt godzinny i rektascensja BS α t
106 kąt godzinny i rektascensja BS α t
107 kąt godzinny i rektascensja BS t α
108 kąt godzinny i rektascensja t α
109 kąt godzinny i rektascensja t α rzut punktu górowania na równik niebieski
110 kąt godzinny i rektascensja rzut punktu górowania na równik niebieski t α
111 kąt godzinny i rektascensja punkt górowania na równiku t α
112 kąt godzinny i rektascensja punkt górowania na równiku t α około dwie godziny później
113 kąt godzinny i rektascensja punkt górowania na równiku t α kolejne pięć godzin później
114 kąt godzinny i rektascensja punkt górowania na równiku t*=0 α t Kąt godzinny punktu Barana jest zawsze równy rektascensji gwiazd górujących.
Układy współrzędnych równikowych
Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński Taki układ wydaje się prosty. Sytuacja komplikuje się gdy musimy narysować i używać dwóch lub trzech
Wędrówki między układami współrzędnych
Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość
Przykładowe zagadnienia.
Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński Z BN E N h W Nd A S BN Z δ N t S α BS zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt
Przykładowe zagadnienia.
Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński Z BN E N h W Nd A S BN Z t δ N S α BS zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt
Gdzie się znajdujemy na Ziemi i w Kosmosie
Gdzie się znajdujemy na Ziemi i w Kosmosie Realizując ten temat wspólnie z uczniami zajęliśmy się określeniem położenia Ziemi w Kosmosie. Cele: Rozwijanie umiejętności określania kierunków geograficznych
Jak rozwiązywać zadania.
Wykład udostępniam na licencji Creative Commons: Jak rozwiązywać zadania. Piotr A. Dybczyński zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt wschodu szerokość geograficzna deklinacja
Ziemia jako zegar Piotr A. Dybczyński
Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Ziemia jako zegar Piotr A. Dybczyński
Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?
Ziemia jako zegar Piotr A. Dybczyński
Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?
Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1
Liceum Klasy I III Doświadczenie konkursowe 1 Rok 2015 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę tzw.
Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych
Aplikacje informatyczne w Astronomii Internet źródło informacji i planowanie obserwacji astronomicznych Skrót kursu: Tydzień I wstęp i planowanie pokazów popularnonaukowych a) współrzędne niebieskie układy
Odległość kątowa. Szkoła średnia Klasy I IV Doświadczenie konkursowe 5
Szkoła średnia Klasy I IV Doświadczenie konkursowe 5 Rok 2019 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca, mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę
PROPOZYCJA ĆWICZEŃ OBSERWACYJNYCH Z ASTRONOMII DO PRZEPROWADZENIA W OBSERWATORIUM ASTRONOMICZNYM INSTYTUTU FIZYKI UR DLA UCZESTNIKÓW PROJEKTU FENIKS
PROPOZYCJA ĆWICZEŃ OBSERWACYJNYCH Z ASTRONOMII DO PRZEPROWADZENIA W OBSERWATORIUM ASTRONOMICZNYM INSTYTUTU FIZYKI UR DLA UCZESTNIKÓW PROJEKTU FENIKS dr hab. Piotr Gronkowski - gronk@univ.rzeszow.pl Ćwiczenie
Ziemia jako zegar Piotr A. Dybczyński
Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h Miara czasowa kątów 360 = 24h 15 = 1h = 60m m 1 = 4 m 60' = 4 15' = 1m
wersja
www.as.up.krakow.pl wersja 2013-01-12 STAŁE: π = 3.14159268... e = 2.718281828... Jednostka astronomiczna 1 AU = 149.6 mln km = 8 m 19 s świetlnych Rok świetlny [l.y.] = c t = 9460730472580800 m = 9.46
Astronomia. Wykład II. Waldemar Ogłoza. Wykład dla studentów fizyki. > dla studentów > zajęcia W.Ogłozy
Astronomia Wykład II Wykład dla studentów fizyki Waldemar Ogłoza www.as.up.krakow.pl > dla studentów > zajęcia W.Ogłozy Układy współrzędnych sferycznych Koła Wielkie i Koła Małe RównoleŜniki to koła małe
WZORY NA WYSOKOŚĆ SŁOŃCA. Wzory na wysokość Słońca
TEMAT: Obliczanie wysokości Słońca. Daty WZORY NA WYSOKOŚĆ SŁOŃCA Wzory dla półkuli północnej 21 III i 23 IX h= 90 -φ h= 90 -φ Wzory dla półkuli południowej 22 VI h= 90 -φ+ 23 27 h= 90 -φ- 23 27 22 XII
