Iteracyjny algorytm śledzenia punktu pracy o maksymalnej mocy dla ogniwa słonecznego (MPPT =Maximum Power Point Tracking/Tracker)
|
|
- Julian Lis
- 9 lat temu
- Przeglądów:
Transkrypt
1 Iteracyjny algorytm śledzenia punktu pracy o maksymalnej mocy dla ogniwa słonecznego (MPPT =Maximum Power Point Tracking/Tracker) Opracował: Bartłomiej Ufnalski (2003) Model matematyczny ogniwa słonecznego Ogniwo słoneczne zbudowane jest na bazie złącza p-n. Przy braku oświetlenia wyjściowa charakterystyka prądowo-napięciowa ogniwa jest analogiczna do diodowej. Wskutek bombardowania złącza fotonami promieniowania słonecznego, o energii większej od energii pasma wzbronionego, powstają pary elektron-dziura. Pary te zostają rozdzielone w wyniku oddziaływania pól elektrycznych występujących wewnątrz złącza. Na zaciskach ogniwa pojawia się napięcie, a generowany prąd jest proporcjonalny do natężenia promieniowania świetlnego. W dalszych rozważaniach przyjęto uproszczony jednodiodowy model fotoogniwa uwzględniający zależność fotoprądu i prądu nasycenia od temperatury, a także obecność rezystancji szeregowej. Modele bardziej złożone mają w schemacie zastępczym dwie diody i dwie rezystancje. Model jednodiodowy [4] opisany jest równaniami: I = I I e () L ( q( V + IRs )/ nkt ) 0 I = I ( + K ( T T )) (2) L L( T ) 0 I = G I / G (3) L( T ) SC( T, nom) ( nom) K = ( I I ) /( T T ) (4) 0 SC ( T ) SC( T ) 2 2 qv / nk (/ T / T ) I I T T e 3/ n g = T ( / ) (5) 0 0( ) I I e / nkt OC ( T ) = /( ) SC T (6) 0( T ) ( ) qv R = dv / di / X (7) s V V X I q nkt e V oc qv / nkt OC ( T ) = 0( T ) /, (8) gdzie I,V- prąd i napięcie ogniwa, k stała Boltzmanna, q ładunek elektronu, n współczynnik idealności złącza p-n (zależy od użytego krzemu), T temperatura złącza w Kelvinach, G natężenie promieniowania (zazwyczaj w Sunach, Sun = 000Wm -2 ). Pozostałe wielkości podawane są przez producenta w specyfikacji technicznej konkretnego ogniwa bądź wynikają z użytych materiałów. Przykładowo dla wykorzystywanego w symulacjach ogniwa BP MSX 60 firmy BP Solar [5] mamy:
2 P max ( nom) SC ( T ) OC( T ) = 60W T = 298K G = Sun Wm I V 2 (000 ) = 3.8A = 2.V o ( I I ) / I /( T T ) = (0.065 ± 0.05)% / C SC( T ) SC( T ) SC( T ) 2 2 o ( V V ) /( T T ) = (80 ± 0) mv / C OC( T ) OC ( T ) 2 2 dodatkowo oszacowany współczynnik idealności złącza n =.2, (0) oraz V =.2V () g dla krzemu (Si). (9) Wzorując się na [4] napisano S-Funkcję umożliwiającą modelowanie badanego ogniwa w środowisku Matlab&Simulink. Parametrami wejściowymi są: napięcie na zaciskach ogniwa V, natężenie promieniowania słonecznego G wyrażone w Sunach, temperatura baterii T wyrażona w stopniach Celsjusza. Funkcja zwraca wartość prądu pobieranego z ogniwa. Na rysunkach i 2 przedstawiono kilka charakterystyk ogniwa wygenerowanych w oparciu o jego model matematyczny Charakterystyki pradowo-napieciowe ogniwa G= Sun, T=25 o C G= Sun, T=50 o C I [A] G=0.5 Sun, T=25 o C G=0.5 Sun, T=50 o C V [V] Rys.. Przykładowe charakterystyki prądowo-napięciowe ogniwa fotowoltaicznego.
