WYKŁADOWCA: dr Adam Czapla
|
|
- Jadwiga Socha
- 7 lat temu
- Przeglądów:
Transkrypt
1 WYKŁADOWCA: dr Adam Czapla KATEDRA ELEKTRONIKI, paw. C-1, p. 311, III p. tel Wykład /2009, zima 1 ĆWICZENIA RACHUNKOWE PROWADZĄ: dr Adam CZAPLA dr Jarosław KANAK dr Edward KUSIOR dr Konstanty MARSZAŁEK mgr Zbigniew SOBKÓW dr Barbara SWATOWSKA Wykład /2009, zima 2 1
2 ZASADY ZALICZANIA PRZEDMIOTU: Obecność i aktywność na zajęciach (wykłady, ćwiczenia, laboratorium) Pozytywna ocena końcowa ( 3.0) z ćwiczeń rachunkowych i laboratorium Egzamin pisemny i ustny po każdym semestrze. Na ocenę końcową przedmiotu wpływają wszystkie oceny Wykład /2009, zima 3 MATERIAŁY DO WYKŁADU: TEKST WYKŁADU PODRĘCZNIKI: 1. D.Halliday, R. Resnick, J.Walker, Podstawy Fizyki, PWN W-wa, tomów (w skrócie HRW) 2. C.Kittel, W.D. Knight, M.A. Ruderman Mechanika, PWN W-wa 1975 Wykład /2009, zima 4 2
3 JAKIE KORZYŚCI PŁYNĄ ZE ZNAJOMOŚCI PRAW FIZYKI? Wykład /2009, zima 5 INTERPRETACJA CODZIENNYCH OBSERWACJI Czy prosta obserwacja zachodu Słońca na plaży może posłużyć do pomiaru wielkości Ziemi? Wykład /2009, zima 6 3
4 Czy prawdą jest, że upadek kota z dużej wysokości jest mniej niebezpieczny niż z małej? Wykład /2009, zima 7 Czy kula metalowa wyprzedzi piórko gdy oba te obiekty spadają swobodnie w próżni? Wykład /2009, zima 8 4
5 Matematyka: język fizyki Inżynieria Biologia Geologia Chemia Astronomia Rzeczywistość fizyczna Abstrakcja Wszechświat Wykład /2009, zima 9 Początki nowożytnej fizyki Zasady matematyczne filozofii naturalnej (1687) Czas absolutny, prawdziwy i matematyczny, sam z siebie i przez swą naturę upływa równomiernie bez związku z czymkolwiek zewnętrznym i inaczej nazywa się trwaniem... Przestrzeń absolutna, przez swą naturę, bez związku z czymkolwiek zewnętrznym, pozostaje zawsze taka sama i nieruchoma... Wykład /2009, zima 10 5
6 Szczególna teoria względności, 1905: czasoprzestrzeń Ogólna teoria względności, 1915: teoria grawitacji Wykład /2009, zima 11 Czym jest fizyka? Fizyka jest podstawową nauką przyrodniczą, zajmującą się badaniem najbardziej fundamentalnych i uniwersalnych właściwości materii i zjawisk w otaczającym nas świecie. Fizyka jest nauką, której celem jest badanie elementarnych składników materii oraz ich wzajemnych oddziaływań elementarnych. Wykład /2009, zima 12 6
7 Elementarne składniki materii Hipoteza o istnieniu atomów Demokryt (IV w. p.n.e.) Podstawowe składniki materii: Powietrze Ogień Ziemia Woda Wykład /2009, zima 13 Układ okresowy pierwiastków Wykład /2009, zima 14 7
8 Atom - podstawowy element materii? Czy możemy oglądać pojedyncze atomy? chmura elektronowa m Tak. AFM (Atomic Force Microscope) jądro (złożone z protonów i neutronów) Wykład /2009, zima 15 Czy proton lub neutron jest cząstką elementarną? wiązka elektronów proton Rozpraszanie nieelastyczne wiązki elektronów na protonach Kwarki? Wykład /2009, zima 16 8
9 Trzy generacje cząstek elementarnych kwarki i leptony (elektron, miuon i taon i ich neutrina) (Fermilab) Wykład /2009, zima 17 Wykład /2009, zima 18 9
10 Wykład /2009, zima 19 Wykład /2009, zima 20 10