Analemmatyczny zegar słoneczny dla Włocławka
Analemmatyczny zegar słoneczny dla Włocławka Jest to zegar o poziomej tarczy z pionowym gnomonem przestawianym w zależności od deklinacji Słońca (δ) kąta miedzy kierunkiem na to ciało a płaszczyzną równika
Rozwiązania przykładowych zadań
Rozwiązania przykładowych zadań Oblicz czas średni i czas prawdziwy słoneczny na południku λ=45 E o godzinie 15 00 UT dnia 1 VII. Rozwiązanie: RóŜnica czasu średniego słonecznego T s w danym miejscu i
Tomasz Ściężor. Almanach Astronomiczny na rok 2012
Tomasz Ściężor Almanach Astronomiczny na rok 2012 Klub Astronomiczny Regulus Kraków 2011 1 Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna część tej
Astronomia. Wykład I. Waldemar Ogłoza. Wykład dla studentów geografii. dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1.
Astronomia Wykład I Wykład dla studentów geografii Waldemar Ogłoza www.as.up.krakow.pl dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1.pdf Literatura: J.M.Kreiner Ziemia i Wszechświat astronomia nie
Elementy astronomii w geografii
Elementy astronomii w geografii Prowadzący: Marcin Kiraga kiraga@astrouw.edu.pl Podstawowe podręczniki: Jan Mietelski, Astronomia w geografii Eugeniusz Rybka, Astronomia ogólna Podręczniki uzupełniające:
Astronomia II, ćwiczenia, podsumowanie. Kolokwium I. m= 2.5log F F 0
Astronomia II, ćwiczenia, podsumowanie 1 Wielkościgwiazdowe Definicja wielkości gwiazdowej: Kolokwium I m= 2.5log F F 0, (1) gdzief jestnateżeniempromieniowaniapoch adz acego od danej gwiazdy, af 0 nateżeniempromieniowaniagwiazdy,dlaktórejzostałoustalonem=0
Elementy astronomii dla geografów. Bogdan Wszołek Agnieszka Kuźmicz
Elementy astronomii dla geografów Bogdan Wszołek Agnieszka Kuźmicz Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego Elementy astronomii dla geografów Bogdan Wszołek Agnieszka
Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy.
ZAŁĄCZNIK V. SŁOWNICZEK. Czas uniwersalny Czas uniwersalny (skróty: UT lub UTC) jest taki sam, jak Greenwich Mean Time (skrót: GMT), tzn. średni czas słoneczny na południku zerowym w Greenwich, Anglia
Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta
Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta Data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge of NOAA NGDC. Image by Craig Mayhew and Robert Simmon, NASA GSFC. Piotr
Astronomia Wykład I. KOSMOLOGIA bada Wszechświat jako całość. Literatura: dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1.
Astronomia Wykład I Wykład dla studentów geografii Waldemar Ogłoza www.as.up.krakow.pl dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1.pdf J.M.Kreiner Rybka E. E, Literatura: Ziemia i Wszechświat astronomia
Tomasz Ściężor. Almanach Astronomiczny na rok 2014
Tomasz Ściężor Almanach Astronomiczny na rok 2014 Klub Astronomiczny Regulus Kraków 2013 1 Recenzent prof. dr hab. Jerzy M. Kreiner Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie
Wprowadzenie do astronomii
Wprowadzenie do astronomii (wydanie czwarte) Bogdan Wszołek Obserwatorium Astronomiczne Królowej Jadwigi Rzepiennik Biskupi 2018 Redakcja Bogdan Wszołek Projekt okładki Bogdan Wszołek Copyright by Obserwatorium
Astronomia. Studium Podyplomowe Fizyki z Astronomią. Marcin Kiraga kiraga@astrouw.edu.pl
Astronomia Studium Podyplomowe Fizyki z Astronomią Marcin Kiraga kiraga@astrouw.edu.pl Plan wykładów. Historia astronomii, opis podstawowych zjawisk na niebie, opis sfery niebieskiej, astronomiczne układy
Tomasz Ściężor. Almanach Astronomiczny na rok 2013
Tomasz Ściężor Almanach Astronomiczny na rok 2013 Klub Astronomiczny Regulus Kraków 2012 1 Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna część tej
Czas w astronomii. Krzysztof Kamiński
Czas w astronomii Krzysztof Kamiński Czas gwiazdowy - kąt godzinny punktu Barana; lokalny na danym południku Ziemi; związany z układem równikowym równonocnym; odzwierciedla niejednorodności rotacji Ziemi
NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY. Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego.