3 70 60 G= Sun, T=25 o C 50 G= Sun, T=50 o C P [W] G=0.5 Sun, T=25 o C 20 0 G=0.5 Sun, T=50 o C V [V] Rys. 2. Charakterystyki mocy dla zmieniających się warunków zewnętrznych. Z rys.2 wynika jednoznacznie, że optymalny pod względem mocy punkt pracy ogniwa zmienia swoje położenie zarówno przy zmieniającym się oświetleniu jak i zmieniającej się temperaturze złącza. Pojawia się konieczność nadążania za tym punktem. Algorytm śledzenia punktu pracy o maksymalnej mocy Zauważmy, że niezależnie od warunków pogodowych charakterystyka P(V) posiada dokładnie jedno ekstremum. Jest to ekstremum typu maksimum i co najważniejsze jest ono jednocześnie maksimum globalnym. Korzystając z tego faktu można zaproponować bardzo prosty iteracyjny algorytm poruszania się w kierunku optymalnego punktu pracy. Wystarczy poruszać się w kierunku zgodnym z gradientem funkcji, który z uwagi na dyskretną realizację algorytmu przybliżamy ilorazem różnicowym. Dla funkcji o przebiegu jak na rys.2 gwarantuje to zatrzymanie procedury w punkcie maksymalnej mocy pobieranej z ogniwa. Dla dostatecznie małego V mamy P ( IV ) I = = I + V (2) V V V P Stąd dla > 0 należy w następnym kroku zwiększyć napięcie pracy ogniwa (napięcie V wejściowe przekształtnika współpracującego z ogniwem), bądź zmniejszyć prąd pobierany (prąd wejściowy przekształtnika) [patrz charakterystyki malejące na rys. ]. Jeżeli zaś P < 0, to należy zmniejszyć napięcie pracy, bądź zwiększyć prąd pobierany. Pełen V algorytm dla sterowania napięciowego przedstawiono na rysunku 3, a prądowego na rysunku
4 5 wzorowanych na [6-7]. Odpowiadające im schematy układów sterowania zamieszczono odpowiednio na rysunkach 4 i 6. Rys. 3. Diagram blokowy iteracyjnego algorytmu MPPT dla sterowania napięciowego. Rys. 4. Schemat napięciowego układu sterowania
5 Rys. 5. Diagram blokowy iteracyjnego algorytmu MPPT dla sterowania prądowego. Rys. 6. Schemat prądowego układu sterowania
6 Rys. 7. Model symulacyjny MPPT Rys. 8. Realizacja algorytmu MPPT przy użyciu narzędzia Stateflow. Skuteczność opisanej metody zweryfikowano budując model symulacyjny jak na rysunku 7 (rozwinięcie bloku MPPT na rys. 8). Model umożliwia zadawanie zmian natężenia oświetlenia i temperatury złącza oraz obserwację procesu podążania zadanego napięcia baterii za optymalnym punktem pracy. Rysunki 9 i 0 przedstawiają zgodne z oczekiwaniami śledzenie punktu maksymalnej mocy przy użyciu algorytmu z rys. 3.
7 Rys. 9. Śledzenie optymalnego punktu pracy przy zmianach natężenia promieniowania Rys. 0. Śledzenie optymalnego punktu pracy przy zmianach temperatury złącza Symulator neuronowy ogniwa fotowoltaicznego Zauważmy, że konsekwencją uwzględnienia szeregowej rezystancji jest równanie () w postaci, która nie pozwala na dokładne analityczne wyznaczenie prądu pobieranego z ogniwa. Konieczne są iteracyjne metody newtonowskie. Procesy symulacyjne możemy
8 usprawnić budując neuronowy symulator ogniwa. Wykorzystując równania (-8) tworzymy pary uczące ((V,G,T), I). Dla omawianego ogniwa MSX60 przyjęto T = 0:5:75 o C, G=0.:0.: Sun, V=0:0.2:25 V. Otrzymano 2060 par uczących, z których odrzucono pary I<0. Pozostały zbiór 5457 elementów (rys. ) wykorzystano do uczenia 7-neuronowego perceptronu. Posłużono się algorytmem Levenberga-Marquardta wstecznej propagacji błędu. Rys.. Charakterystyki I(V) tworzące zbiór uczący. Rys. 2. Model symulacyjny układu MPPT z neuronowym symulatorem ogniwa słonecznego Rysunek 2 przedstawia model do badania algorytmu MPPT bazujący na neuronowym symulatorze ogniwa słonecznego. Kolejny rysunek 3 porównuje wyniki z układu śledzenia maksimum mocy zrealizowanego w oparciu o symulator neuronowy z przebiegami wzorcowymi otrzymanymi w układzie z rys. 7. Przebiegi są graficznie nierozróżnialne.