11 Wykład /2009, zima 21 Cztery fundamentalne oddziaływania: Oddziaływanie fundamentalne grawitacyjne elektromagnetyczne silne (jądrowe) słabe Natężenie względne 5, , Czas charakterystyczny w sek Wykład /2009, zima 22 11
12 Cząstki elementarne modelu standardowego są punktowe. Niosą one spin, masę, ładunek elektryczny, kolor. Kwarki są uwięzione w hadronach, dwa lub trzy kwarki, które są bezbarwne. Hadrony: protony i neutrony budują jądra Jądra i elektrony są elementami tworzenia atomów. Atomy są elementami tworzenia molekuł. Molekuły tworzą chmury molekularne z których utworzone są układy solarne. Układy solarne połączone są w większe obiekty - galaktyki Wykład /2009, zima 23 CHARAKTERYSTYKA ODDZIAŁYWAŃ Wykład /2009, zima 24 12
13 Oddziaływanie grawitacyjne: Odgrywa decydującą rolę w zjawiskach astronomicznych dużej skali (w makroświecie), tworzy układy związane: planetarne, gromady gwiazd, galaktyki. Jest najsłabsze ze wszystkich oddziaływań lecz długozasięgowe. Jest zawsze przyciągające. Źródłem pola grawitacyjnego jest masa grawitacyjna. Wykład /2009, zima 25 Prawo powszechnego ciążenia (Newtona) opisuje oddziaływanie grawitacyjne pomiędzy dwiema masami m 1 i m 2 umieszczonymi w odległości r siła m m F G r Stała uniwersalna G=(6,6720±0.0041) N m 2 kg -2 Wykład /2009, zima 26 13
14 Oddziaływanie elektromagnetyczne: Odgrywa decydującą rolę w mikroświecie, w zjawiskach, takich jak emisja i absorpcja światła, sprężystość, tarcie, spójność; leży u podstaw procesów chemicznych i biologicznych; jest odpowiedzialne za wiązanie jąder atomowych i elektronów w trwałe układy: atomy, cząsteczki, kryształy. Występuje pomiędzy ładunkami elektrycznymi lub pomiędzy momentami magnetycznymi. Jest stosunkowo silne i długozasięgowe. Wykład /2009, zima 27 Prawo Coulomba opisuje oddziaływanie elektrostatyczne dwóch ładunków punktowych Q 1 i Q 2 znajdujących w odległości r od siebie 1 F 4 o Q Q r siła Przenikalność elektryczna próżni ε o =(8, ± ) C 2 N -1 m -2 Wykład /2009, zima 28 14
15 Zadanie 1-1 Pokaż, że stosunek siły oddziaływania elektrostatycznego do siły oddziaływania grawitacyjnego między dwoma elektronami wynosi około Zadanie 1-2 Rozważmy dwie kulki żelazne o masie 1 g każda, umieszczone w odległości 1 m od siebie. Przypuśćmy, że w obu kulek usuwamy co miliardowy elektron, wobec czego kulki uzyskują pewien ładunek dodatni. Z jaką siłą będą się odpychały kulki? Wykład /2009, zima 29 Oddziaływanie silne (jądrowe): Powoduje wiązanie nukleonów w trwałe układy jądra atomowe. Ma charakter krótkozasięgowy (10-15 m). Leptony (elektron, neutrino) nie podlegają temu oddziaływaniu. Hadrony (proton, neutron), kwarki, gluony uczestniczą w tym wiązaniu. Wykład /2009, zima 30 15
16 Oddziaływanie słabe: Narusza trwałość układów nukleonów. Powoduje rozpad β jąder atomowych i wielu cząstek elementarnych. Prawdopodobnie ma charakter krótkozasięgowy (<10-18 m). Nie tworzy układów związanych. proton Rozpad β neutron elektron neutrino Wykład /2009, zima 31 PODSTAWOWE ODDZIAŁYWANIA- UNIFIKACJA Elektryczność Magnetyzm Światło Rozpad beta Neutrina Protony Neutrony Piony Grawitacja Ziemi Mechanika Nieba 1864 Maxwell Elektromagnetyzm 1971Glashow,Salam,Weinberg Elektrosłabe oddziaływ. Słabe oddziaływania 1965 Feynman,Gell-Mann, Lederman, Schwartz,Steiberg 1935 Yukawa Silne oddziaływania 1973 Gross,Politzer,Wilczek (Nobel 2004) Uniwersalna Grawitacja Czasoprzestrzeń Model Standardowy 1687 (Newton) 1916 (Einstein) 1976 Glashow,Georgi, Guth Ogólna Teoria Względności Wykład /2009, zima 32? 16