RUCH OBIEGOWY ZIEMI NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego. OBIEG ZIEMI WOKÓŁ SŁOŃCA W czasie równonocy
Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie
Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity
XXXIX OLIMPIADA GEOGRAFICZNA Zawody III stopnia pisemne podejście 2
-2/1- Zadanie 8. W każdym z poniższych zdań wpisz lub podkreśl poprawną odpowiedź. XXXIX OLIMPIADA GEOGRAFICZNA Zawody III stopnia pisemne podejście 2 A. Słońce nie znajduje się dokładnie w centrum orbity
Astronomia. Wykład IV. Waldemar Ogłoza. >> dla studentów. Wykład dla studentów fizyki
Astronomia Wykład IV Wykład dla studentów fizyki Waldemar Ogłoza www.as.up.krakow.pl >> dla studentów Ruch obrotowy Ziemi Efekty ruchu wirowego Ziemi Zjawisko dnia i nocy Spłaszczenie Ziemi przez siłę
Przykład testu z astronomicznych podsatw geografii Uzupełnić puste pola : Wybarć własciwe odpowiedzi a,b,c,d,e... (moŝe byc kilka poprawnych!!
Przykład testu z astronomicznych podsatw geografii Uzupełnić puste pola : Wybarć własciwe odpowiedzi a,b,c,d,e.... (moŝe byc kilka poprawnych!!) 1. Astronomia zajmuje się badaniem 2. Z powodu zjawiska
Title: Ćwiczenia z podstaw astrofizyki
Title: Ćwiczenia z podstaw astrofizyki Author: Maria Pańków Citation style: Pańków Maria. (2011). Ćwiczenia z podstaw astrofizyki. Katowice : Wydawnictwo Uniwersytetu Śląskiego. Ćwiczenia z podstaw astrofizyki
Niebo nad nami Styczeń 2018
Niebo nad nami Styczeń 2018 Comiesięczny kalendarz astronomiczny STOWARZYSZENIE NA RZECZ WIEDZY I ROZWOJU WiR KOPERNIK WWW.WIRKOPERNIK.PL CZARNA 857, 37-125 CZARNA TEL: 603 155 527 E-MAIL: kontakt@wirkopernik.pl
ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów.
ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. Jak to zostało przedstawione w części 5.2.1, jeżeli zrobimy Słońcu zdjęcie z jakiegoś miejsca na powierzchni ziemi w danym momencie t i dokładnie
Inne Nieba. Gimnazjum Klasy I III Doświadczenie konkursowe nr 4
Gimnazjum Klasy I III Doświadczenie konkursowe nr 4 Rok 2017 1. Wstęp teoretyczny Układ Słoneczny jest niezwykle skomplikowanym mechanizmem. Mnogość parametrów przekłada się na mnogość zjawisk, jakie można
Wykład z podstaw astronomii
Wykład z podstaw astronomii dla studentów I roku geografii zaocznej, rok 2005/2006 wykładowca: Iwona Wytrzyszczak 1 Spis treści 1 Układy współrzędnych niebieskich 4 1.1 Układ horyzontalny.............................
Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego
Ruch obiegowy Ziemi Ruch obiegowy Ziemi Ziemia obiega Słońce po drodze zwanej orbitą ma ona kształt lekko wydłużonej elipsy Czas pełnego obiegu wynosi 365 dni 5 godzin 48 minut i 46 sekund okres ten nazywamy
LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L
LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.