9 Rys. 3. Trajektoria P(V) dla neuronowego symulatora ogniwa (z lewej) i wzorcowego modelu ogniwa (z prawej) Wnioski Dzięki bardzo dobrze poznanym właściwościom złącza p-n dysponujemy skutecznymi modelami matematycznymi ogniwa fotowoltaicznego. Możemy modelować charakterystyki źródła rozwiązując każdorazowo zestaw równań (-8), bądź budując symulator neuronowy ogniwa. Istnieją trzy podstawowe sposoby postępowania przy realizacji symulatora neuronowego. Różnią się one pochodzeniem zbioru uczącego. W pierwszym z nich dane uczące pochodzą z modelu matematycznego. Dwa kolejne pokazują przewagę modelowania neuronowego nad opisem matematycznym - polegają na odczytaniu par uczących z charakterystyk załączanych w specyfikacji technicznej baterii lub stworzeniu zbioru odpowiednich danych w procesie badań laboratoryjnych konkretnego ogniwa (pomiarów prądu, napięcia, temperatury i nasłonecznienia). Oba te symulatory uwalniają nas od konieczności znania dokładnego opisu matematycznego modelowanego obiektu. Rosnące zainteresowanie alternatywnymi źródłami energii, w tym energii słonecznej, wymusza szybki postęp w dziedzinie budowy ogniw i układów sterowania poborem mocy. Układy te określane są mianem MPPT (Maximum Power Point Tracking/Tracker). Ich zadaniem jest takie kształtowanie napięcia bądź prądu zadanego baterii słonecznej, aby pobierana ze źródła energia była maksymalna. Przedstawiony w raporcie algorytm MPPT, bazujący na zdeterminowanym kształcie charakterystyki P(V), cechuje prostota w implementacji i prawidłowe funkcjonowanie nawet dla skokowych zmian temperatury i oświetlenia. Ponadto jest on praktycznie całkowicie odporny na zmiany parametrów wewnętrznych ogniwa. Dzięki takiemu sterowaniu możliwa jest optymalna współpraca baterii słonecznej z resztą układy zasilania. Należy jednak mieć na uwadze, że przy nierównomiernym rozkładzie natężenia promieniowania słonecznego na powierzchni ogniwa (częściowe zacienienie ogniwa) mogą pojawiać się maksima lokalne i przedstawiony algorytm nie będzie dawał gwarancji znalezienia maksimum globalnego (patrz np. [8], [9]).
10 Literatura [] M.J. Holley, R. Gottschalg, A.D. Simmons, D.G. Infield, M.J. Kearney: Modelling the performance of a-si PV systems, Loughborough University, Great Britain [2] E.W. Smiley, L. Stamenic, J.D. Jones, M. Stojanovic: Performance modeling of building integrated photovoltaic systems, 6 th European PV Solar Energy Conference, Glasgow 2000 [3] E.W. Smiley, J.D. Jones, L. Stamenic: Low irradiance performance modeling for building integrated photovoltaics, 7 th European PV Solar Energy Conference, Munich 200 [4] G. Walker: Evaluating MPPT converter topologies using a Matlab PV Model, University of Queenland, Australia [5] BP Solar data sheets, [6] Y. Kuo, T. Liang, J. Chen: A high-efficiency single-phase three-wire photovoltaic energy conversion system, IEEE Transactions On Industrial Electronics, February 2003 [7] Y. Kuo, T. Liang, J. Chen: Novel maximum-power-poin-trucking controller for photovoltaic energy conversion system, IEEE Transactions On Industrial Electronics, June 200 [8] Miyatake, M.; Veerachary, M.; Toriumi, F.; Fujii, N.; Ko, H.;, "Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A PSO Approach," Aerospace and Electronic Systems, IEEE Transactions on, vol.47, no., pp , January 20 [9] Kazmi, S.; Goto, H.; Ichinokura, O.; Hai-Jiao Guo;, "An improved and very efficient MPPT controller for PV systems subjected to rapidly varying atmospheric conditions and partial shading," Power Engineering Conference, AUPEC Australasian Universities, vol., no., pp.-6, Sept. 2009
BADANIA MODELOWE OGNIW SŁONECZNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień
Część 1 Wprowadzenie Przegląd funkcji, układów i zagadnień Źródło energii w systemie fotowoltaicznym Ogniwo fotowoltaiczne / słoneczne photovoltaic / solar cell pojedynczy przyrząd półprzewodnikowy U 0,5
IV. Wyznaczenie parametrów ogniwa słonecznego
1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej.