17 Teoria a eksperyment w fizyce Wykład /2009, zima 33 POMIAR Wykład /2009, zima 34 17
18 Fizyka opiera się na pomiarach wielkości fizycznych. Każdą wielkość fizyczną mierzymy porównując ją ze wzorcem. Mierzoną wielkość wyrażamy w określonych jednostkach. Jednostka to nazwa miary danej wielkości. Wzorzec zawiera dokładnie jedną (1,0) jednostkę wielkości. Wykład /2009, zima 35 Przykład pomiaru 0 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m Wykład /2009, zima 36 18
19 Międzynarodowy układ jednostek SI W 1971 r., na XIV Konferencji Ogólnej ds. Miar i Wag dokonano wyboru siedmiu podstawowych wielkości fizycznych (nadając im jednostkę), tworząc w ten sposób układ SI (fr. Système Internationale): długość (metr) czas (sekunda) masa (kilogram) natężenie prądu elektrycznego (amper) temperatura termodynamiczna (kelwin) ilość substancji (mol) światłość (kandela) Wykład /2009, zima 37 Zadanie 1-3 Zapoznać się z treścią DODATKU A (podręcznik HRW tom I). Zwrócić szczególną uwagę na definicje jednostek podstawowych układu SI Zapamiętać jednostki i ich symbole a definicje przepisać (nie uczyć się na pamięć) Wykład /2009, zima 38 19
20 Jednostki pochodne Za pomocą jednostek podstawowych definiuje się wiele jednostek pochodnych: niuton (1N), dżul (1J), wat (1W), weber (1Wb), itd. Czy wiesz jakich wielkości fizycznych są to jednostki? Wykład /2009, zima 39 Sprowadzanie jednostek pochodnych do podstawowych Wybór wzoru, np. dla 1N - jednostki siły jest to F = ma przyspieszenie siła masa czyli [F] = [m] [a], gdzie symbol [ ] oznacza jednostkę zatem 1N = 1 kg m/s 2 Wykład /2009, zima 40 20
21 DEFINICJA Jeden niuton 1N jest to siła, jaka nadaje masie 1 kilograma przyspieszenie 1 m/s 2. Wykład /2009, zima 41 Stosując omówiony schemat zdefiniuj następujące jednostki: 1J 1 W Zadanie 1-4 Wykład /2009, zima 42 21
22 10-2 Zapis dużych i małych liczb Czynnik Przedrostek Symbol 10 9 giga G 10 6 mega M 10 3 kilo k centy 10-3 mili m 10-6 mikro μ 10-9 nano n piko p Wykład /2009, zima 43 c Przykłady m = 3, m = 3,56 Gm 0, s = 4, s = 4, s = 4, s = 0, s = 0,492 μs Wykład /2009, zima 44 22
23 Zadanie Zapoznaj się z tabelą przedrostków jednostek układu SI (Tab.1.2, HRW,I) 2. Odpowiedz na pytanie co to jest: 1fs =. 1 THz =. 1 am =. 3. Ile nanometrów ma 1 Gm? Ile EHz ma 1pHz? Wykład /2009, zima 45 Zamiana jednostek Mnożymy wynik pomiaru przez współczynnik przeliczeniowy, czyli równy jedności stosunek wielkości wyrażonej w różnych jednostkach, np. 1 min 60 s 60s 1 1 1min Wykład /2009, zima 46 23