STYCZEŃ Mgławica Koński Łeb Barnard 33 wewnątrz IC 434 w Orionie Źródło: NASA
Johannes Kepler Teleskop Keplera Mgławica Koński Łeb Barnard wewnątrz IC w Orionie Źródło: NASA STYCZEŃ 0 stycznia hm Ziemia znajduje się najbliżej Słońca w peryhelium. stycznia częściowe zaćmienie Słońca.
3a. Ruch obiegowy Ziemi
3a. Ruch obiegowy Ziemi Ziemia obiega gwiazdę znajdującą się w środku naszego układu planetarnego, czyli Słońce. Ta konstatacja, dzisiaj absolutnie niekwestionowana, z trudem dochodziła do powszechnej
b. Ziemia w Układzie Słonecznym sprawdzian wiadomości
a. b. Ziemia w Układzie Słonecznym sprawdzian wiadomości 1. Cele lekcji Cel ogólny: podsumowanie wiadomości o Układzie Słonecznym i miejscu w nim Ziemi. Uczeń: i. a) Wiadomości zna planety Układu Słonecznego,
PODRĘCZNA INSTRUKCJA ASTRO-EXCELA
2015 rok Janusz Bańkowski, Bełchatów Patronat programu SOS PTMA PODRĘCZNA INSTRUKCJA ASTRO-EXCELA Wstęp Arkusz kalkulacyjny MS Excel to doskonałe narzędzie obliczeniowe wszechstronnego użytku. Za pomocą
Człowiek najlepsza inwestycja. Fot.NASA FENIKS PRACOWNIA DYDAKTYKI ASTRONOMII
Fot.NASA FENIKS PRACOWNIA DYDAKTYKI ASTRONOMII PROPOZYCJA ĆWICZEŃ DZIENNYCH Z ASTRONOMII DLA UCZESTNIKÓW PROGRAMU FENIKS dr hab. Piotr Gronkowski, prof. UR gronk@univ.rzeszow.pl Uniwersytet Rzeszowski
ul. Marii Skłodowskiej-Curie 7 39-400 Tarnobrzeg tel/fax (15) 823 82 75 e-mail: market@astrozakupy.pl
ul. Marii Skłodowskiej-Curie 7 39-400 Tarnobrzeg tel/fax (15) 823 82 75 e-mail: market@astrozakupy.pl ul. Grunwaldzka 31C 60-783 Poznań tel/fax (61) 853 24 76 e-mail:poznan@astrozakupy.pl ABC TELESKOPU
1 Szkic historii astronomii i jej zwiazków z fizyka
ELEMENTY ASTROFIZYKI I DYDAKTYKI ASTRONOMII UKŁAD SŁONECZNY Prowadzący: Marcin Kiraga. Podstawowe podręczniki: Paweł Artymowicz Astrofizyka układów planetarnych Eugeniusz Rybka Astronomia ogólna Frank
S T Y C Z E Ń. Mgławica Kooski Łeb Barnard 33 wewnątrz IC 434 w Orionie Źródło: NASA
Johannes Kepler Teleskop Keplera Mgławica Kooski Łeb Barnard wewnątrz IC w Orionie Źródło: NASA S T Y C Z E Ń 0 stycznia hm Ziemia znajduje się najbliżej Słońca w peryhelium. stycznia częściowe zaćmienie
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Zapoznanie z pojęciem sfery niebieskiej oraz definicjami podstawowych jej elementów.
C C C3 I. KARTA PRZEDMIOTU. Nazwa przedmiotu: ASTRONAWIGACJA. Kod przedmiotu: Na 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Wszystkie specjalności
ZAĆMIENIA. Zaćmienia Słońca
ZAĆMIENIA Zaćmienia Słońca 1. Częściowe zaćmienie Słońca 4 stycznia 2011. Cień Księżyca przechodzi nad północnymi obszarami biegunowymi Ziemi. Zaćmienie widoczne będzie w północnej Afryce, Europie oraz
Niebo nad nami Wrzesień 2017
Niebo nad nami Wrzesień 2017 Comiesięczny kalendarz astronomiczny STOWARZYSZENIE NA RZECZ WIEDZY I ROZWOJU WiR KOPERNIK WWW.WIRKOPERNIK.PL CZARNA 857, 37-125 CZARNA TEL: 603 155 527 E-MAIL: kontakt@wirkopernik.pl
Analiza danych. 7 th International Olympiad on Astronomy & Astrophysics 27 July 5 August 2013, Volos Greece. Zadanie 1.
