OSUWISKA. 1.! Wstęp. Piotr Jermołowicz Inżynieria Środowiska
|
|
- Bożena Bogna Urbaniak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Piotr Jermołowicz Inżynieria Środowiska OSUWISKA 1.! Wstęp. Problem właściwego zabezpieczenia stoków, skarp nasypów i wykopów nabiera szczególnego znaczenia w przypadku Polski południowo wschodniej, w utworach fliszowych. Niejednorodność tych ośrodków gruntowo skalnych, zaburzenia glacitektoniczne, zmienny udział facji litologicznych, olbrzymi rozrzut parametrów fizyko mechanicznych poszczególnych warstw w podłożu sprawia, że problemy stateczności zboczy i skarp zaczynają być interdyscyplinarne oraz wykraczać poza ogólnie przyjęte schematy. Z informacji zbieranych przez PIG wynika, że wielka powódź w 1997 r. uruchomiła osuwisk w Karpatach. W 2005 r. liczbę osuwisk na obszarze 6 % powierzchni kraju ( rejon polskich Karpat ) oceniano nadal na ponad , tj. ponad 95 % wszystkich zanotowanych i udokumentowanych tego typu zjawisk. Rozwojowi osuwisk w tym rejonie sprzyja budowa geologiczna podłoża, górska dynamika rzeźby, a także duża siła erozyjna rzek, katastrofalne opady deszczu czy wreszcie działalność ludzka w nieprzemyślany sposób wprowadzająca dodatkowe zmiany w równowadze stoków. Osuwiska podobnie jak i powodzie zostały uznane za katastrofy naturalne. Od pamiętnego 1997 r. mieliśmy w Polsce kilka mokrych lat ( 2000, 2001 i 2002 ) i ostatni 2010 r. Po bardzo śnieżnej zimie na namoknięte po wiosennych roztopach stoki spadło w maju! w kilka dni tyle wody, ile zwykle spadało w ciągu 6 miesięcy. W wyniku czego zbocza ruszyły na niespotykaną dotychczas skalę. Uwzględniając, że pow. Karpat ma ok. 19 tys. km 2, to wskaźnik osuwiskowości wynosi 1 osuwisko na 1 km 2. W Polsce, poza Karpatami osuwiska występują najczęściej na stromym brzegu morza, w środkowym biegu Wisły, w okolicach Noteci i Warty, w rejonie kieleckim oraz pomorskim i mazurskim.
2 Rys. 1. Rozmieszczenie obszarów zagrożonych ruchami masowymi ziemi w Polsce. Wg. PIG. 2.! Osuwiska i zsuwy podstawowe określenia. Osuwiskiem nazywamy nagłe przemieszczenie się mas ziemnych, w tym mas skalnych podłoża i powierzchniowej zwietrzeliny spowodowane zjawiskami zachodzącymi w przyrodzie i okolicy, np.:! wzrostem wilgotności gruntów podłoża spowodowanym długotrałymi i intensywnymi opadami lub roztopami,! budową geologiczną,! działalnością człowieka ( podkopanie stoku lub jego znaczne obciążenie poprzez zabudowę),! podcięcie stoku przez erozję, np. w dolinie rzecznej lub w zakolach,! wibracje związane z robotami ziemnymi, ruchem ciężkich pojazdów, eksplozjami,! trzęsienia ziemi. Jest to rodzaj ruchów masowych, polegający na przesuwaniu się materiału wzdłuż powierzchni poślizgu, połączone często z obrotem. Procesy te zachodzą pod wpływem siły ciężkości. Osuwiska są częste na obszarach, gdzie warstwy skał przepuszczalnych i nieprzepuszczalnych występują naprzemiennie. W literaturze geologicznej, geomorfologicznej i geotechnicznej istnieją liczne, różnorodne opisy i klasyfikacje dotyczące grawitacyjnego przemieszczania skał i gruntów w dół zbocza. Stan ten wynika z wieloletniego okresu analiz i badań tych zjawisk. Współcześnie używana terminologia jest często niejednoznaczna i to nie tylko w naszej ale i anglojęzycznej literaturze. Pojęcia landslide oraz mass movement używane są często zamiennie. Podobne spostrzeżenia można poczynić także w odniesieniu do naszej literatury. Niektóre terminy jak np. obsuwisko stały się archaizmami i wyszły z użycia, ale określenie usuwisko widoczne jest jeszcze na starszych znakach drogowych.
3 Osuwisko jako wyrażenie dominuje obecnie w literaturze tematu, ale zakres znaczeniowy jest bardzo szeroki. Dotyczy zarówno procesu osuwania, jak i formy terenu powstałego w wyniku tego procesu. Tab. 1. Podział ruchów masowych ziemi. [33] Pomimo, że przemieszczanie się utworów skalnych i gruntowych w dół stoku może zachodzić przez spełzywanie, spływanie, staczanie się, obrywanie czy zsuwanie, to i tak zjawiska te określa się kolokwialnie jako osuwisko. W takim ujęciu osuwisko nie będzie skutkiem procesów osuwania, lecz częścią ruchów masowych. Według wielu autorów zajmujących się tą tematyką jest to daleko posunięte uproszczenie. Rozważając różne przyczyny przemieszczania utworów, ich charakter oraz skutki należy stwierdzić, że powstające w wyniku takich oddziaływań formy jak i ich przestrzenny zasięg są zróżnicowane. Te aspekty skłaniają do używania terminu ruchy masowe w odniesieniu do procesów zachodzących na stokach, a termin osuwisko do formy powstałej w wyniku zsunięcia się materiału po stoku. Rys.2. Schemat osuwiska (wg PIG ).
4 Główne elementy osuwiska to nisza osuwiskowa, zagłębienie, w którym osunęła się ziemia, oraz jęzor osuwiskowy, miejsce, gdzie został przemieszczony ten materiał skalny, koluwium, powierzchnia poślizgu (oderwania), taras osuwiskowy i szczelina osuwiskowa. Zamieszczona tablica na str.3 pozwala na pogrupowanie ruchów masowych w kilku zasadniczych kategoriach. Obrywanie jest to oderwanie się skały lub gruntu i swobodne przemieszczenie zgodnie ze spadkiem terenu. Spływanie to ruch ciągły, w którym przemieszczający się materiał porusza się w dół po płaszczyźnie podobnie jak ciecz. Osuwanie jest to proces przemieszczania się materiału z częściowo pierwotnym uporządkowaniem i spójności, gdy pozostaje w kontakcie z podłożem, po którym przesuwa się w dół zgodnie ze spadkiem wzdłuż jednej lub kilku powierzchni. Prędkości mierzalne poszczególnych rodzajów ruchu zmieniają się w bardzo szerokim zakresie. Ruch może być niezauważalny ( pełznięcie ), ale może być także gwałtowny rzędu kilku km/ godz. Ruchy masowe przedstawione w tablicy nr 1 uwzględniają również rodzaj materiału przemieszczającego się w dół, przy czym wielu autorów wskazuje na istotę procesu rozpoczęcia ruchu przemieszczającego i uzależniają od tego czy przemieszczeniu poddana została skała lita czy też utwory luźne ( rumosz ). I tak spływy gruzowe dotyczą przeważnie głazów i rumoszu, w spływach ziemnych dominującą frakcją są piaski, pyły i iły, a przy spływach błotnych mamy do czynienia z mieszaniną wody, iłu i pyłu. Z tych podstawowych opisów i charakterystyki ruchów masowych ( rodzaj materiału, typ i prędkość ruchu ) można wywnioskować, że ich występowanie uzależnione jest od budowy geologicznej, rzeźby terenu oraz warunków klimatycznych. I tak obrywy skalne występują w odsłoniętych ścianach już przy nachyleniu 50 0, spływy rumoszu przy widocznym nagromadzeniu produktów wietrzenia skał przy dużym nachyleniu stoków, a pozostałe typy praktycznie na każdym nachylonym stoku w granicach , najczęściej jednak przy kącie zbocza Często o płynięciu mas ziemnych decyduje nie nachylenie samego zbocza, lecz podłoża na którym leżą grunty łatwo ulegające upłynnieniu lub też układ zwierciadła wody gruntowej. Objętość pakietów gruntu ulegających ruchowi może wahać się w bardzo szerokim zakresie, od drobnych zerw zboczowych, aż do olbrzymich spływów lub zsuwów niekiedy w mld m 3. W Polsce największe osuwiska, to oczywiście w Karpatach : - Dusatyn 10 mln m 3, - Szymbark 3,5 mln m 3. Utrata stateczności skarp i zboczy, będąca przyczyną osuwania się mas ziemnych, następuje w wyniku przekroczenia wytrzymałości gruntu na ścinanie wzdłuż dowolnej powierzchni poślizgu. Zasadnicze siły powodujące osuwanie się zboczy i skarp leżą po stronie :! sił grawitacyjnych pochodzących od ciężaru gruntu i ewentualnej zabudowy,! sił hydrodynamicznych wywołanych przepływem wody przez grunt, podniesieniem się zwierciadła wody gruntowej i nadmiernym zawilgoceniem zbocza. Przyczyny powstawania osuwisk :! układ warstw gruntów równoległy do nachylenia zbocza,! rozmycie lub podkopanie zbocza,! niekontrolowane dociążenie naziomu lub stoku,