24 Przykłady 1. Zamienić 3 min na sekundy 60 s 1 min 3 min = (3 min) (1) = (3 min) = 180 s Wykład /2009, zima 47 Zadanie 1-6 Jednostką energii w układzie SI jest dżul [J]. W fizyce jądrowej oraz w fizyce ciała stałego korzysta się z jednostki elektronowolt (ev) gdzie 1 ev odpowiada energii uzyskanej przez elektron (jego ładunek w układzie SI wynosi 1,6*10-19 C) przebywający różnicę potencjału 1 volta. Zatem 1 (ev) = 1,6x (J) Proszę określić w dżulach energię odpowiadającą 2,5 ev (energia fotonów z zakresu widzialnego światła) oraz energię odpowiadającą 200 MeV (energia wyzwalana przy rozpadzie jądra uranu). Wykład /2009, zima 48 24
25 Rząd wielkości Rzędem wielkości nazywamy wykładnik potęgi liczby 10, gdy daną wielkość wyrażamy w ten sposób, że przed potęgą stoi cyfra z przedziału od 1 do 9. Przykład: A=2, B=7, Rząd: 4 Najbliższy rząd wielkości: 4 dla A i 5 dla B Wykład /2009, zima 49 Zadanie 1.6 c.d. Energię fotonu określa jego długość fali poprzez relację: E=h. c/ gdzie h jest stałą Plancka równą 6,626x10-34 (J. s), c prędkością światła równą 2,997x10 8 (m/s), natomiast długością fali dla tego fotonu. Proszę określić wartość długości fali w mikrometrach oraz rząd wielkości dla fotonów o energiach z zadania 1.6. Jaką ilość liczb znaczących przypisać można wyliczonej długości fali? Wykład /2009, zima 50 25
26 Zadanie 1-7 Największy na świecie kłębek sznurka ma promień około 2 m. Ile wynosi co do najbliższego rzędu wielkości całkowita długość sznurka w tym kłębku? Wykład /2009, zima 51 Cyfry znaczące i cyfry po przecinku Zaokrąglając liczbę 11,3516 do trzech cyfr znaczących otrzymujemy: 11,4 Liczby 3,15 i 3, mają ilość cyfr znaczących tę samą Wykład /2009, zima 52 26
27 Czym różnią się liczby? 35,6 3,56 0,00356 Mają tę samą liczbę cyfr znaczących lecz różnią się liczbą cyfr po przecinku Wykład /2009, zima 53 TEST 1 1. Jedna nanosekunda to: A) 10 9 s B) 10-9 s C) s D )10-10 s E) s 2. Jeden gram jest to: A) 10-6 kg B) 10-3 kg C) 1 kg D )10 3 kg E) 10 6 kg 3. (5.0 x 10 4 ) x (3.0 x 10-6 ) = A) 1.5 x 10-3 B) 1.5 x 10-1 C) 1.5 x 10 1 D ) 1.5 x 10 3 E) 1.5 x 10 5 Wykład /2009, zima 54 27
28 TEST 1P 4. (5.0 x 10 5 ) + (3.0 x 10 6 ) = A) 8.0 x 10 5 B) 8.0 x 10 6 C) 5.3 x 10 5 D ) 3.5 x 10 5 E) 3.5 x Liczba cyfr znaczących w liczbie wynosi: A) 2 B) 3 C) 4 D ) 5 E) 6 6. Walec o promieniu podstawy 2.3 cm i wysokości 1.4 cm ma całkowitą powierzchnię równą: A) 1.7 x 10-3 m 2 B) 3.2 x 10-3 m 2 C) 2.0 x 10-3 m 3 D ) 5.3 x 10-3 m 2 E) 7.4 x 10-3 m 2 Wykład /2009, zima 55 PODSUMOWANIE: 1.Fizyka to wielkie teorie ale nie tylko. 2.Fizyka opiera się na pomiarach. 3.Wynik pomiaru podajemy jako rozsądną liczbę (z odpowiednią dokładnością) wraz z jednostką. Wykład /2009, zima 56 28
FIZYKA. Wstęp cz. 1. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wstęp cz. 1 FIZYKA Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski Zasady zaliczenia przedmiotu Obecność i aktywność na zajęciach
WYKŁADOWCA: prof. dr hab. inż. Katarzyna ZAKRZEWSKA,
WYKŁADOWCA: prof. dr hab. inż. Katarzyna ZAKRZEWSKA, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2015/2016, zima 1 ZASADY ZALICZANIA PRZEDMIOTU: Obecność iaktywność na zajęciach
Czym jest fizyka? Fizyka jest nauką, której celem jest badanie elementarnych składników materii oraz ich wzajemnych oddziaływań elementarnych.