Analiza danych Zadanie 1. Zdjęcie 1 przedstawiające część gwiazdozbioru Wielkiej Niedźwiedzicy, zostało zarejestrowane kamerą CCD o rozmiarze chipu 17mm 22mm. Wyznacz ogniskową f systemu optycznego oraz
Ruch obrotowy i orbitalny Ziemi
Ruch obrotowy i orbitalny Ziemi Ruch dobowy sfery niebieskiej jest pozorny wynika z obracania się Ziemi wokół własnej osi z okresem równym 1 dobie gwiazdowej. Tor pozornego ruchu dobowego sfery niebieskiej
Model ruchomy - globus ze sklepieniem niebieskim wersja uproszczona
IMPORTER: educarium spółka z o.o. ul. Grunwaldzka 207, 85-451 Bydgoszcz tel. (52) 32 47 800 fax (52) 32 10 251, 32 47 880 e-mail: info@educarium.pl portal edukacyjny: www.educarium.pl sklep internetowy:
Astronomia Wykład III
Astronomia Wykład III Wykład dla studentów geografii Ruch obrotowy Ziemi Waldemar Ogłoza www.as.up.krakow.pl >> dla studentów Efekty ruchu wirowego Ziemi Zmierzchy i świty Zjawisko dnia i nocy Spłaszczenie
ZAĆMIENIA. Zaćmienia Słońca
ZAĆMIENIA Zaćmienia Słońca 1. Całkowite zaćmienie Słońca 20 marca 2015. Pas fazy całkowitej zaćmienia rozpocznie się 20 marca 2015 o godzinie 9 h 10 m na północnym Atlantyku, prawie 500 km na południe
ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU.
SPIS TREŚCI Przedmowa ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU. 1.1. Szerokość i długość geograficzna. Różnica długości. Różnica szerokości. 1.1.1.
32 B Środowisko naturalne. Ederlinda Viñuales Gavín Cristina Viñas Viñuales. Jak długi jest dzień
32 B Środowisko naturalne Ederlinda Viñuales Gavín Cristina Viñas Viñuales B Jak długi jest dzień Środowisko naturalne B 33 WPROWADZENIE W ramach lekcji Jak długi jest dzień uczniowie mają za zadanie:
Opozycja... astronomiczna...
Opozycja... astronomiczna... Pojęcie opozycja bez dodatków ją bliżej określających jest intuicyjnie zrozumiałe. Wyraz ma swoją etymologię łacińską - oppositio i oznacza przeciwstawienie. Przenosząc to
Spokojnie, to tylko awaria cz. 4
Spokojnie, to tylko awaria cz. 4 Artur Krystosik Błysk i potworny huk. Ogłuszeni powoli dochodzimy do siebie. Wokół rozchodzi się swąd spalenizny pomieszany z zapachem ozonu. Właśnie przeżyliśmy uderzenie
Tellurium szkolne [ BAP_1134000.doc ]
Tellurium szkolne [ ] Prezentacja produktu Przeznaczenie dydaktyczne. Kosmograf CONATEX ma stanowić pomoc dydaktyczną w wyjaśnianiu i demonstracji układu «ZIEMIA - KSIĘŻYC - SŁOŃCE», zjawiska nocy i dni,