E12. Wyznaczanie parametrów użytkowych fotoogniwa
E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest zapoznanie z podstawami zjawiska konwersji energii świetlnej na elektryczną,
IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
Badanie baterii słonecznych w zależności od natężenia światła
POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła
Modelowanie układów elektroenergetycznych ze źródłami rozproszonymi. 1. Siłownie wiatrowe 2. Generacja PV
Modelowanie układów elektroenergetycznych ze źródłami rozproszonymi 1. Siłownie wiatrowe 2. Generacja PV Generatory z turbinami wiatrowymi maszyna indukcyjna z wirnikiem klatkowym maszyna indukcyjna pierścieniowa
Projektowanie systemów PV. Produkcja modułu fotowoltaicznego (PV)
Projektowanie systemów PV Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej
Produkcja modułu fotowoltaicznego (PV)
Czyste energie Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków
Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 5 Badanie różnych konfiguracji modułów fotowoltaicznych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
Przedsiębiorstwo. Klient. Projekt
Przedsiębiorstwo SIG Energia Ul.Przemyska 24 E 38-500 Sanok Polska Osoba kontaktowa: Adam Mazur Klient Projekt 3D, Instalacja PV podłączona do sieci - Pełne zasilanie Dane klimatyczne Moc generatora PV
INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY 1. Cel i zakres
Sprawozdanie z laboratorium proekologicznych źródeł energii
P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji
EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody II stopnia 1. Wykorzystując rachunek liczb zespolonych wyznacz impedancję
Zaawansowane systemy fotowoltaiczne. Wpływ warunków pracy na efektywność systemów PV
Zaawansowane systemy fotowoltaiczne Wykład 3 Wpływ warunków pracy na efektywność systemów PV dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii
Laboratorium. Przetwarzania energii elektrycznej w fotowoltaice. Modelowanie ogniw fotowoltaicznych przy użyciu oprogramowania PSpice
Laboratorium Przetwarzania energii elektrycznej w fotowoltaice Ćwiczenie 1,2 Modelowanie ogniw fotowoltaicznych przy użyciu oprogramowania PSpice Opracowanie instrukcji: Tomasz Torzewicz na podstawie wer.1.1.0
EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(V) ogniwa słonecznego przed i po oświetleniu światłem widzialnym; prądu zwarcia, napięcia
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
BADANIA EKSPERYMENTALNE HYBRYDOWEGO UKŁADU PV-TEG
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 89 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.89.0034 Dominik MATECKI* BADANIA EKSPERYMENTALNE HYBRYDOWEGO UKŁADU PV-TEG Niniejsza
Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor
Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,
Instalacja fotowoltaiczna o mocy 36,6 kw na dachu oficyny ratusza w Żywcu.