Czym jest fizyka? Fizyka jest podstawową nauką przyrodniczą, zajmującą się badaniem najbardziej fundamentalnych i uniwersalnych właściwości materii i zjawisk w otaczającym nas świecie. Fizyka jest nauką,
FIZYKA WSTĘP KATEDRA ELEKTRONIKI, PAW. C-1, POK.321 DR INŻ. ZBIGNIEW SZKLARSKI.
WSTĘP FIZYKA DR INŻ. ZBIGNIEW SZKLARSKI KATEDRA ELEKTRONIKI, PAW. C-1, POK.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski ZASADY ZALICZENIA PRZEDMIOTU OBECNOŚĆ I AKTYWNOŚĆ NA ZAJĘCIACH (WYKŁADY,
FIZYKA. Wstęp. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
FIZYKA Wstęp Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski 24.02.2019 Wydział Informatyki, Elektroniki i Telekomunikacji - Teleinformatyka
FIZYKA. Wstęp. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok.321.
Wstęp FIZYKA Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasady zaliczenia przedmiotu Obecność i aktywność na zajęciach (wykłady,
WYKŁADOWCA: prof. dr hab. inż. Katarzyna ZAKRZEWSKA,
WYKŁADOWCA: prof. dr hab. inż. Katarzyna ZAKRZEWSKA, Katedra Elektroniki, C-1, p.306 a tel. AGH. 12 617 29 00, kom. 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2017/2018, zima 1 ZASADY ZALICZANIA
I. Przedmiot i metodologia fizyki
I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
Fizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria
Fizyka dla inżynierów I, II Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Wymagania wstępne w zakresie przedmiotu: - Ma wiedzę z zakresu fizyki oraz chemii na poziomie programu
1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Przedmiot i metodologia fizyki
Przedmiot i metodologia fizyki Świat zjawisk fizycznych Oddziaływania fundamentalne i cząstki elementarne Wielkości fizyczne Układy jednostek Modele matematyczne w fizyce 10 30 Świat zjawisk fizycznych
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Redefinicja jednostek układu SI
CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015
Fizyka w. 02 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Wektory ujęcie analityczne Definicja Wektor = uporządkowana trójka liczb (współrzędnych kartezjańskich) a = a x a y a z długość wektora: a = a 2 x +
Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika.
Sprawy organizacyjne Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. marzan@mech.pw.edu.pl p. 329, Mechatronika http://adam.mech.pw.edu.pl/~marzan/ http://www.if.pw.edu.pl/~wrobel Suma punktów: 38 2 sprawdziany
Fizyka wykład dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechniki Śląskiej
Fizyka wykład dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechniki Śląskiej Jacek Pawlyta Zakład Zastosowań Radioizotopów Instytut Fizyki, Politechnika Śląska,
Fizyka I. Zaliczenie wykładu. Termin I egzamin podstawowy, testowy 27 I 2010 r., sale 322 i 314 A1
Fizyka I Wydział Inżynierii Środowiska, kierunek Ochrona Środowiska, rok 1 Rok. akad. 2009/10, semestr zimowy, FZP1055W/C Maciej Mulak, dr inż. pok. 320 bud. A1 http://www.if.pwr.wroc.pl/~mmulak Maciej.Mulak@pwr.wroc.pl
Fizyka i wielkości fizyczne
Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda
Fizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 3 Podstawowe wiadomości z fizyki Kalisz Dr inż. Janusz Dębiński 1 Jednostki i układy jednostek Jednostką miary wielkości fizycznej nazywamy wybraną w sposób
Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.