I. KARTA PRZEDMIOTU. Zapoznanie z układem współrzędnych sferycznych horyzontalnych.
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: ASTRONAWIGACJA. Kod przedmiotu: Na. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Wszystkie specjalności
LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne
LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne 1. Dwie gwiazdy ciągu głównego o masach M i m tworzyły układ podwójny o orbitach kołowych. W wyniku ewolucji, bardziej masywny
RUCH OBROTOWY I OBIEGOWY ZIEMI
1. Wpisz w odpowiednich miejscach następujące nazwy: Równik, Zwrotnika Raka, Zwrotnik Koziorożca iegun Południowy, iegun Północny Koło Podbiegunowe Południowe Koło Podbiegunowe Południowe RUCH OROTOWY
REGULAMIN I WOJEWÓDZKIEGO KONKURSU WIEDZY ASTRONOMICZNEJ KASJOPEJA
REGULAMIN I WOJEWÓDZKIEGO KONKURSU WIEDZY ASTRONOMICZNEJ KASJOPEJA ORGANIZOWANEGO W WOJEWÓDZTWIE LUBUSKIM W ROKU SZKOLNYM 2012/2013 DLA UCZNIÓW SZKÓŁ GIMNZJALNYCH I PONADGIMNAZJALYCH 1 Konkurs z astronomii
Ruch Gwiazd. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 3
Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 3 Rok 2017 1. Wstęp teoretyczny Ludzka wyobraźnia łączy rozproszone po niebie gwiazdy w pewne charakterystyczne wzory, ułatwiające nawigację po
ASTRONOMIA. Autor wyraził zgodę na zamieszczenie niniejszej wersji elektronicznej podręcznika do użytku publicznego
ASTRONOMIA KONRAD RUDNICKI Wersja elektroniczna opracowana przez częstochowskich miłośników astronomii dla potrzeb samokształceniowych w oparciu o dawniejszy licealny podręcznik astronomii autorstwa Konrada
2. Ziemia we Wszechświecie
2. Ziemia we Wszechświecie 5 4 6 3 Horyzont N O 2 1 Rysunek 2.1 Punkty orientacyjne na sferze niebieskiej z horyzontem dla obserwatora O stojącego w Krakowie 21 III w punkcie o współrzędnych geograficznych
Geodezja wyższa i astronomia geodezyjna
Wyższa Szkoła Działalności Gospodarczej Geodezja i Kartografia Geodezja wyższa i astronomia geodezyjna Prof. dr hab. inż. Jerzy B. Rogowski Dr inż. Magdalena Kłęk Treść wykładów: 1. Wprowadzenie do geodezji
Tomasz Ściężor. Almanach Astronomiczny na rok 2015
Tomasz Ściężor Almanach Astronomiczny na rok 2015 Polskie Towarzystwo Astronomiczne Warszawa 2014 RECENZENT Jerzy M. Kreiner OPRACOWANIE TECHNICZNE I SKŁAD Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna
Cykl Metona. Liceum Klasy I III Doświadczenie konkursowe nr 1
Liceum Klasy I III Doświadczenie konkursowe nr 1 Rok 2017 1. Wstęp teoretyczny Od czasów prehistorycznych życie człowieka regulują trzy regularnie powtarzające się cykle astronomiczne. Pierwszy z nich
24 godziny 23 godziny 56 minut 4 sekundy
Ruch obrotowy Ziemi Podstawowe pojęcia Ruch obrotowy, inaczej wirowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun Północny i Biegun Południowy.
nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku.
14 Nawigacja dla żeglarzy nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. Rozwiązania drugiego problemu nawigacji, tj. wyznaczenia bezpiecznej
Zadanie 2. (0-2) Podaj dzień tygodnia i godzinę, która jest w Nowym Orleanie. dzień tygodnia... godzina...
Zadanie 1.(0-1) Na południe od pewnego równoleżnika Słońce codziennie wschodzi i zachodzi, zaś na północ od tego równoleżnika występuje zjawisko dni i nocy polarnych. Powyższy opis dotyczy równoleżnika:
Niebo kwietniowe De Gestirne (album), XIX w.
Niebo kwietniowe Niebo kwietniowe De Gestirne (album), XIX w. Nie do wiary, jak ten czas leci! Już jest czwarty miesiąc roku - a więc minęła jego 1/4 część. Nad polami słychać świergot skowronków, choć
Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"
Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane
Rok akademicki: 2030/2031 Kod: DGK n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Geodezja wyższa Rok akademicki: 2030/2031 Kod: DGK-1-405-n Punkty ECTS: 6 Wydział: Geodezji Górniczej i Inżynierii Środowiska Kierunek: Geodezja i Kartografia Specjalność: - Poziom studiów:
Obrotowa mapa nieba ćwiczenie w Excelu
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (POKL) Obrotowa mapa nieba ćwiczenie w Excelu Wstęp Mapka nieba jest jak mini-planetarium. Jeśli umieścimy ją
ZAĆMIENIA 22. Zaćmienia Słońca
ZAĆMIENIA 22 Zaćmienia Słońca 1. Częściowe zaćmienie Słońca 15 lutego 2018 Cień Księżyca przechodzi pod południowymi obszarami biegunowymi Ziemi. Zaćmienie widoczne będzie w południowej części Ameryki
Tomasz Ściężor. Almanach Astronomiczny na rok 2016
Tomasz Ściężor Almanach Astronomiczny na rok 2016 Polskie Towarzystwo Astronomiczne Warszawa 2015 RECENZENT Jerzy M. Kreiner OPRACOWANIE TECHNICZNE I SKŁAD Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna
ZAĆMIENIA 22. Zaćmienia Słońca
ZAĆMIENIA 22 Zaćmienia Słońca 1. Częściowe zaćmienie Słońca 6 stycznia 2019 Cień Księżyca przechodzi nad północnymi obszarami biegunowymi Ziemi. Zaćmienie widoczne będzie w północno-wschodniej Azji, w
teleskop Cassegraina - posiada paraboliczne zwierciadło główne oraz mniejsze wtórne, eliptyczne
TELESKOP ZWIERCIADLANY (reflektor) - jego podstawowymi częściami są: zwierciadło, okular i tubus. Mają niższą sprawność optyczną od refraktorów i zwykle dają niższy kontrast na skutek centralnego przesłonięcia
LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia
Zadanie 1. LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia Z północnego bieguna księżycowego wystrzelono pocisk, nadając mu prędkość początkową równą lokalnej pierwszej prędkości kosmicznej.
ZAĆMIENIA. Zaćmienia Słońca
ZAĆMIENIA Zaćmienia Słońca 1. Obrączkowe zaćmienie Słońca 20 maja 2012. Pas fazy obrączkowej zaćmienia rozpocznie się 20 maja 2012 o godzinie 22 h 06 m przy południowym wybrzeżu Chin, w punkcie o współrzędnych
ZBIÓR ZADAŃ CKE 2015 ZAKRES ROZSZERZONY
ZBIÓR ZADAŃ CKE 2015 ZAKRES ROZSZERZONY Zadanie: 026 Na rysunku przedstawiono osiem planet Układu Słonecznego. Jedną z planet oznaczono literą A. Oceń prawdziwość poniższychinformacji. Wpisz znak X w
Współrzędne geograficzne
Współrzędne geograficzne Siatka kartograficzna jest to układ południków i równoleżników wykreślony na płaszczyźnie (mapie); jest to odwzorowanie siatki geograficznej na płaszczyźnie. Siatka geograficzna
Jowisz i jego księŝyce
Jowisz i jego księŝyce Obserwacje przez niewielką lunetkę np: Galileoskop Międzynarodowy Rok Astronomii 2009 Projekt Jesteś Galileuszem Imię i Nazwisko 1 :... Adres:... Wiek:... Jowisza łatwo odnaleźć
Geografia jako nauka. Współrzędne geograficzne.
Geografia (semestr 3 / gimnazjum) Lekcja numer 1 Temat: Geografia jako nauka. Współrzędne geograficzne. Geografia jest nauką opisującą świat, w którym żyjemy. Wyraz geographia (z języka greckiego) oznacza
ASTRONOMIA JANUSZA WILANDA
ASTRONOMIA JANUSZA WILANDA Część 1 Podstawy astronomii Warszawa, Piotrków Tryb. 2010 r. 1 Spis treści : 1. Wstęp 3 2. Moje początki z astronomią 3 3. Kierunki świata i rodzaje współrzędnych 4 4. Współrzędne
Part I. Położenie obserwatora na powierzchni Ziemi. Astronomia sferyczna Wykład 5: WSPÓŁRZEDNE GEOCENTRYCZNE Przejście topo- geocentrum i odwrotnie
Astronomia sferyczna Wykład 5: WPÓŁRZEDNE GEOENTRYZNE Przejście topo- geocentrum i odwrotnie Tadeusz Jan Jopek Part I Instytut Obserwatorium Astronomiczne, UAM emestr II (Uaktualniono 5.04.03) Przybliżenia
Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.
Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1
Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy
Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut. 1. Przyszłość. Ludzie mieszkają w stacjach kosmicznych w kształcie okręgu o promieniu