Przedsiębiorstwo VOTRE Projekt Sp. z o.o. Henryka Pobożnego 1/16 Strzelce Opolskie Polska Osoba kontaktowa: Kamil Brudny Telefon: 533-161-381 E-mail: k.brudny@votreprojekt.pl Klient Urząd Miast Żywiec
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
POLITECHNIKA GDAŃSKA. Laboratorium Układów Sterowania z Niekonwencjonalnymi Źródłami Energii
POLITECHNIKA GDAŃSKA Laboratorium Układów Sterowania z Niekonwencjonalnymi Źródłami Energii Badanie wpływu częściowego przesłonięcia na charakterystyki ogniwa fotowoltaicznego Instrukcja do ćwiczenia laboratoryjnego
SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak
Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną ENERGIA SOLARNA Fotowoltaika Do Ziemi dociera promieniowanie słoneczne zbliżone widmowo do promieniowania ciała doskonale czarnego
Konfiguracja modułu fotowoltaicznego
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 8 Konfiguracja modułu fotowoltaicznego Cel ćwiczenia: Zapoznanie studentów z działaniem modułów fotowoltaicznych, oraz różnymi konfiguracjami połączeń tych modułów.
Laboratorium Metrologii
Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną
MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV.
MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV www.oze.utp.edu.pl MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV Prezentacja stanowiska łącznie z mobilnym układem instalacji solarnej z kolektorem
Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych Wstęp teoretyczny.
Panele fotowoltaiczne. Fakty i mity.
Napięcie Panele fotowoltaiczne. Fakty i mity. Do napisanie tego artykułu skłoniły mnie prawdy objawione pojawiające się w różnych miejscach w internecie. Dotyczy to zarówno różnych for internetowych, również
1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza
Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,
ALGORYTM STEROWANIA ROZPROSZONYMI MOCAMI WYTWÓRCZYMI DLA ELEKTROWNI SOLARNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 89 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.89.0033 Michał KRYSTKOWIAK* Mariusz ŚWIDERSKI* ALGORYTM STEROWANIA ROZPROSZONYMI MOCAMI
1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego
1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD
Systemy fotowoltaiczne cz.2
J. TENETA Wykłady "Czyste energie i ochrona środowiska" AGH 2018 1 Czyste energie Wykład 5 Systemy fotowoltaiczne cz.2 dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB
Badanie zależności energii generowanej w panelach fotowoltaicznych od natężenia promieniowania słonecznego
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych fotowoltaicznych od natężenia promieniowania słonecznego Ćwiczenie nr 10 Laboratorium z przedmiotu
Instrukcja do ćwiczenia laboratoryjnego nr 6a
Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami
Wykład V Złącze P-N 1
Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n
ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej
ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne Warszawa, POL (1991-2010) Moc generatora PV 9,57 kwp Powierzchnia
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo
ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego
ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne Warszawa, POL (1991-2010) Moc generatora PV 18,48 kwp Powierzchnia
Laboratorium Układów Sterowania Niekonwencjonalnymi Źródłami Energii
Laboratorium Układów Sterowania Niekonwencjonalnymi Źródłami Energii Materiały pomocnicze do laboratorium BADANIE WPŁYWU CZĘŚCIOWEGO PRZESŁONIĘCIA NA CHARAKTERYSTYKI OGNIWA FOTOWOLTAICZNEGO Opracowali:
Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Ćwiczenie nr 2 Laboratorium z przedmiotu: Odnawialne źródła energii Kod: OM1302
spis urządzeń użytych dnia moduł O-01
Cel ćwiczenia Celem ćwiczenia jest poznanie wybranych reprezentatywnych elementów optoelektronicznych nadajników światła (fotoemiterów), odbiorników światła (fotodetektorów) i transoptorów oraz zapoznanie
Instrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
STABILIZATORY NAPIĘCIA STAŁEGO. 1. Wiadomości wstępne
STABILIZATORY NAPIĘCIA STAŁEGO 1. Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych granicach:
Układ przekształcania energii paneli fotowoltaicznych na potrzeby systemu ładowania baterii elektrochemicznych