1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne
Fizyka (Biotechnologia)
Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,
Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński
W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Gimli Glider Boeing 767-233 lot: Air Canada
Miernictwo elektroniczne
Miernictwo elektroniczne Policz to, co można policzyć, zmierz to co można zmierzyć, a to co jest niemierzalne, uczyń mierzalnym Galileo Galilei Dr inż. Zbigniew Świerczyński p. 112A bud. E-1 Wstęp Pomiar
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM
Anna Kierzkowska nauczyciel fizyki i chemii w Gimnazjum Nr 2 w Starachowicach KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Temat lekcji: Pomiary wielkości fizycznych. Międzynarodowy Układ Jednostek Miar
Wybrane Dzialy Fizyki
Wybrane Dzialy Fizyki (2) Elementy fizyki środowiskowej Energia - podstawowy element rozwoju społeczeństwa Podstawowe poj ecia Formy energii Współczesne źródła energii Środowisko zanieczyszczenia i jego
Wszechświat cząstek elementarnych WYKŁAD 5
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:
Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1
Wykład z mechaniki. Prof.. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu TESTOWEGO
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Wykład 3 Miary i jednostki
Wykład 3 Miary i jednostki Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Od klasycznej definicji metra do systemu SI W 1791 roku Francuskie
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
FIZYKA IV etap edukacyjny zakres podstawowy
FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie
Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać
Analiza wymiarowa i równania różnicowe
Część 1: i równania różnicowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Plan Część 1: 1 Część 1: 2 Część 1: Układ SI (Système International d Unités) Siedem jednostek
Konspekt lekcji z fizyki w klasie I LO
mgr Sylwia Rybarczyk esryba@poczta.onet.pl nauczyciel fizyki i matematyki XLIV LO w Łodzi Konspekt lekcji z fizyki w klasie I LO TEMAT: Zjawisko fizyczne, wielkość fizyczna, jednostki - utrwalenie zdobytych
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Mechanika. Fizyka I (B+C) Wykład I: dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Fizyka I (B+C) Mechanika Wykład I: Informacje ogólne Wprowadzenie Co to jest fizyka? Czym zajmuje się fizyka? dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Wyk³ady z Fizyki. J¹dra. Zbigniew Osiak
Wyk³ady z Fizyki J¹dra 12 Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY SZKOŁY BENEDYKTA 1. Cele kształcenia i wychowania Ogólne cele kształcenia zapisane w podstawie programowej dla zakresu podstawowego
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
I ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 1
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 1 7.X.2009 Informacje ogólne o wykładzie Fizyka cząstek elementarnych Odkrycia Skąd ten tytuł wykładu? Wytłumaczenie dlaczego Wszechświat wygląda
Matura z fizyki i astronomii 2012
Matura z fizyki i astronomii 2012 Zadania przygotowawcze do matury na poziomie podstawowym 7 maja 2012 Arkusz A1 Czas rozwiązywania: 120 minut Liczba punktów do uzyskania: 50 Zadanie 1 (1 pkt) Dodatni
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe
Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Jak się skutecznie (na)uczyć fizyki. Fizyka 1/F1. Jak się skutecznie (na)uczyć fizyki. Źródła i zasoby. Paweł Machnikowski. 12 godzin tygodniowo!