5 ! nawodnienie naziomu przy braku drenaży opaskowych,! wypór wody i ciśnienie spływowe w zboczu,! napór wody od dołu na górne warstwy gruntu z reguły mało przepuszczalne powodujące zmniejszenie sił oporu na ścinanie,! nasiąknięcie gruntu na skutek opadów atmosferycznych co powoduje pęcznienie gruntu a tym samym zmniejszenie wytrzymałości na ścinanie,! zniszczenie struktury gruntu poprzez rozluźnienie,! istnienie naturalnych potencjalnych powierzchni poślizgu np. w iłach,! drgania wywołane np. ruchem drogowym, robotami ziemnymi, wybuchami,! sufozja tj. wymywanie z masy gruntu drobniejszych ziaren lub cząstek przez infiltrującą wodę powodujące powstawanie kawern i w następstwie ruch gruntów,! przebicie hydrauliczne z reguły występujące u podstawy skarp lub zboczy spowodowane wypływem wody gruntowej powyżej podstawy zboczy,! cykliczność przemarzania i odmarzania gruntu w rejonie istnienia krzywych depresji wody gruntowej co powoduje spadek wytrzymałości na ścinanie,! wypieranie gruntu po nadmiernym obciążeniu terenu,! niewłaściwe zaprojektowanie nachylenia skarp wykopu lub nasypu. Należy pamiętać, że równocześnie może wystąpić więcej niż jedna z wyżej wymienionych przyczyn. 3.! Typy osuwisk. Osuwiska można podzielić na następujące cztery typy: konsekwentne (zsuwy), insektewne, asekwentne i sufozyjne. Są one przedstawione na rysunkach 3-6. Na rysunkach przyjęto następujące oznaczenia: 1 iły, 2 gliny, 3 piaski, 4 obsunięta masa (koluwium), 5 łupki, 6 piaskowce. Rys.3. Osuwisko konsekwentne. [11] Rys. 4. Osuwisko insekwentne. [11] Rys. 5. Osuwisko asekwentne. [11] Rys.6. Osuwisko sufozyjne. [11]
6 Osuwiska konsekwentne powstają ze ścięcia górotworu wzdłuż powierzchni biegnącej zgodnie z powierzchnią:! warstwowania, wówczas nazywamy je konsekwentno strukturalnymi,! spękań i szczelin ( osuwiska konsekwentno szczelinowe),! oddzielającą strefę zwietrzeliny od podłoża ( konsekwentno zwietrzelinowe ),! starych osuwisk. Osuwiska konsekwentne (rys.3) są najczęściej spotykane w rejonach górskich o budowie fliszowej; są bardzo charakterystyczne dla fliszu karpackiego. Występują także w rejonach górskich o rozwiniętym profilu zwietrzelinowym oraz w utworach zaburzonych glacitektonicznie. Osuwiska insekwentne ( rys.4) mają miejsce wówczas, gdy płaszczyzna poślizgu rozwinęła się prostopadle lub ukośnie do istniejących powierzchni strukturalnych wśród utworów warstwowych. Powierzchnia poślizgu tych osuwisk ma zazwyczaj bardzo złożony kształt. Jeżeli powierzchnia poślizgu przebiega w gruncie jednorodnym i nieuwarstwionym ( rys.5), to takie osuwiska nazywamy asekwentnymi. Występują one najczęściej w niezaburzonych iłach i glinach. Osuwiska sufozyjne (rys. 6) występują wskutek wypłukiwania cząstek gruntu przez wypływające u podstawy stoku lub skarpy wody gruntowe. Powstają głównie w gruntach mało spoistych, takich jak piaski pylaste i pyły piaszczyste. Ze względu na aktywność, osuwiska dzieli się na :! aktywne (kolejne przemieszczenia gruntu rejestrowane są w skali jednego roku),! mało aktywne (uaktywniają się co kilka lat ),! nieaktywne ( formy zamarłe lub ustabilizowane sztucznie). Ze względu na wielkość osuwiska dzieli się na :! duże (powierzchnia powyżej 3000 m 2 ),! średnie (powierzchnia m 2 ),! małe (powierzchnia mniejsza od 1000 m 2 ). 4.! Działanie wody gruntowej. Ze względu na to, że woda gruntowa jest jedną z głównych przyczyn powstawania osuwisk w zboczach wymaga tym samym szczególnej uwagi, dokładnego rozpoznania i uwzględnienia w analizach stateczności. Wyznaczenie ustalonego przepływu wody w zboczach to zadanie dla hydrogeologów z dużym doświadczeniem. Jak pokazuje dotychczasowa praktyka, ilość awarii i katastrof jest wynikiem braku wiedzy w tym zakresie i ograniczania się tylko do własnych umiejętności i doświadczenia. Woda gruntowa wpływa na układ sił i naprężeń w zboczu, powodując w warunkach ustalonego przepływu dodatkowe obciążenie gruntu siłami hydrodynamicznymi lub zmniejszając siły oporu ścinania (jako wynik wzrostu ciśnienia porowego) w strefie potencjalnego poślizgu. Z drugiej strony woda gruntowa zwiększając w przypadku braku lub nieprawidłowego odwodnienia lub zmniejszając w procesie konsolidacji wilgotność gruntu w zboczu, oddziałuje w istotny sposób na wytrzymałość gruntu decydującą o stateczności zbocza.
7 Można rozważać trzy zasadnicze przypadki działania wody gruntowej w zboczu, a mianowicie: 1.! zbocze podtopione wodą, 2.! ustalony przepływ wody w zboczu, 3.! ciśnienie wody w porach, wywołane szybkim wykonywaniem nasypu lub wykopu w gruncie spoistym. Przy częściowym lub całkowitym podtopieniu zbocza wodą następuje zmiana układu sił, które działają na masyw potencjalnego osuwiska. Rys.7. Siły działające na masyw osuwiska w zboczu podtopionym wodą.[35] Dochodzi dodatkowo parcie wody U i gęstość objętościowa gruntu z uwzględnieniem wyporu wody. Zmieniające się układy sił naruszają normalny porządek i zmniejszają ogólną stateczność w zależności oczywiście od tempa stabilizacji zwierciadła wody wewnątrz masywu gruntowego. Tak więc moment sił względem dowolnego punktu obrotu O naruszających równowagę zbocza będziemy liczyć według równania: M 0 = W 1 x 1 + W 2 x 2 gdzie: W 2 = W 2 U Zjawisko ustalonego przepływu wody w gruncie występuje w wielu obiektach sztucznych, którymi są zapory ziemne o różnym przeznaczeniu, jak i w zboczach naturalnych. Ruch wody w gruncie powoduje powstanie sił hydrodynamicznych, działających zgodnie z kierunkiem przepływu wody, o wartości określonej wzorem: J = V i Ɣ w gdzie: V objętość gruntu przez który przepływa woda, i spadek hydrauliczny, Ɣ w - ciężar objętościowy wody Siły hydrodynamiczne są silami wewnętrznymi, dążącymi do przesunięcia szkieletu gruntowego. W celu poprawnego określenia sił hydrodynamicznych konieczne jest wyznaczenie hydrodynamicznej siatki filtracji. Siatka hydrodynamiczna umożliwia określenie sił hydrodynamicznych w analizowanym zboczu.
8 Rys.8. Hydrodynamiczna siatka filtracji w zboczu.[35] W zależności od zastosowanej metody sprawdzania stateczności zbocza oblicza się wypadkową sił hydrodynamicznych, działających na masyw osuwiska, lub też siły działające na poszczególne elementy tego masywu (np. w metodzie pasków). Analizując stateczność zbocza metodą stanu granicznego uwzględnia się dodatkowe siły masowe, wywołane przepływem wody w gruncie. Występowanie wody w zboczach, zarówno w przypadku podtopienia wodą jak i w przypadku przepływu wody przez grunt, jest związane z istnieniem ciśnienia wody i powietrza, wypełniającego pory gruntu, które jest nazywane ciśnieniem porowym. Ciśnienie to zależy od poziomu zwierciadła wody gruntowej, którą w tym przypadku można potraktować jako obciążenie wewnętrzne. Analizując różne przypadki działania wody gruntowej, można zauważyć że rozkład ciśnienia porowego w zboczu nie ma praktycznie wpływu na siły naruszające równowagę zbocza. Siła masowa będzie zależeć tylko od gęstości objętościowej gruntu o różnym stopniu nasycenia wodą, tworzącego masyw potencjalnego osuwiska, oraz od położenia swobodnego zwierciadła wody gruntowej lub od sił hydrodynamicznych. Ciśnienie porowe będzie miało natomiast zasadniczy wpływ na siły oporu ścinania działające wzdłuż założonej powierzchni poślizgu i gwarantujące zachowanie stateczności zbocza. Stąd wniosek, że w celu prawidłowej oceny stateczności zbocza konieczne jest określenie rozkładu wartości ciśnienia porowego, przynajmniej w strefie potencjalnego poślizgu. W zboczu podtopionym wodą ciśnienie porowe u będzie wprost proporcjonalne do wysokości słupa wody h w, działającego na analizowany punkt lub odcinek powierzchni poślizgu. Rys.9. Wyznaczanie ciśnienia porowego w zboczu nawodnionym a- zbocze podtopione, b- ustalony przepływ wody Ciśnienie porowe w warunkach ustalonego przepływu wody można dość dokładnie określić na podstawie siatki hydrodynamicznej wyznaczonej jedną z metod analitycznych lub doświadczalnych. W praktyce inżynierskiej postępowanie takie stosuje się jednak rzadko, natomiast najczęściej wysokość słupa wody h w określa się tak, jak gdyby linie ekwipotencjalne były pionowe.
9 W związku z powyższym należy podkreślić rangę parametrów c i Ø dla gruntów budujących zbocze, skarpę lub stok naturalny. Te parametry wytrzymałościowe charakterystyczne dla gruntów zależą przecież od wielu czynników. Jednym z najważniejszych czynników jest stopień wilgotności gruntu S r, od którego w głównej mierze zależy rozkład obciążenia na naprężenia efektywne σ, przenoszone przez szkielet gruntowy, oraz ciśnienie porowe u, przenoszone przez wodę i powietrze w porach. Sformułowana przez Terzaghiego zasada naprężeń efektywnych wymagała uwzględnienia tego zjawiska w analizie stanu granicznego. Wynika stąd konieczność wyróżnienia parametrów c u i Φ u, określających wytrzymałość gruntu w naprężeniach całkowitych, oraz parametrów c i Φ, odpowiadających wytrzymałości gruntu w naprężeniach efektywnych. Stąd też bierze się postulat w większości opracowań dotyczących obliczeń stateczności potencjalnych osuwisk o bardzo dokładne i głębokie rozpoznanie podłoża i wyznaczanie właściwości fizyko-mechanicznych nawiercanych gruntów. 5.! Osuwiska komunikacyjne. Poza osuwiskami naturalnymi występują również osuwiska wywołane zmianami lokalnych warunków gruntowo wodnych, a także błędami technicznymi:! zbyt strome pochylenie skarp,! zbyt duże podcięcie zboczy,! zastosowanie niewłaściwych gruntów do budowy nasypów,! niewłaściwe zagęszczenie nasypów,! nieodpowiednia technologia wykonywania robót,! niewłaściwe odwodnienie. Do najczęstszych przyczyn osuwiskowych w wykopach można zaliczyć :! zwiększenie kąta nachylenia skarpy w stosunku do kąta nachylenia zbocza naturalnego i kąta stoku naturalnego jakim charakteryzuje się dany grunt w podłożu,! zmniejszenie spójności gruntu na skutek odciążenia, zdjęcia części nadkładu lub dopuszczenia do nadmiernego zawilgocenia,! zwiększenie erozji gruntów przez ich odsłonięcie i nie zabezpieczenie przed spływającą wodą,! zmianę warunków wodno gruntowych. Tendencje osuwiskowe w nasypach występują przede wszystkim na skutek nie właściwego ich wykonania tj. :! minimalizacja robót ziemnych i zajętości terenu zbyt duże pochylenia skarp,! zbyt grube warstwy przeznaczone do zagęszczania uniemożliwiają osiągnięcie właściwego stopnia lub wskaźnika zagęszczenia,! użycia niewłaściwego gruntu z którego nasyp jest wykonany ( U poniżej 5),! niezabezpieczenie skarp przed erozją powierzchniową,! nadmierne obciążenie naziomu taborem samochodowym lub kolejowym. Szczególnie charakterystyczne są uszkodzenia takie jak:! łukowate pęknięcia nawierzchni dróg i poboczy,! lokalne uskoki w nawierzchni bitumicznej,! przemieszczenia poziome osi drogi lub toru kolejowego,
10 ! lokalna zmiana niwelety ( drogowej lub kolejowej). Ocenia się również, że w Karpatach występuje średnio jedno osuwisko na 5 km drogi kołowej i na 10 km linii kolejowej. Zjawisko zsuwu obejmując potężne kompleksy pakietów gruntów i skał sięgające w głąb do 35 m powodują w inwestycjach infrastrukturalnych olbrzymie straty. Należy zauważyć, że szybkość zsuwu w tego typu obiektach jest bardzo różna i można ją porównać do szybkości przemieszczania się lodowców i płynących wód rzecznych Osuwiska w wykopach. Wykonywanie wykopów podczas budowy dróg samochodowych lub linii kolejowych może powodować podcięcia naturalnych stoków. Wiąże się to z kolei z ryzykiem powstania lub uaktywnienia ruchów mas gruntów. W szczególności wykonywanie wykopów powoduje zmiany parametrów i zjawiska opisane wyżej. Skutki wykonywania wykopów w aspekcie zagrożenia osuwiskowego zależą nie tylko od pierwotnej i wtórnej ( po wykonaniu wykopów) konfiguracji terenu, ale także od budowy litologicznej. Niskie wartości kąta tarcia wewnętrznego takich gruntów jak iły, iłołupki z wietrzeliny gliniastej powodują, że trudno jest utrzymać stateczność skarpy nawet przy ich nachyleniu 1 : 3. Podobną uwagę można poczynić w przypadku konsekwentnego uławicenia łupków lub ich podatności na wietrzenie. W wymienionych przypadkach łatwo powstają spływy, obrywy i osuwiska. Generalnie elementy morfologii osuwiskowej ograniczają się do górnej strefy odrywania i dolnej strefy nagromadzenia przemieszczonych gruntów. Koryto osuwiska jest najczęściej tak krótkie, że trudno je wyodrębnić. Zasięg ruchu mas gruntu jest na ogół ograniczony do wykonywanej skarpy. Tylko w wyjątkowych przypadkach zasięg ten może obejmować znaczną część zbocza Osuwiska w nasypach. Osuwiska w nasypach występują na ogół wskutek niewłaściwego ich wykonania. W celu minimalizacji robót ziemnych skarpom nasypów nadaje się duże pochylenia, a w trakcie wykonawstwa nie osiąga się właściwego zagęszczenia. Istotną rolę odgrywa także grunt, z którego nasyp jest wykonany. W nasypach najczęściej spotyka się płytkie spływy oraz osuwiska typu insekwentnego. Występować też mogą zapadliska i osiadania, w tym także z przemieszczeniami bocznymi ( prostopadłe do osi drogi lub torowiska). Ewidentną przyczyną tych deformacji jest mała nośność gruntu i niewłaściwe ich zagęszczenie. Zasięg omawianych osuwisk jest bardzo ograniczony. Obejmuje on strefę od oderwania, rozpoczynającego się na jezdni lub poboczu do podnóża nasypu. Objawem osuwisk występujących w nasypach są niewielkie garby gruntowe, wynikające z przemieszczeń mas gruntu. Brak jest zazwyczaj wyraźnych krawędzi bocznych jęzora. Oddzielny problem stanowią osuwiska powstałe na zboczach, wywołane dociążeniem nasypem. Mogą one powstać nawet na obszarach, na których ruchy mas gruntu nie były wcześniej notowane. Dodać przy tym należy, że wraz z obciążeniem nasypem pojawia się w tym przypadku dynamiczne obciążenie taborem samochodowym lub kolejowym.
11 5.3. Trasy stokowe. Trasy stokowe mogą być usytuowane między innymi na zboczach :! górskich,! wzniesień morenowych,! wąskich dolin rzecznych. Budowa dróg stokowych wiąże się zazwyczaj z wykonywaniem trawersów, które stanowią kombinację wykopów podcinających naturalny stok ( przy okazji odciążając go ) i nasypów (dociążających stok). Budowa tak kształtowanej półki może powodować naruszenie równowagi zboczowej. Prace takie są szczególnie niebezpieczne, gdy trasa przebiega przez tereny osuwiskowe, na których bardzo szybko może dojść do naruszenia stateczności skarp. Dodatkowo sytuację może pogorszyć zmiana warunków wodno gruntowych. Stąd też w przypadku budowy tras stokowych badania geologiczne powinny być prowadzone nie tylko w osi przyszłej drogi, ale także dodatkowo po obydwu jej stronach w celu rozpoznania układu warstw. Wobec powyższego i analizując dostępne opisy awarii i katastrof, występujące osuwiska w budownictwie drogowo kolejowym można podzielić na 5 charakterystycznych grup w zależności od sytuacji, ukształtowania i położenia terenów zagrożonych osuwiskiem: 1.! osuwiska położone powyżej korony dróg, czoła osuwiska stykają się z koroną drogi lub zajmują częściowo powierzchnię jezdni, 2.! osuwiska występujące poniżej korony dróg, a obszary oderwane osuwiskiem obejmują częściowo lub w całości pas drogowy, 3.! osuwiska występujące na stokach położonych powyżej potoków lub rzek, których obszary wpływu obejmują korony dróg, a czoła osuwisk obejmują brzegi, a niekiedy i dna potoków lub rzek, schodzące masy gruntów mogą także blokować odpływ wód i pozwalając tym samym na lokalne podtopienia, 4.! osuwiska na terenach położonych powyżej i poniżej konstrukcji drogowej łącznie z ich jezdniami, 5.! osuwiska występujące na zboczach położonych poza pasami drogowymi i poza korytami potoków lub rzek, w tych przypadkach osuwiska deformują tereny rolnicze i ekologiczne, budowlane i infrastrukturę podziemną ( gazową, wodną i ściekową) dodatkowo propagując przyczyny i nawadniając głębiej leżące warstwy gruntów. W opisanych przypadkach bezwzględnie należy dokonywać obliczeń współczynnika stateczności, najlepiej kilkoma metodami. 6.! Awarie słupów elektroenergetycznych. Osuwiska uaktywnione w 2010 r. po dużych anomaliach pogodowych dotyczyły również stateczności słupów elektroenergetycznych linii 110 kv. Odbudowa lub zabezpieczanie fundamentów tych słupów stanowiło nowe wyzwania dla projektantów i wykonawców. Opis jednego ze sposobów zabezpieczenia tego rodzaju osuwisk zamieszczony został w magazynie Inżynier Budownictwa (10/2012). Do zabezpieczeń słupów lokalizowanych na osuwiskach stosuje się fundamenty palowe
12 - mikropale, - pale wiercone, - pale Franki. Dla optymalnego sposobu posadowienia niezbędne są informacje na temat osuwiska, uksztaltowania terenu i posiadanie dokumentacji geotechnicznej. Na tej podstawie doświadczony geotechnik jest dopiero w stanie wyznaczyć potencjalne najniekorzystniejsze powierzchnie poślizgu. Jeszcze do niedawna w energetyce bagatelizowana była konieczność rozpoznawania podłoża i jego badań. Słupy i ich fundamenty dla gruntów średnich lub słabych były skatalogowane jako typowe. I to się zmieniło wraz ze świadomością grożącego niebezpieczeństwa. Oprócz fundamentów palowych, wcześniej wymienionych, mogą być w istniejących obiektach stosowane także barety, tj. pojedyncze segmenty ścian szczelinowych spięte rusztem żelbetowym. Barety wykonuje się z reguły w zawiesinie iłowej lub bentonitowej z dodatkiem cementu lub też bez. Głębokość założenia zależna jest od wyznaczenia najbardziej niekorzystnego poziomu oddziaływania osuwiska. Rys10. Schemat wzmocnienia fundamentów słupa przelotowego w niecce osuwiskowej.
13 Rys.11. Schemat wzmocnienia fundamentów słupa mocnego na skraju osuwiska. 7.! Ocena stateczności skarp i zboczy. Problem zabezpieczenia przed osuwiskami można rozpatrywać w dwóch różnych stanach :! gdy osuwisko się uaktywniło,! osuwisko nie jest aktywne, ale potencjalnie możliwe. W pierwszym przypadku problem jest oczywisty, natomiast w drugim przypadku konieczna jest ocena stanu zagrożenia. Można się posłużyć współczynnikiem stanu równowagi F, obliczanym ze wzoru:!" #$ % #& % gdzie: U 1 uogólnione siły utrzymujące, wywołane tarciem i spójnością materiału, Z 1 uogólnione siły zsuwające wywołane siłami grawitacji, siłami filtracji oraz obciążeniami zewnętrznymi. Ze względu na postać powierzchni poślizgu można wyróżnić : 1.! Przypadki predysponowane budową geologiczną, gdy powierzchnia poślizgu jest w zasadzie ustalona i obliczenia można prowadzić wg tej określonej powierzchni, 2.! brak jest predyspozycji, a ze względu na jednorodność gruntów budujących masywy zbocza lub podobieństwa cech wytrzymałościowych gruntów, analizę stateczności prowadzi się metodami, z których oblicza się najniekorzystniejszą kołowo cylindryczną powierzchnię poślizgu. Algorytmy obliczeń metodami równowagi sił mogą ustalić w różny sposób zapas współczynnika stateczności. Może on być przedstawiony w postaci stosunku: 1.! tangensa kąta tarcia wewnętrznego do tangensa kąta tarcia zmobilizowanego:!" '() '() * 2.! sumy sił poziomych utrzymujących do sumy sił poziomych zsuwających:!" #+, #+ -
14 3.! momentu sił utrzymujących do momentu sił obracających masy gruntu :!" #./, #/ * 4.! Parametrów wytrzymałościowych rzeczywistych do zmobilizowanych :...! % " ) ) 0... ;! 1 " Powyższa formuła równoważna jest definicji mówiącej, że współczynnik bezpieczeństwa równy jest stosunkowi wytrzymałości na ścinanie gruntu do wartości naprężenia stycznego niezbędnego do zachowania równowagi statycznej skarpy. 5.! wartości parcia czynnego do odporu:!" * Możliwe są również inne definicje wskaźnika stanu równowagi. Z licznych istniejących w literaturze algorytmów w praktyce stosuje się tylko kilka. Jest oczywiste, że wykonanie obliczeń przy tym samym modelu obliczeniowym różnymi metodami, których rezultatem jest wartość tak czy inaczej zdefiniowanego wskaźnika stanu równowagi, daje różne wyniki. W stateczności zboczy skarp, oprócz czynników zawsze występujących w analizie stateczności, występują jeszcze czynniki specyficzne, przy czym najistotniejszym jest orientacja powierzchni nieciągłości warstw, lub innych powierzchni osłabienia uskoków i spękań międzywarstwowych w stosunku do kierunków obciążeń. Mechanizm zniszczenia zbocza jest zatem funkcją wzajemnej orientacji powierzchni osłabienia i obciążeń, wynikających z kształtu zbocza. Efektem przedstawionej sytuacji jest zawsze powstawanie zsuwu. Obliczenie stateczności zboczy i skarp w przypadku możliwości przyjęcia założenia płaskiego stanu odkształceń sprowadza się do sprawdzenia warunku równowagi rzutów sił i przybiera postać nierówności, w której siła utrzymująca ( T ) powinna być większa od siły zsuwającej (S). Rys.12. Stateczność skarpy w gruncie niespoistym bez obciążenia naziomu.
15 W zależności od kąta nachylenia płaszczyzny osłabienia w stosunku do płaszczyzny stoku i kąta tarcia rozpatrywać można różne przypadki. Mechanizmy przemieszczania mas skalnych i zasady obliczeń stateczności w różnych przypadkach budowy geologicznej można uporządkować następująco: 1.! jeśli warstwy zapadają się w kierunku zbocza, stateczność zbocza zależy wyłącznie od układów warstwowych i parametrów wytrzymałościowych tych układów; należy niezależnie rozpatrywać stateczność zbocza dla obu układów powierzchni osłabienia zbocza kontaktów warstw i kontaktów szczelin, 2.! jeśli warstwy zapadają się w kierunku zbocza, stateczność zbocza zależy wyłącznie od orientacji szczelin poprzecznych i wytrzymałości na ścinanie wzdłuż tych płaszczyzn, 3.! mechanizmy zsuwania i obrotu odbywających się łącznie należy rozpatrywać, jak w przypadkach dla gruntów nieskalistych. Przy niezbyt wysokich zboczach, tzn. niedużych wartościach naprężeń normalnych, można założyć, że kąt tarcia wewnętrznego masywu skalnego jest równy kątowi tarcia na płaszczyznach spękań lub płaszczyznach kontaktów warstw. W przypadku ogólnym wartość kąta tarcia wewnętrznego masywu skalnego zależy od :! szorstkości szczelin,! rozstawu szczelin,! ciągłości szczelin,! wytrzymałości materiału, z którego zbudowany jest masyw,! rozwarcia i wypełnienia szczelin. Wartości kąta tarcia i spójności określa się najczęściej w badaniach bezpośredniego ścinania w terenie lub w laboratorium. Gdy budowa geologiczna nie pozwala na przyjęcie płaskiej powierzchni poślizgu obliczenia należy prowadzić przyjmując wynikający z pomiarów model budowy. W zależności od wartości współczynnika F wystąpienie osuwiska można uznać za :! bardzo mało prawdopodobne - F > 1,5,! mało prawdopodobne - 1,3 F 1,5,! prawdopodobne - 1,0 F 1,3,! bardzo prawdopodobne - F < 1,0. Należy w tym miejscu zaznaczyć, że obliczenia wartości współczynnika F są obarczone licznymi błędami począwszy od złego rozpoznania gruntów podłoża, ich właściwości fizyko mechanicznych, zastosowanych współczynników redukcyjnych i materiałowych i na przyjętej metodzie obliczeń kończąc. Wartości współczynników stateczności zboczy i skarp powinny być większe od 1,5. Dla takiej wartości F określa się na etapie projektowania zasięg potencjalnej powierzchni poślizgu na koronie drogi. Zgodnie ze schematem przedstawionym na rysunku 13 na masyw potencjalnego osuwiska w ogólnym przypadku działają trzy siły, a mianowicie: Q wypadkowa sił pochodzących od ciężaru gruntu, od obciążeń zewnętrznych i ciśnienia spływowego, P wypadkowa reakcji podłoża na powierzchni poślizgu, S wypadkowa sił oporu tarcia i spójności, działających wzdłuż powierzchni poślizgu.
16 Rys.13. Uogólnione siły działające na masyw osuwiska.[35] Z analizy stosowanych w praktyce metod obliczeniowych wynika, że każda z nich niezależnie od przyjętego modelu ośrodka gruntowego, mechanizmu osuwiska i sposobu rozwiązania, sprowadza się do wyznaczenia tycz sił i określenia wynikającego stąd zapasu bezpieczeństwa w zboczu. Takie podejście daje zadowalające wyniki przy rozwiązywaniu większości problemów inżynierskich, tym niemniej należy liczyć się z przypadkami, w których zastosowanie konwencjonalnych metod obliczeniowych może prowadzić do istotnych błędów i stanowić zagrożenie stateczności zbocza. Specjalnego potraktowania w analizie stateczności zboczy wymaga między innymi, zjawisko postępującego niszczenia zbocza i wpływ drgań sejsmicznych. Postępujące niszczenie może rozwinąć się w zboczach zbudowanych z prekonsolidowanych lub spękanych iłów, jak również w tych zboczach gdzie istnieją powierzchnie osłabienia, będące pozostałością dawnych ruchów osuwiskowych. W takich przypadkach stwierdzono powstawanie osuwisk, mimo to że analiza stateczności wykazała istnienie odpowiedniego zapasu bezpieczeństwa. W zależności od posiadanego oprogramowania i od rodzaju uwzględnianych sił oraz sprawdzanych warunków równowagi stosuje się następujące metody :! Feleniusa nie uwzględnia sił między paskami. Wykorzystuje tylko warunek równowagi momentów, przyjmuje powierzchnię poślizgu kołowo cylindryczną,! Bishopa uwzględnia pionowe i poziome oddziaływanie sąsiednich pasków. Również wykorzystuje tylko warunek równowagi momentów, powierzchnia poślizgu kołowo cylindryczna,! Nonveillera - uwzględnia oddziaływania międzypaskowe. Korzysta z warunków równowagi momentów, umożliwia obliczenia przy dowolnej powierzchni poślizgu,! Janbu uwzględnia oddziaływania międzypaskowe. Warunek równowagi opiera się na sumie rzutów sił na oś poziomą, umożliwia obliczenia dla dowolnego kształtu powierzchni poślizgu,
17 ! Morgensterna-Price a w równowadze pojedynczych pasków uwzględnia siły poziome i pionowe. Korzysta z warunków na sumę momentów i sił poziomych, umożliwia obliczenie dla dowolnej powierzchni poślizgu.! Barera-Garbera i Spencera korzysta z trzech warunków równowagi. Jest więc pierwszą do końca poprawną pod względem statyki metodą analizy stateczności zboczy, umożliwia obliczenia dowolnej powierzchni poślizgu. Pomijając metodę Felleniusa stosowanie pozostałych metod powinno być co najmniej dublowane dla wyeliminowania nałożenia się różnych błędów i stwierdzenia zbieżności wyników obliczeń. 8.! Sposoby zabezpieczeń osuwisk. Powszechnie uważa się, że projektowane rozwiązanie powinno eliminować przyczyny wywołujące zagrożenie powstania osuwiska. Trzeba przy tym zwrócić uwagę, że stabilizacja osuwiska jest zazwyczaj kosztowna. Przy osuwiskach rozległych i głębokich korzystniejszym rozwiązaniem może okazać się zmiana trasy drogi, nasypu lub innej konstrukcji. Często przyczyną powstania osuwiska jest działanie wody. Stąd też we wszystkich rozwiązaniach odwodnienie zbocza i uporządkowanie stosunków wodnych na terenie potencjalnego osuwiska jest niezbędne. Bezpośrednio po wystąpieniu osuwiska konieczne jest podjęcie niezwłocznych działań, których celem jest minimalizacja zniszczeń i zagrożeń. W zakres tych działań wchodzą między innymi;! oznakowanie i inwentaryzacja osuwiska,! ograniczenie ruchu i prędkości pojazdów,! odprowadzenie wód poza obszar objęty osuwiskiem,! wypełnienie szczelin materiałem nieprzepuszczalnym,! usunięcie gruntu nasuniętego na jezdnię lub torowisko,! wykonanie tymczasowych zabezpieczeń. Jako zabezpieczenie doraźne mogą być stosowane przypory, gabiony, kaszyce, gwoździowanie lub geosyntetki i kotwie gruntowe. Należy jednak zaznaczyć, że tego typu działania mogą być skuteczne tylko w przypadku, gdy płaszczyzna poślizgu jest płytko położona, a osuwisko nie jest duże. Niezależnie od przyjętego rozwiązania zabezpieczenia konstrukcyjnego osuwisk powinno się stosować uzupełniająco stabilizację powierzchniową skarp i zboczy. Ma ona na celu zabezpieczenie erozji, która mogłaby wystąpić wskutek działania czynników atmosferycznych. Jako stabilizację powierzchniową można stosować między innymi zabudowę biologiczną obejmującą:! klasyczny obsiew trawą,! hydroobsiew właściwie dobranych składem roślin (np. perzem),! posadzenie specjalnie dobranych roślin (np. krzewów o mocnym systemie korzeniowym),! utrwalenie powierzchni geosyntetykami,! utrwalenie powierzchniowe środkami stabilizującymi,! ażurowe płyty betonowe wypełnione gruntem.
18 9.! Stan prawny w zakresie osuwisk. Osuwisk na ogół zatrzymać się nie da, ale można ograniczyć szkody spowodowane ruchami ziemi. Jedną z dróg jest stworzenie skutecznego systemu ostrzegania przed zagrożeniami. Taki system pod nazwą SOPO działa w Państwowym Instytucie Geologicznym. Prawo nakazuje rozpoznanie i wskazanie obszarów zagrożonych osuwiskami (Ustawa z 27 marca 2003 r. o planowaniu i zagospodarowaniu przestrzennym Dz. U. 2003, Nr 80, poz. 717 oraz Ustawa z 3 lutego 1995 r. o ochronie gruntów rolnych i leśnych tekst jednolity Dz. U. Nr 121, poz. 1266). W ustawie z dnia 27 kwietnia 2001 r. Prawo Ochrony Środowiska Dz. U. Nr 62, poz. 627 z późniejszymi zmianami, wskazano starostów jako odpowiedzialnych za prowadzenie tzw. rejestru terenów zagrożonych ruchami masowymi ziemi oraz terenów, na których występują te ruchy ( art. 101a). Starostowie odpowiedzialni są również za opiniowanie planów zagospodarowanie przestrzennego. W 2006 r. Państwowy Instytut Geologiczny, pełniący w Polsce rolę państwowej służby geologicznej rozpoczął realizację dużego wieloletniego projektu SOPO - Systemu Osłony Przeciwosuwiskowej. Projekt realizowany jest z inicjatywy Ministra Środowiska i ma wspomóc starostów w skutecznym wypełnianiu obowiązków związanych z prowadzeniem rejestru osuwisk ( nałożonych rozporządzeniem z 20 czerwca 2007 r.). Jego celem jest dostarczanie administracji państwowej danych niezbędnych do skutecznego zarządzania ryzykiem oraz uświadamianie społeczeństwu zagrożeń dotyczących osuwisk. Realizacja zadań w projekcie SOPO ( 3 etapy I etap , II etap , III etap ) ma za zadanie stworzenie skutecznego systemu ostrzegania przed zagrożeniami związanymi z ruchami masowymi ziemi oraz przeciwdziałania ich negatywnym skutkom, głównie poprzez rezygnację z zabudowy lub jej znaczne ograniczenia na obszarach czynnych osuwisk. Skuteczna walka z aktywnymi zjawiskami geologicznymi powinna polegać także na podniesieniu poziomu wiedzy na ich temat zarówno wśród urzędników, jak i społeczeństwa. W ramach tej działalności Państwowy Instytut Geologiczny przewiduje system szkoleń dla pracowników administracji państwowej dotyczący obsługi bazy danych SOPO oraz organizację konferencji poświęconych problematyce ruchów masowych ziemi w poszczególnych regionach Polski. W ten sposób może uda się ograniczyć lub wyeliminować budownictwo na terenach typowo osuwiskowych. Literatura: 1.! BS 8006:1995 Code of practise for strengthned/reinforced soil and oter fills 2.! PN-EN 13251:2000 Geotekstylia i wyroby pokrewne. Właściwości wymagane przy stosowaniu w robotach ziemnych, fundamentowych i konstrukcjach oporowych 3.! PN-ES-02205:1998 Drogi samochodowe. Roboty ziemne. Wymagania i badania 4.! PN-81/B Posadowienia bezpośrednie budowli. Obliczenia statyczne i projektowanie 5.! PN-83/B Ściany oporowe. Obliczenia statyczne i projektowanie 6.! Abramson L.W.: Slope stability and stabilization methods. J.Wiley and Sons, New York 2002
19 7.! Bromhead E.N.: The stability of slopes. Wyd. Taylor and Francis ! Colbond Workshop: Design Concepts of Reinforced Walls, Slopes and Embankments. W-wa ! Duncan J.M., Wright S.G.: Soil streght and slope stability. J.Wiley and Sons, New York !Elias V. [i in.] : Mechanically stabilized earth walls and reinforced soil slopes. FHWA !Furtak K.,Sala A.: Stabilizacja osuwisk komunikacyjnych metodami konstrukcyjnymi.geoinżynieria 03/ !ITB. Instrukcje, wytyczne, poradniki Nr 429/ !Instrukcja badań podłoża gruntowego budowli drogowych i mostowych. Wyd.IBDiM, W-wa !Jermołowicz P.: Geosyntetyki w drogownictwie. BTE 1997, nr 2. s !Koerner R.M.,Welsh J.:Construction and geotechnical engineering using synthetic fabrics. J.Wiley and Sons, New York Koerner R.M. Designing with geosynthetics, (Fifth edition) Prentice Hall !Kopczacki S.,Dulski M.: Pomiary inklinometryczne. Geoinżynieria 2/ !Materiały z XVI z Konferencji: Warsztat pracy projektanta konstrukcji. Ustroń !Materiały z konferencji Naukowo-Technicznej: Geosyntetyki i tworzywa sztuczne w geotechnice i budownictwie inżynieryjnym. Częstochowa Materiały z Seminarium IBDIM i PZWFS ; Wzmacnianie podłoża gruntowego i fundamentów budowli. W-wa Materiały z Seminarium IGS: Geosyntetyki podstawą współczesnej geoinżynierii W- wa !Materiały z Ogólnopolskiej Konferencji Naukowo-Technicznej Problematyka osuwisk w budownictwie komunikacyjnym. Zakopane 2000 r. 23.!Materiały z Ogólnopolskiej Konferencji Naukowo-Technicznej Problematyka osuwisk w budownictwie komunikacyjnym. Zakopane 2009 r. 24.!Materiały z Seminarium IBDiM i PSG : Skarpy drogowe. W-wa !Pisarczyk S.: Geoinżynieria. Metody modyfikacji podłoża gruntowego P.W !Poradnik wzmocnienia podłoża gruntowego dróg kolejowych. Pod red. Z.Biedrowskiego. Poznań !Rolla S.: Geotekstylia w budownictwie drogowym WKŁ !Rozporządzenie Min.Transp.i Gosp. Morskiej w sprawie warunków technicznych, jakim powinny odpowiadać drogi publiczne i ich usytuowanie (Dz.U. Nr 43/1999 ) 29.!Rozporządzenie MSWiA w sprawie ustalania geotechnicznych warunków posadawiania obiektów budowlanych (Dz.U. Nr 126/1998 ) 30.!Sobolewski J.: Uwagi do zasad projektowania nasypów ze zbrojeniem geosyntetycznym.inżynieria i Budownictwo 10/ !Wesolowski A. [i in.]: Geosyntetyki w konstrukcjach inżynierskich. Wyd. SGGW. W- wa !Wiłun Z.: Zarys Geotechniki. WKŁ !Wójcik A.,Mrozek T.: Osuwiska zagrożeniem dla infrastruktury cz. I. 34.!Wytyczne wzmacniania podłoża gruntowego w budownictwie drogowym. IBDiM, W- wa !Madej J.: Metody sprawdzania stateczności zboczy. Biblioteka drogownictwa. WKiŁ, W-wa 1981.
Osuwiska definicje i rodzaje
Piotr Jermołowicz Inżynieria Środowiska Szczecin Osuwiska definicje i rodzaje Osuwiskiem nazywamy nagłe przemieszczenie się mas ziemnych, w tym mas skalnych podłoża i powierzchniowej zwietrzeliny spowodowane
Awarie skarp nasypów i wykopów.
Piotr Jermołowicz Inżynieria Środowiska Awarie skarp nasypów i wykopów. Samoczynne ruchy mas gruntu na zboczach i skarpach zwane osuwiskami uważa się za jeden z istotnych procesów w inżynierii geotechnicznej.
Wody gruntowe i zjawiska towarzyszące.
Piotr Jermołowicz Inżynieria Środowiska Wody gruntowe i zjawiska towarzyszące. Z trzech rodzajów wody występującej w gruncie ( woda związana, kapilarna, gruntowa), to woda gruntowa ma najbardziej istotny
MAPY OSUWISK I TERENÓW ZAGROŻONYCH RUCHAMI MASOWYMI W RAMACH PROJEKTU SOPO
MAPY OSUWISK I TERENÓW ZAGROŻONYCH RUCHAMI MASOWYMI W RAMACH PROJEKTU SOPO WYDZIAŁ GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KATEDRA ANALIZ ŚRODOWISKOWYCH, KARTOGRAFII I GEOLOGII GOSPODARCZEJ MATERIAŁY
Zabezpieczenia skarp przed sufozją.
Piotr Jermołowicz Inżynieria Środowiska Zabezpieczenia skarp przed sufozją. Skarpy wykopów i nasypów, powinny być poddane szerokiej analizie wstępnej, dobremu rozpoznaniu podłoża w ich rejonie, prawidłowemu
Zarys geotechniki. Zenon Wiłun. Spis treści: Przedmowa/10 Do Czytelnika/12
Zarys geotechniki. Zenon Wiłun Spis treści: Przedmowa/10 Do Czytelnika/12 ROZDZIAŁ 1 Wstęp/l 3 1.1 Krótki rys historyczny/13 1.2 Przegląd zagadnień geotechnicznych/17 ROZDZIAŁ 2 Wiadomości ogólne o gruntach
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO OBIEKT - OSUWISKO
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO OBIEKT - OSUWISKO 1. Metryka i lokalizacja NUMER EWIDENCYJNY Autor/rzy opracowania: Autor/rzy opracowania graficznego: M-34-31-C-C/1 wersja 1/1
Drgania drogowe vs. nośność i stateczność konstrukcji.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Drgania drogowe vs. nośność i stateczność konstrukcji. Przy wszelkiego typu analizach numerycznych stateczności i nośności nie powinno się zapominać o
Parasejsmiczne obciążenia vs. stateczność obiektów.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Parasejsmiczne obciążenia vs. stateczność obiektów. W ujęciu fizycznym falami są rozprzestrzeniające się w ośrodku materialnym lub polu, zaburzenia pewnej
Metody wzmacniania wgłębnego podłoży gruntowych.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Metody wzmacniania wgłębnego podłoży gruntowych. W dobie zintensyfikowanych działań inwestycyjnych wiele posadowień drogowych wykonywanych jest obecnie
Zakres wiadomości na II sprawdzian z mechaniki gruntów:
Zakres wiadomości na II sprawdzian z mechaniki gruntów: Wytrzymałość gruntów: równanie Coulomba, parametry wytrzymałościowe, zależność parametrów wytrzymałościowych od wiodących cech geotechnicznych gruntów
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO OBIEKT - OSUWISKO
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO OBIEKT - OSUWISKO 1. Metryka i lokalizacja NUMER EWIDENCYJNY M-34-31-C-c/4 wersja 1/1 Autor/rzy opracowania: Autor/rzy opracowania graficznego:
Ocena stateczności skarp i zboczy.
Piotr Jermołowicz Inżynieria Środowiska Ocena stateczności skarp i zboczy. Problem zabezpieczenia przed osuwiskami można rozpatrywać w dwóch różnych stanach : gdy osuwisko się uaktywniło, osuwisko nie
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO: OBIEKT OSUWISKO. 1. Nr ewidencyjny Lokalizacja
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO: OBIEKT OSUWISKO 1. Nr ewidencyjny 366.31 0 2 2. Lokalizacja 2.1 Miejscowość Tulibowo 2.2 Właściciel terenu Rejonowy Zarząd Gospodarki Wodnej 2.3
Zasady wymiarowania nasypów ze zbrojeniem w podstawie.
Piotr Jermołowicz Zasady wymiarowania nasypów ze zbrojeniem w podstawie. Dla tego typu konstrukcji i rodzajów zbrojenia, w ramach pierwszego stanu granicznego, sprawdza się stateczność zewnętrzną i wewnętrzną
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO OBIEKT - OSUWISKO. 1. Metryka I lokalizacja M C-C/3. wersja 1/
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO OBIEKT - OSUWISKO 1. Metryka I lokalizacja NUMER M-34-31-C-C/3 i EWIDENCYJNY wersja 1/1 i. Autor/rzy opracowania Ryszard Knapczyk, Joanna Lasak
Konstrukcje oporowe - nowoczesne rozwiązania.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Konstrukcje oporowe - nowoczesne rozwiązania. Konstrukcje oporowe stanowią niezbędny element każdego projektu w dziedzinie drogownictwa. Stosowane są
SPIS TREŚCI. PODSTAWOWE DEFINICJE I POJĘCIA 9 (opracowała: J. Bzówka) 1. WPROWADZENIE 41
SPIS TREŚCI PODSTAWOWE DEFINICJE I POJĘCIA 9 1. WPROWADZENIE 41 2. DOKUMENTOWANIE GEOTECHNICZNE I GEOLOGICZNO INŻYNIERSKIE.. 43 2.1. Wymagania ogólne dokumentowania badań. 43 2.2. Przedstawienie danych
Projekt ciężkiego muru oporowego
Projekt ciężkiego muru oporowego Nazwa wydziału: Górnictwa i Geoinżynierii Nazwa katedry: Geomechaniki, Budownictwa i Geotechniki Zaprojektować ciężki pionowy mur oporowy oraz sprawdzić jego stateczność
PROJEKT STOPY FUNDAMENTOWEJ
TOK POSTĘPOWANIA PRZY PROJEKTOWANIU STOPY FUNDAMENTOWEJ OBCIĄŻONEJ MIMOŚRODOWO WEDŁUG WYTYCZNYCH PN-EN 1997-1 Eurokod 7 Przyjęte do obliczeń dane i założenia: V, H, M wartości charakterystyczne obciążeń
Wytrzymałość gruntów organicznych ściśliwych i podmokłych.
Piotr Jermołowicz Inżynieria Środowiska Wytrzymałość gruntów organicznych ściśliwych i podmokłych. Każda zmiana naprężenia w ośrodku gruntowym wywołuje zmianę jego porowatości. W przypadku mało ściśliwych
Obliczanie potrzebnego zbrojenia w podstawie nasypów.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Obliczanie potrzebnego zbrojenia w podstawie nasypów. Korzystając z istniejących rozwiązań na podstawie teorii plastyczności można powiedzieć, że każde
Grawitacyjne ruchy masowe
Grawitacyjne ruchy masowe RUCHY MASOWE polegają na przemieszczaniu pokryw zwietrzelinowych, a także powierzchniowych skał luźnych i zwięzłych wskutek działania siły ciężkości w obrębie stoków. Czynniki
Projektowanie ściany kątowej
Przewodnik Inżyniera Nr 2 Aktualizacja: 02/2016 Projektowanie ściany kątowej Program powiązany: Ściana kątowa Plik powiązany: Demo_manual_02.guz Niniejszy rozdział przedstawia problematykę projektowania
Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7
Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 I. Dane do projektowania - Obciążenia stałe charakterystyczne: V k = (pionowe)
Geotechnika komunikacyjna / Joanna Bzówka [et al.]. Gliwice, 2012. Spis treści
Geotechnika komunikacyjna / Joanna Bzówka [et al.]. Gliwice, 2012 Spis treści PODSTAWOWE DEFINICJE I POJĘCIA 9 1. WPROWADZENIE 37 2. DOKUMENTOWANIE GEOTECHNICZNE I GEOLOGICZNO- INśYNIERSKIE 39 2.1. Wymagania
Egzamin z MGIF, I termin, 2006 Imię i nazwisko
1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość
Stateczność zbocza skalnego ściana skalna
Przewodnik Inżyniera Nr 29 Aktualizacja: 06/2017 Stateczność zbocza skalnego ściana skalna Program: Stateczność zbocza skalnego Plik powiązany: Demo_manual_29.gsk Niniejszy Przewodnik Inżyniera przedstawia
Stateczność dna wykopu fundamentowego
Piotr Jermołowicz Inżynieria Środowiska Szczecin Stateczność dna wykopu fundamentowego W pobliżu projektowanej budowli mogą występować warstwy gruntu z wodą pod ciśnieniem, oddzielone od dna wykopu fundamentowego
Spis treści. Przedmowa... 13
Przedmowa........................................... 13 1. Wiadomości wstępne.................................. 15 1.1. Określenie gruntoznawstwa inżynierskiego................... 15 1.2. Pojęcie gruntu
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO: OBIEKT OSUWISKO
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO: OBIEKT OSUWISKO 1. Nr ewidencyjny 2. Lokalizacja 4 2.1 Miejscowość 2.2 Właściciel terenu 2.3 Gmina 2.4 Powiat 2.5 Województwo 2.6 Oznaczenie mapy
Obliczanie i dobieranie ścianek szczelnych.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Obliczanie i dobieranie ścianek szczelnych. Ścianka szczelna jest obudową tymczasową lub stałą z grodzic stalowych stosowana najczęściej do obudowy wykopu
Pracownia specjalistyczna z Geoinżynierii. Studia stacjonarne II stopnia semestr I
Pracownia specjalistyczna z Geoinżynierii Studia stacjonarne II stopnia semestr I UWAGA!!! AUTOR OPRACOWANIA NIE WYRAŻA ZGODY NA ZAMIESZCZANIE PLIKU NA RÓŻNEGO RODZAJU STRONACH INTERNETOWYCH TYLKO I WYŁĄCZNIE
Uwagi dotyczące mechanizmu zniszczenia Grunty zagęszczone zapadają się gwałtownie po dobrze zdefiniowanych powierzchniach poślizgu według ogólnego
Uwagi dotyczące mechanizmu zniszczenia Grunty zagęszczone zapadają się gwałtownie po dobrze zdefiniowanych powierzchniach poślizgu według ogólnego mechanizmu ścinania. Grunty luźne nie tracą nośności gwałtownie
Systemy odwadniające - rowy
Piotr Jermołowicz Inżynieria Środowiska Systemy odwadniające - rowy Ze względu na to, że drenaż pionowy realizowany w postaci taśm drenujących lub drenów piaskowych, przyspiesza odpływ wody wyciskanej
Dokumentowanie warunków geologiczno-inżynierskich w rejonie osuwisk w świetle wymagań Eurokodu 7
Ogólnopolska Konferencja Osuwiskowa O!SUWISKO Wieliczka, 19-22 maja 2015 r. Dokumentowanie warunków geologiczno-inżynierskich w rejonie osuwisk w świetle wymagań Eurokodu 7 Edyta Majer Grzegorz Ryżyński
Projektowanie geometrii fundamentu bezpośredniego
Przewodnik Inżyniera Nr 9 Aktualizacja: 02/2016 Projektowanie geometrii fundamentu bezpośredniego Niniejszy rozdział przedstawia problematykę łatwego i efektywnego projektowania posadowienia bezpośredniego.
Analiza gabionów Dane wejściowe
Analiza gabionów Dane wejściowe Projekt Data : 8.0.0 Ustawienia (definiowanie dla bieżącego zadania) Konstrukcje oporowe Obliczenie parcia czynnego : Obliczenie parcia biernego : Obliczenia wpływu obciążeń
Warunki techniczne wykonywania nasypów.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Warunki techniczne wykonywania nasypów. 1. Przygotowanie podłoża. Nasyp powinien być układany na przygotowanej i odwodnionej powierzchni podłoża. Przed
Grupy nośności vs obliczanie nośności podłoża.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Grupy nośności vs obliczanie nośności podłoża. Nadrzędnym celem wzmacniania podłoża jest dostosowanie jego parametrów do wymogów eksploatacyjnych posadawianych
Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą.
Piotr Jermołowicz Inżynieria Środowiska Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą. W przypadkach występowania
gruntów Ściśliwość Wytrzymałość na ścinanie
Właściwości mechaniczne gruntów Ściśliwość Wytrzymałość na ścinanie Ściśliwość gruntów definicja, podstawowe informacje o zjawisku, podstawowe informacje z teorii sprężystości, parametry ściśliwości, laboratoryjne
Wykopy głębokie problematyka
Piotr Jermołowicz Inżynieria Środowiska Szczecin Wykopy głębokie problematyka Głębokie wykopy są pojęciem względnym zależnym od ustalenia głębokości granicznej. W literaturze zagranicznej za głębokie wykopy
Analiza ściany oporowej
Przewodnik Inżyniera Nr 3 Aktualizacja: 02/2016 Analiza ściany oporowej Program powiązany: Plik powiązany: Ściana oporowa Demo_manual_03.gtz Niniejszy rozdział przedstawia przykład obliczania istniejącej
Katedra Geotechniki i Budownictwa Drogowego
Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Projektowanie geotechniczne na podstawie obliczeń Temat ćwiczenia: Opór graniczny podłoża gruntowego
Analiza stateczności zbocza
Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO: OBIEKT OSUWISKO
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO: OBIEKT OSUWISKO 1. Nr ewidencyjny 2. Lokalizacja 365.22 2.1 Miejscowość 2.2 Właściciel terenu 2.3 Gmina 2.4 Powiat 2.5 Województwo 2.6 Oznaczenie
Mechanika gruntów - opis przedmiotu
Mechanika gruntów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Mechanika gruntów Kod przedmiotu 06.4-WI-BUDP-Mechgr-S16 Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
Zadanie 2. Zadanie 4: Zadanie 5:
Zadanie 2 W stanie naturalnym grunt o objętości V = 0.25 m 3 waży W = 4800 N. Po wysuszeniu jego ciężar spada do wartości W s = 4000 N. Wiedząc, że ciężar właściwy gruntu wynosi γ s = 27.1 kn/m 3 określić:
ZADANIE PROJEKTOWE NR 3. Projekt muru oporowego
Rok III, sem. VI 1 ZADANIE PROJEKTOWE NR 3 Projekt muru oporowego Według PN-83/B-03010 Ściany oporowe. Obliczenia statyczne i projektowanie. Ściany oporowe budowle utrzymujące w stanie statecznym uskok
Drgania drogowe i obciążenia cykliczne.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Drgania drogowe i obciążenia cykliczne. Efekty te są pochodzenia użytkowego wynikające z przejazdu sprzętu kołowego, kolejowego, budowlanego, pracy maszyn
Fundamentowanie. Odwodnienie wykopu fundamentowego. Ćwiczenie 1: Zakład Geotechniki i Budownictwa Drogowego
Zakład Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Fundamentowanie Ćwiczenie 1: Odwodnienie wykopu fundamentowego Przyjęcie i odprowadzenie wód gruntowych
Nasyp przyrost osiadania w czasie (konsolidacja)
Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO: OBIEKT OSUWISKO
KARTA DOKUMENTACYJNA NATURALNEGO ZAGROŻENIA GEOLOGICZNEGO: OBIEKT OSUWISKO 1. Nr ewidencyjny 2. Lokalizacja 4 2.1 Miejscowość 2.2 Właściciel terenu 2.3 Gmina 2.4 Powiat 2.5 Województwo 2.6 Oznaczenie mapy
Miejscowość: Ostrówek Gmina: Klembów Powiat: Wołomiński. Zleceniodawca: Opracowanie: Hydrotherm Łukasz Olszewski. mgr inż.
DOKUMENTACJA BADAŃ PODŁOŻA GRUNTOWEGO dla potrzeb budowy: sieci kanalizacji sanitarnej, grawitacyjnej DN 200 PVC i tłocznej DN 90 PE wraz z przepompownią i odgazieniami DN 160 PVC. Miejscowość: Ostrówek
ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt.
PYTANIA I ZADANIA v.1.3 26.01.12 ZADANIA za 2pkt. ZADANIA Podać wartości zredukowanych wymiarów fundamentu dla następujących danych: B = 2,00 m, L = 2,40 m, e L = -0,31 m, e B = +0,11 m. Obliczyć wartość
Nasyp budowlany i makroniwelacja.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Nasyp budowlany i makroniwelacja. Nasypem nazywamy warstwę lub zaprojektowaną budowlę ziemną z materiału gruntowego, która powstała w wyniku działalności
Geozagrożenia enia w budownictwie i zagospodarowaniu przestrzennym na wilanowskim odcinku Skarpy Warszawskiej
GEOBEZPIECZEŃSTWO I GOSPODARKA WODNA NA TERENIE DZIELNICY WILANÓW Geozagrożenia enia w budownictwie i zagospodarowaniu przestrzennym na wilanowskim odcinku Skarpy Warszawskiej mgr Grzegorz Ryżyński Laboratorium
Uniwersytet Warmińsko-Mazurski w Olsztynie.
Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa Instytut Budownictwa Zakład Geotechniki i Budownictwa Drogowego Uniwersytet Warmińsko-Mazurski w Olsztynie Projektowanie geotechniczne na podstawie
Nasypy projektowanie.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Nasypy projektowanie. 1. Dokumentacja projektowa 1.1. Wymagania ogólne Nasypy należy wykonywać na podstawie dokumentacji projektowej. Projekty stanowiące
Wyznaczanie parametrów geotechnicznych.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Wyznaczanie parametrów geotechnicznych. Podstawowe parametry fizyczne gruntów podawane w dokumentacjach geotechnicznych to: - ρ (n) - gęstość objętościowa
GEO GAL USŁUGI GEOLOGICZNE mgr inż. Aleksander Gałuszka Rzeszów, ul. Malczewskiego 11/23,tel
GEO GAL USŁUGI GEOLOGICZNE mgr inż. Aleksander Gałuszka 35-114 Rzeszów, ul. Malczewskiego 11/23,tel 605965767 GEOTECHNICZNE WARUNKI POSADOWIENIA (Opinia geotechniczna, Dokumentacja badań podłoża gruntowego,
Wymiarowanie sztywnych ław i stóp fundamentowych
Wymiarowanie sztywnych ław i stóp fundamentowych Podstawowe zasady 1. Odpór podłoża przyjmuje się jako liniowy (dla ławy - trapez, dla stopy graniastosłup o podstawie B x L ścięty płaszczyzną). 2. Projektowanie
Analiza ściany żelbetowej Dane wejściowe
Analiza ściany żelbetowej Dane wejściowe Projekt Data : 0..05 Ustawienia (definiowanie dla bieżącego zadania) Materiały i normy Konstrukcje betonowe : Współczynniki EN 99-- : Mur zbrojony : Konstrukcje
Wykopy - zagrożenia i awarie.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Wykopy - zagrożenia i awarie. Z punktu widzenia projektanta i wykonawcy obudowy wykopu najistotniejsza jest ocena, a później obserwacja osiadań powierzchni
Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej w sprawie ustalania geotechnicznych warunków posadawiania obiektów budowlanych
Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej w sprawie ustalania geotechnicznych warunków posadawiania obiektów budowlanych z dnia 25 kwietnia 2012 r. (Dz.U. z 2012 r. poz. 463)
Seminarium SITK RP Oddz. Opole, Pokrzywna 2013
Seminarium SITK RP Oddz. Opole, Pokrzywna 2013 TECHNOLOGIA Projekt nasypu drogowego zbrojonego geosyntetykami zgodnie z Eurokod-7. Prezentuje: Konrad Rola- Wawrzecki, Geosyntetyki NAUE 1 Uwarunkowania
analiza form geomorfologicznych; zagadnienia zagrożeń - osuwisk, powodzi i podtopień
Przyrodnicze uwarunkowania gospodarki przestrzennej [PUGP] Ćwiczenie 3 analiza form geomorfologicznych; zagadnienia zagrożeń - osuwisk, powodzi i podtopień zasoby środowiska Zasoby odnawialne Zasoby nieodnawialne
Problematyka posadowień w budownictwie.
Piotr Jermołowicz Inżynieria Środowiska Problematyka posadowień w budownictwie. Historia budownictwa łączy się nierozerwalnie z fundamentowaniem na słabonośnych podłożach oraz modyfikacją właściwości tych
OPINIA GEOTECHNICZNA określająca warunki gruntowo - wodne w rejonie projektowanej inwestycji w ulicy Tunelowej w Wałbrzychu
Finansujący: Pracownia Projektowa Instalacyjna mgr inż. Mirosława Szewc ul. I. Grabowskiej 25/10, 58-304 Wałbrzych Wykonawca: Usługi Geologiczne i Geodezyjne GEOMETR K. Kominowski ul. Słoneczna 23, 58-310
Rozmieszczanie i głębokość punktów badawczych
Piotr Jermołowicz Inżynieria Środowiska Rozmieszczanie i głębokość punktów badawczych Rozmieszczenie punktów badawczych i głębokości prac badawczych należy wybrać w oparciu o badania wstępne jako funkcję
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni
Spis treści. Od autora Wprowadzenie Droga w planie... 31
Spis treści Od autora.... 11 1. Wprowadzenie.... 13 1.1. Pojęcia podstawowe... 13 1.2. Ruch drogowy 16 1.3. Klasyfikacja dróg..... 17 1.3.1. Klasyfikacja funkcjonalna dróg......... 18 1.3.2. Klasyfikacja
Ściankami szczelnymi nazywamy konstrukcje składające się z zagłębianych w grunt, ściśle do siebie przylegających. Ścianki tymczasowe potrzebne
Ścianki szczelne Ściankami szczelnymi nazywamy konstrukcje składające się z zagłębianych w grunt, ściśle do siebie przylegających. Ścianki tymczasowe potrzebne jedynie w okresie wykonywania robót, np..
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Kategoria geotechniczna vs rodzaj dokumentacji.
Piotr Jermołowicz Inżynieria Środowiska Kategoria vs rodzaj dokumentacji. Wszystkie ostatnio dokonane działania związane ze zmianami legislacyjnymi w zakresie geotechniki, podporządkowane są dążeniu do
OPINIA GEOTECHNICZNA określająca warunki gruntowo - wodne w rejonie projektowanej inwestycji w ulicy Tatrzańskiej w Wałbrzychu
Finansujący: Pracownia Projektowa Instalacyjna mgr inż. Mirosława Szewc ul. I. Grabowskiej 25/10, 58-304 Wałbrzych Wykonawca: Usługi Geologiczne i Geodezyjne GEOMETR K. Kominowski ul. Słoneczna 23, 58-310
Zagęszczanie gruntów.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Zagęszczanie gruntów. Celem zagęszczania jest zmniejszenie objętości porów gruntu, a przez to zwiększenie nośności oraz zmniejszenie odkształcalności
PROJEKT GEOTECHNICZNY
PROJEKT GEOTECHNICZNY Spis treści 1. Wstęp... 3 1.1. Przedmiot i cel opracowania... 3 1.2. Podstawy prawne... 3 1.3. Lokalizacja obiektu... 3 2. Analiza sposobu posadowienia w oparciu o dokumentację badań
WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH U WYKOPY POD FUNDAMENTY
WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH WYKOPY POD FUNDAMENTY 1. Wstęp 1.1. Określenia podstawowe Określenia podstawowe są zgodne z obowiązującymi odpowiednimi polskimi normami i z definicjami. 2.
NOŚNOŚĆ PALI POJEDYNCZYCH
NOŚNOŚĆ PALI POJEDYNCZYCH Obliczenia wykonuje się według PN-83/B-02482 Fundamenty budowlane. Nośność pali i fundamentów palowych oraz Komentarza do normy PN-83/B-02482, autorstwa M. Kosseckiego (PZIiTB,
Podłoże warstwowe z przypowierzchniową warstwą słabonośną.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Podłoże warstwowe z przypowierzchniową warstwą słabonośną. W przypadkach występowania bezpośrednio pod fundamentami słabych gruntów spoistych w stanie
Obliczenia ściany oporowej Dane wejściowe
Obliczenia ściany oporowej Dane wejściowe Projekt Data : 8.0.005 Ustawienia (definiowanie dla bieżącego zadania) Materiały i normy Konstrukcje betonowe : Współczynniki EN 99 : Ściana murowana (kamienna)
2. Charakterystyka geomorfologiczna, hydrograficzna, geologiczna i hydrogeologiczna rejonu składowiska odpadów komunalnych
Górnictwo i Geoinżynieria Rok 29 Zeszyt 3/1 2005 Jerzy Flisiak*, Sebastian Olesiak* ANALIZA WARUNKÓW STATECZNOŚCI WAŁU OPOROWEGO SKŁADOWISKA ODPADÓW KOMUNALNYCH ORAZ PROPOZYCJE JEGO STABILIZACJI 1. Wstęp
Warszawa, dnia 27 kwietnia 2012 r. Poz. 463
Warszawa, dnia 27 kwietnia 2012 r. Poz. 463 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 25 kwietnia 2012 r. w sprawie ustalania geotechnicznych warunków posadawiania
1 Geometria skarp i zboczy
Instrukcja do projektu Stateczność skarpy Wybrane zagadnienia do ćwiczenia projektowego ze stateczności skarp i zboczy. 1 Geometria skarp i zboczy Skarpa jest to nachylona powierzchnia terenu powstała
D - 02.00.01 ROBOTY ZIEMNE. WYMAGANIA OGÓLNE
SPECYFIKACJE TECHNICZNE D - 02.00.01 ROBOTY ZIEMNE. WYMAGANIA OGÓLNE 1. Wstęp 1.1. Przedmiot ST Przedmiotem niniejszej specyfikacji technicznej są wymagania dotyczące wykonania i odbioru robót ziemnych
Segmentowe mury oporowe - systemy licowania.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Segmentowe mury oporowe - systemy licowania. Estetyka poszczególnych systemów ścian z gruntu zbrojonego zależy od zastosowanego systemu licowania, który
Analiza stateczności stoku w Ropie
Zał. 9 Analiza stateczności stoku w Ropie Wykonał: dr inż. Włodzimierz Grzywacz... Kraków, listopad 2012 2 Obliczenia przeprowadzono przy pomocy programu numerycznego PROGEO opracowanego w Instytucie Techniki
Spis treści. Od autora Wprowadzenie Droga w planie... 31
Spis treści Od autora.... 11 1. Wprowadzenie.... 13 1.1. Pojęcia podstawowe... 13 1.2. Ruch drogowy 16 1.3. Klasyfikacja dróg..... 18 1.3.1. Klasyfikacja funkcjonalna dróg......... 18 1.3.2. Klasyfikacja
Wykopy - wpływ odwadniania na osiadanie obiektów budowlanych.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Wykopy - wpływ odwadniania na osiadanie obiektów budowlanych. Obniżenie zwierciadła wody podziemnej powoduje przyrost naprężenia w gruncie, a w rezultacie
Cz. 1. Występowanie zjawisk osuwiskowych w budownictwie komunikacyjnym
Cz. 1. Występowanie zjawisk osuwiskowych w budownictwie komunikacyjnym tekst: MARIAN KOWACKI Stabilizacja osuwiska w Lipiu, fot. Aarsleff Sp. z o.o. Osuwiska, podobnie jak powodzie, wybuchy wulkanów, trzęsienia
, u. sposób wyznaczania: x r = m. x n, Zgodnie z [1] stosuje się następujące metody ustalania parametrów geotechnicznych:
Wybrane zagadnienia do projektu fundamentu bezpośredniego według PN-B-03020:1981 1. Wartości charakterystyczne i obliczeniowe parametrów geotechnicznych oraz obciążeń Wartości charakterystyczne średnie
mgr Sławomir Gawałko upr. geologiczne: V-1494, VI-0396 dr inż. Jan Wencewicz Upr. bud. St-584/78 Członek MAZ/WM/1580/1 Warszawa, kwiecień 2010 r.
1989 www.hydeko.eu ZAMAWIAJĄCY Zarząd Mienia m. st. Warszawy Jednostka Budżetowa ul. Jana Kazimierza 62 01-248 Warszawa UMOWA ZMW/26/2010/I3/AK/C z dnia 08.02.2010 r. TEMAT DOKUMENTACJA WYKONAWCZA ZADANIA
Projektowanie nie kotwionej (wspornikowej) obudowy wykopu
Przewodnik Inżyniera Nr 4 Akutalizacja: 1/2017 Projektowanie nie kotwionej (wspornikowej) obudowy wykopu Program powiązany: Ściana projekt Plik powiązany: Demo_manual_04.gp1 Niniejszy rozdział przedstawia
Pale fundamentowe wprowadzenie
Poradnik Inżyniera Nr 12 Aktualizacja: 09/2016 Pale fundamentowe wprowadzenie Celem niniejszego przewodnika jest przedstawienie problematyki stosowania oprogramowania pakietu GEO5 do obliczania fundamentów
Miasto Stołeczne Warszawa pl. Bankowy 3/5, Warszawa. Opracował: mgr Łukasz Dąbrowski upr. geol. VII Warszawa, maj 2017 r.
OPINIA GEOTECHNICZNA dla Inwestycji polegającej na remoncie placu zabaw w Parku Kultury w miejscowości Powsin ul. Maślaków 1 (dz. nr ew. 4/3, obręb 1-12-10) Inwestor: Miasto Stołeczne Warszawa pl. Bankowy
Fundamentem nazywamy tę część konstrukcji budowlanej lub inżynierskiej, która wsparta jest bezpośrednio na gruncie i znajduje się najczęściej poniżej
Fundamentowanie 1 Fundamentem nazywamy tę część konstrukcji budowlanej lub inżynierskiej, która wsparta jest bezpośrednio na gruncie i znajduje się najczęściej poniżej powierzchni terenu. Fundament ma
GEOTECHNICZNE WARUNKI POSADOWIENIA do projektu budowy sali sportowej przy Zespole Szkół nr 2 przy ul. Pułaskiego 7 w Otwocku
odwierty geologiczne studnie głębinowe www.georotar.pl tel. 608 190 290 Zamawiający : Firma Inżynierska ZG-TENSOR mgr inż. Zbigniew Gębczyński ul. Janowicka 96 43 512 Janowice GEOTECHNICZNE WARUNKI POSADOWIENIA
Polskie normy związane
(stan na 10.10.2013) Polskie normy związane Polskie normy opracowane przez PKN (Polski Komitet Normalizacyjny) (wycofane) PN-55/B-04492:1985 Grunty budowlane. Badania właściwości fizycznych. Oznaczanie