FTE PR 2012 III Sympozjum FOTOWOLTAIKA I TRANSPARENTNA ELEKTRONIKA PERSPEKTYWY ROZWOJU Świeradów-Zdrój, 29.03-1.04.2012 Układ przekształcania energii paneli fotowoltaicznych na potrzeby systemu ładowania
Kompleksowe 3 modułowe szkolenie systemy PV Program zajęć
Kompleksowe 3 modułowe szkolenie systemy PV Program zajęć Dzień 1 tematyka zajęć moduł teoretyczny (część pierwsza) 8.00-16.00 Fotowoltaika-definicja korzyści ze stosowania źródeł energii słonecznej, wpływ
2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
MODELOWANIE CHARAKTERYSTYK I-V OGNIW SŁONECZNYCH W ŚRODOWISKU MATLAB/SIMULINK
CZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNAL OF CIVIL ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA, t. XXXI, z. 6 (3/II/4), lipiec-wrzesień 24, s. 23-28 Sławomir GUŁKOWSKI MODELOWANIE
Systemy fotowoltaiczne cz.2
J. TENETA Wykłady "Czyste energie i ochrona środowiska" AGH 2016 1 Czyste energie Wykład 4 Systemy fotowoltaiczne cz.2 dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB
HYBRYDOWY SYSTEM ZASILANIA W ENERGIĘ ELEKTRYCZNĄ DOMKÓW REKREACYJNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrical Engineering 2015 Grzegorz TWARDOSZ* Wojciech TWARDOSZ** HYBRYDOWY SYSTEM ZASILANIA W ENERGIĘ ELEKTRYCZNĄ DOMKÓW REKREACYJNYCH W pracy
EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz
Przedsiębiorstwo. Projekt. Projekt instalacji fotowoltaicznej. R-Bud. Osoba kontaktowa: Anna Romaniuk
Przedsiębiorstwo R-Bud Osoba kontaktowa: Anna Romaniuk Projekt Adres: ul. Reymonta 3 21-500 Biała Podlaska Data wprowadzenia do eksploatacji: 2017-05-17 Opis projektu: 1 3D, Podłączona do sieci instalacja
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE ZJAWISKA REZONANSU W SZEREGOWYM OBWODZIE RLC PRZY POMOCY PROGRAMU MATLAB/SIMULINK Autor: Tomasz Trawiński, Strona /7 . Cel ćwiczenia Celem ćwiczenia jest
Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik
1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej
Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ PODSTAWY TEORETYCZNE
Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ Zrozumienie zasady działania przetwornika cyfrowo-analogowego. Poznanie podstawowych parametrów i działania układu DAC0800. Poznanie sposobu generacji symetrycznego
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA
Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych
STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami
Instrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia
Ćwiczenie WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ Opis stanowiska pomiarowego Stanowisko do analizy współpracy jednakowych ogniw fotowoltaicznych w różnych konfiguracjach
Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE
Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE Cel: Zapoznanie ze składnią języka SPICE, wykorzystanie elementów RCLEFD oraz instrukcji analiz:.dc,.ac,.tran,.tf, korzystanie z bibliotek
ELEKTROTECHNIKA I ELEKTRONIKA
NWERSYTET TECHNOLOGCZNO-PRZYRODNCZY W BYDGOSZCZY WYDZAŁ NŻYNER MECHANCZNEJ NSTYTT EKSPLOATACJ MASZYN TRANSPORT ZAKŁAD STEROWANA ELEKTROTECHNKA ELEKTRONKA ĆWCZENE: E7 BADANE DODY PROSTOWNCZEJ DODY ZENERA
IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Przedsiębiorstwo. Klient. Projekt. Laminer. Wprowadź w Opcje > Dane użytkownika. Laminer
Przedsiębiorstwo Wprowadź w Opcje > Dane użytkownika. Klient Projekt Adres: Data wprowadzenia do eksploatacji: 2017-02-01 Opis projektu: 1 3D, Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne
1 Ćwiczenia wprowadzające
1 W celu prawidłowego wykonania ćwiczeń w tym punkcie należy posiłkować się wiadomościami umieszczonymi w instrukcji punkty 1.1.1. - 1.1.4. oraz 1.2.2. 1.1 Rezystory W tym ćwiczeniu należy odczytać wartość
MODELOWANIE STRUKTURY SYTEMU FOTOWOLTAICZNEGO I SYMULACJA EFEKTÓW ROZPROSZONEGO ZACIENIENIA W ŚRODOWISKU MATLAB & SIMULINK
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrical Engineering 2015 Tomasz JARMUDA* MODELOWANIE STRUKTURY SYTEMU FOTOWOLTAICZNEGO I SYMULACJA EFEKTÓW ROZPROSZONEGO ZACIENIENIA W ŚRODOWISKU
Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE
Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych
Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.
Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost
System fotowoltaiczny Moc znamionowa równa 2 kwp nazwa projektu: Raport techniczny
System fotowoltaiczny Moc znamionowa równa 2 kwp nazwa projektu: Zlokalizowany w woj. podkarpackie Klient - () Raport techniczny Grupa O5 Sp. z o.o. Starzyńskiego 11 - Rzeszów () Data: Rzeszów, 2015-03-08
BADANIE CHARAKTERYSTYK FOTOELEMENTU
Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko
kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II
kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II iody prostownicze i diody Zenera Zadanie Podać schematy zastępcze zlinearyzowane dla diody
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu buck
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Instrukcja do ćwiczenia laboratoryjnego nr 7
Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk
Twój system fotowoltaiczny
Stowarzyszenie Ewangelizacji i Kultury Diecezji Siedleckiej ul. Piłsudskiego 62 08-110 Siedlce Osoba kontaktowa: mgr inż. Grzegorz Twardowski Nr klienta: 04/2019 Tytuł projektu: Mikroinstalacja fotowoltaiczna
Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.
Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne
Szybkie prototypowanie w projektowaniu mechatronicznym
Szybkie prototypowanie w projektowaniu mechatronicznym Systemy wbudowane (Embedded Systems) Systemy wbudowane (ang. Embedded Systems) są to dedykowane architektury komputerowe, które są integralną częścią
Zbiór zadań z elektroniki - obwody prądu stałego.
Zbiór zadań z elektroniki - obwody prądu stałego. Zadanie 1 Na rysunku 1 przedstawiono schemat sterownika dwukolorowej diody LED. Należy obliczyć wartość natężenia prądu płynącego przez diody D 2 i D 3
EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY
ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Sprzęt i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury
CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Przedsiębiorstwo. Klient. Projekt
Przedsiębiorstwo MULTITECHNIKA 44-144 Nieborowice ul. Krywałdzka 1 Polska Osoba kontaktowa: Zbyszek Wierzbowki Telefon: 32 332-47-69 E-mail: info@woltaika.com Klient Państwowa Szkoła Muzyczna w Zabrzu
Ćw. III. Dioda Zenera
Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,
Obwody elektryczne prądu stałego
Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego
Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia
Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów
Przedsiębiorstwo. Projekt. Wyciąg z dokumentacji technicznej dla projektu Instalacja fotowoltaiczna w firmie Leszek Jargiło UNILECH Dzwola 82A UNILECH
Wyciąg z dokumentacji technicznej dla projektu Instalacja fotowoltaiczna w firmie Leszek Jargiło UNILECH Dzwola 82A Przedsiębiorstwo UNILECH Dzwola 82A, 23-304 Dzwola Projekt Adres: Dzwola 82A, 23-304
Rys.2. Schemat działania fotoogniwa.
Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki Alternatywne Źródła Energii Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Opracowanie instrukcji:
Ćwiczenie nr 123: Dioda półprzewodnikowa
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa
MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Michał KRYSTKOWIAK* Dominik MATECKI* MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO
Ćw. 0: Wprowadzenie do programu MultiSIM
Ćw. 0: Wprowadzenie do programu MultiSIM Wstęp Celem ćwiczenia jest zapoznanie się z programem MultiSIM przeznaczonym do analiz i symulacji działania układów elektronicznych. Zaznajamianie się z tym programem
Metoda superpozycji - rozwiązanie obwodu elektrycznego.
Metoda superpozycji - rozwiązanie obwodu elektrycznego. W celu rozwiązania obwodu elektrycznego przedstawionego na rysunku poniżej musimy zapisać dla niego prądowe i napięciowe równania Kirchhoffa. Rozwiązanie
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
Równanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
NOWOCZESNE SYSTEMY FOTOWOLTAICZNE
Jan SMOTER Politechnika Gdańska NOWOCZESNE SYSTEMY FOTOWOLTAICZNE Streszczenie: Celem artykułu jest przedstawienie zagadnienia współpracy nowoczesnych ogniw fotowoltaicznych z siecią elektroenergetyczną