Fizyka 1/F1 Paweł Machnikowski Katedra Fizyki Teoretycznej WPPT Jak się skutecznie (na)uczyć fizyki Wykład notatki Ćwiczenia Konsultacje Praca własna Pawel.Machnikowski@pwr.edu.pl www.if.pwr.wroc.pl/~machnik
Fizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015
Fizyka w. 03 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Jednostki miar SI Jednostki pochodne wielkość nazwa oznaczenie definicja czestotliwość herc Hz 1 Hz = 1 s 1 siła niuton N 1 N = 1 kgm 2 s 2 ciśnienie
Podstawy fizyki wykład 5
Podstawy fizyki wykład 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN,
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Energetyka w Środowisku Naturalnym
Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 12 17/24 stycznia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Podstawy fizyki sezon 1
Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2017/18 Moduł
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Fizyka 1/F1. Paweł Machnikowski. Katedra Fizyki Teoretycznej WPPT. Dydaktyka Fizyka 1
Fizyka 1/F1 Paweł Machnikowski Katedra Fizyki Teoretycznej WPPT Pawel.Machnikowski@pwr.edu.pl www.if.pwr.wroc.pl/~machnik Dydaktyka Fizyka 1 1 Jak się skutecznie (na)uczyć fizyki Wykład notatki Ćwiczenia
Odziaływania fundamentalne
Odziaływania fundamentalne silne elektromagn. słabe grawitacja Odziaływanie silne krótkozasięgowe (10-15 jadro atomowe), wymiana cięŝkich cząstek (gluony) Yukawa Odziaływania elektromagnetyczne atomy cząsteczki
Mariusz P. Dąbrowski (IF US)
NATURALNY REAKTOR JĄDROWY OKLO W AFRYCE A HISTORIA WSZECHŚWIATA Mariusz P. Dąbrowski (IF US) http://www.ptf.ps.pl Szczecińska Grupa Kosmologiczna http://cosmo.fiz.univ.szczecin.pl Ludzie sądzą, że wiele
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład I Budowa materii Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 22 lutego 2017 Wykład I Budowa materii Promieniowanie jonizujące 1 / 30 Uwagi wstępne 15 h wykładu + 15 h
k e = 2, Nm 2 JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE.
JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE. Pokazano na czym polega jedność pola elektrycznego, pola magnetycznego i pola grawitacyjnego. Po raz pierwszy w historii fizyki obiektywnie porównano ze sobą
Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania
Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)
Materia i jej powstanie Wykłady z chemii Jan Drzymała
Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań
Fizyka 2 Podstawy fizyki
Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.
DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka
Fizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów
Grzegorz Wrochna Narodowe Centrum Badań Jądrowych Z czego składa się Wszechświat?
Narodowe Centrum Badań Jądrowych www.ncbj.gov.pl Z czego składa się Wszechświat? 1 Budowa materii ~ cała otaczająca nas materia składa się z atomów pierwiastek chemiczny = = zbiór jednakowych atomów Znamy
Energetyka w Środowisku Naturalnym
Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 1-6.X.2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
( Kwantowe ) zasady nieoznaczoności Heisenberga. a rozmiar ( grawitacyjnej ) czarnej dziury; Wstęp do teorii strun
( Kwantowe ) zasady nieoznaczoności Heisenberga a rozmiar ( grawitacyjnej ) czarnej dziury; Wstęp do teorii strun kwantowej mechaniki relatywistycznej Wg http://www.wiw.pl/delta/struny.asp Delta 06/1989
POLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach
Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem
Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012
Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Teoria grawitacji. Grzegorz Hoppe (PhD)
Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
cz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
Podstawy fizyki sezon 1
Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2013/14 Moduł
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Kto nie zda egzaminu (nie uzyska oceny dostatecznej), będzie zdawał testowy egzamin poprawkowy Reinhard Kulessa 1
Wykład z mechaniki. Prof. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu testowego
Wszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad.. 2010/11 http://www www.fuw.edu.pl/~
Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych
Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa.
NAUCZYCIEL FIZYKI mgr Beata Wasiak KARTY INFORMACYJNE Z FIZYKI DLA POSZCZEGÓLNYCH KLAS GIMNAZJUM KLASA I semestr I DZIAŁ I: KINEMATYKA 1. Pomiary w fizyce. Umiejętność dokonywania pomiarów: długości, masy,
Autorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.
Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie