Wstęp. Wg. innego kryterium będą to czujniki realizujące pomiar dotykowy (np. termorezystory) bezdotykowy (np. pirometry)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp. Wg. innego kryterium będą to czujniki realizujące pomiar dotykowy (np. termorezystory) bezdotykowy (np. pirometry)"

Transkrypt

1 Sensory temperatury 1. Wstęp 2. Skale temperatur 3. Sensory rezystancyjne 3.1 Sensory metaliczne 3.2 Sensory półprzewodnikowe (termistory) 4. Sensory termoelektryczne 5. Pirometry 6. Sensory złączowe półprzewodnikowe 7. Światłowodowe sensory temperatury 1

2 Wstęp Wg. jednego z kryteriów klasyfikacji czujniki temp. można podzielić na: generacyjne (np. termoelektryczne, gdzie ΔT powoduje powstanie STEM) parametryczne (np. rezystancyjne R(T), magnetyczne μ(t), dielektryczne ε(t)) Wg. innego kryterium będą to czujniki realizujące pomiar dotykowy (np. termorezystory) bezdotykowy (np. pirometry) Wymagania stawiane czujnikom temp. w praktyce: dokładność (termom. światłowodowe i fotodetektory dają zwiększone czułości w podwyższonych temp. i są odporne na zakłócenia EM, term. Pt dają zwiększoną stabilność i powtarzalność do temp. ok. 900 o C i są mniej wrażliwe na gradienty temp. 2

3 Wymagania cd.: niezawodność Szczególnie ważna w automatyzacji procesów (czasami ważniejsza niż dokładność). Przydatne są tu termometry mechaniczne (bimetale, czujniki ciśnieniowe), rozwój wymusza jednak stosowanie termometr. z wyj. elektrycznym. niskie koszta Masowe użycie wymaga redukcji kosztów (przejście do techn. grubo i cienkowarstwowej dla term. Pt, nowe generacje pirometrów i bolometrów, podłoża mikromech. Si) Perspektywy rozwoju rozwój technologii warstwowych i mikromech. zwiększone zast. czujników światłowodowych rosnąca rola mikroprocesorów i rozwój czujników z wyj. cyfrowym. 3

4 Skale temperatur Początkowo skale temp. były czysto empiryczne, oparte głównie na rozszerzalności cieczy i gazów. W roku 1742 wprow. stustopniową skalę Celsjusza, opartą na dwu punktach równowagowych: punkt topnienia lodu 0 o C punkt wrzenia wody 100 o C Odstęp między tymi punktami podzielony na 100 części daje wartość 1 o C. Rok 1877 Konferencja Paryska Jako wzorcowy przyjęto termometr gazowy p(t) dla V = const z użyciem wodoru, jako skalę - skalę Celsjusza. Z czasem przyjęto zaproponowaną przez Kelvina skalę termodynamiczną definiowaną w oparciu o silnik Carnota T = T tr Q/Q tr Q ciepło pobrane ze źródła o temp.t Q tr ciepło oddane do chłodnicy o temp.t tr W ten sposób uzysk. niezależność skali od substancji roboczej, a temp. przypisana jest tylko jednemu punktowi T tr = 273,16K 4

5 Skale temperatur Międzynarodowa Praktyczna Skala Temperatur 1968 (IPTS-68) Podstawą jest skala termodynamiczna. Związek ze skalą Celsjusza określono jako t( o C) = T(K) 273,15 zatem 1 o C = 1K Skala praktyczna określono tzw. punkty stałe (temp. równowagi faz pewnych substancji w okeślonych warunkach). Podano zasady interpolacji między punktami stałymi oraz określono termometry wzorcowe do pomiaru temp. w całym zakresie. Międzynarodowa Skala Temperatur 1990 (ITS-90) Zbieżna w wielu przyp. ze skalą IPTS-68. Wprow. jednak szereg zmian: rozszerzono stos. termometrów rezystancyjnych Pt zrezygnowano z termopary PtRh-Pt jako wzorca zmieniono wzory interpolacyjne Przyporz. temperatury 17 punktom równowagowym, podano 4 termometry wzorcowe i odpowiednie wzory do interpolacji między punktami stałymi. 5

6 ITS-90 Definition of the International Temperature Scale of 1990 Between 0.65 K and 5.0 K T90 is defined in terms of the vapor-pressure temperature relations 3He and 4He. Between 3.0 K and the triple point of neon ( K) T90 is defined by means of a helium gas thermometer calibrated at three experimentally realizable temperatures having assigned numerical values (defining fixed points) and using specified interpolation procedures. Between the triple point of equilibrium hydrogen ( K) and the freezing point of silver ( C) T90 is defined by means of platinum resistance thermometers calibrated at specified sets of defining fixed points and using specified interpolation procedures. Above the freezing point of silver ( C) T90 is defined in terms of a defining fixed point and the Planck radiation law. 6

7 Sensory rezystancyjne (RTD) Sensory rezystancyjne można w ogólności podzielić na metalowe i półprzewodnikowe (termistory). Rezystancja sensorów metalicznych w wąskim zakresie temp. może być przedst. w postaci liniowej zależności: R(t) = R o [1 + α(t - t o )] α temperat. wsp. rezystancji TWR R o rezyst. w temp. t o (na ogół 0 lub 25 o C) W szerszym zakr. temp. trzeba stos. przybliżenia w post. wielomianów wyższych rzędów. Przykładowo dla platyny dobrym przybliżeniem w zakr. od temp. 0 0 C do C (PN-EN zgod. z ITS90) jest wielomian drugiego stopnia R(Ω) = R o (1 + 39, T 5, T 2 ) R o rez. w 0 0 C T temp. w skali Kelvina 7

8 Sensory rezystancyjne metalowe Wymagania dla termorezystorów metalowych: duża czułość (duże α) liniowość (α stałe) miniaturyzacja (duże ρ) odporność chemiczna i stabilność długoczasowa Metal Rezystywność ρ [μωcm] TWR α [1/ o C] w 20 o C Al 2,65 0,0039 Ag 1,6 0,0061 Au 2,24 0,0034 Cu 1,67 0,0039 Ni 6,84 0,0069 Pd 10,5 0,0037 Pt 10,6 0,0039 Ta 12,4 0,0038 W 5,6 0,0045 Zn 5,9 0,0042 Rezystywności i TWR dla wybranych metali 8

9 Sensory rezystancyjne metalowe Najpopularniejszym mat. termorezystancyjnym jest platyna. Termometry Pt są używane jako wzorcowe w zakresie: od punktu potrójnego wodoru 13,81 K do punktu krzepnięcia srebra 1234,93 K (961,78 o C) i do 1050 o C w sposób krótkotrwały. Czysta platyna może być wyciągana w postaci drutów o średnicach mniejszych niż 0,05mm, co stwarza możliwość uzyskania niezbędnych wartości rezystancji. Typowy czujnik to Pt100 (100 Ω w temp. 0 o C). Duże możliwości daje stosowanie warstw grubych lub cienkich. Rezystancja względna drutu platynowego R 100 /R o = 1 + α Δt będąca miarą TWR zależy od czystości drutu i dla bardzo czystego drutu Pt osiągnięto: R 100 /R o = 1,3927 w termometrii precyzyjnej stosuje się: R 100 /R o = 1,3910 9

10 Sensory rezystancyjne metalowe Normy USA: R 100 /R o = 1,3925 Norma dla termometrów Pt w zastosowaniach technicznych (DIN 43760, IEC 751): R 100 /R o = 1,3850 Norma IEC przewiduje ponadto dwie klasy dokładności dla termometrów Pt: A dla zakresu -200 do 650 o C (bardziej rygorystyczna) dopuszczalny błąd [ o C]: ±(0,15 + 0,002 t ) B dla zakresu -200 do 850 o C dopuszczalny błąd [ o C]: ±(0,3 + 0,005 t ). typowe wymiary: 3,2 x 10 mm dla 100 Ω, 500 Ω, 1000 Ω 2 x 10 mm dla 100 Ω, 500 Ω, 1000 Ω 2 x 2,5 mm dla 100 Ω 1 x 5 mm dla 100 Ω Zewnętrzny wygląd czujników drutowych Pt 10

11 Sensory platynowe cienkowarstwowe Cienka warstwa platyny nanoszona jest na podłoże ceramiczne i rezystancja korygowana do żądanej wartości. Zasada nacinania laserem cienkiej warstwy Pt (czujnik bez pokryć zabezpieczających) Gotowy czujnik cienkowarstwowy Pt 11

12 Czułość termometrów rezystancyjnych Zmiany rezystancji: Pt 100 : ~ 0,4 Ω/K Ni 100 : ~ 0,6 Ω/K Pt 1000: ~ 4 Ω/K Czułość napięciowa du/dt ograniczona jest samonagrzewaniem. Wsp. samonagrzewania: EK = P/ΔT [mw/k] Czułość napięciową wylicza się z zależności: du/dt = α (EK ΔT R) 1/2 gdzie α = dr/rdt Wyznaczone wartości czułości napięciowej (dla ΔT = 0,1 o C w bieżącej wodzie): drutowe 100 Ω, 3mmΦ x 30 mmm 0,7 mv/k 500 Ω, 3mmΦ x 50 mmm 17,3 mv/k warstwowe 100 Ω, 2 x 10 mmm 1,3 mv/k 1000 Ω, 2 x 10 mmm 4,2 mv/k 12

13 Półprzewodnikowe czujniki termorezystorowe (termistory) Nazwą tą określa się rezystory półprzewodnikowe w postaci spieków tlenków, siarczków i selenków pierwiastków takich jak Co, Mn, Ti, Fe, Ni, Cu, Al, wytwarzanych w formie pręcików, kuleczek, kropelek, dysków itp., a także grubych warstw. Termistory można podzielić na dwie grupy: NTC (negative temperature coefficient) PTC (positive temperature coefficient) Charakterystyki termistorów NTC i PTC w porównaniu do termorezystorów metalicznych RTD 13

14 Termistory NTC Konwencjonalne rezystory tlenkowe mają ujemny TWR, a rezystancję jako funkcję temperatury można z dobrym przybliżeniem zapisać w postaci: R T = A exp [β/ T] Stała A zależy od wymiarów próbki półprzewodnika, β jest stałą materiałową określającą czułość (β = K). Wprowadzając rezystancję odniesienia R ref w temp. T ref = 25 o C, uzyskuje się R T = R ref exp [β(1/t 1/T ref )] Wartości R ref wahają się w przedziale: 500Ω 10MΩ. W szerokim przedziale temp. czułość lepiej charakteryzuje współcz. TWR: α = 1/R T dr T /dt = - β/t 2 Wartość α jest ok razy większa niż dla metali ale silnie maleje z temp. 14

15 Pomiary rezystancji termorezystorów U dla R U w yj w yj UzR IR R R T / R 1 T RT Uz( 1 ) R Kompensacja rezystancji doprowadzeń (w tym przyp. 1 i 3) 1,2,3 przewody identyczne 15

16 Czujniki termoelektryczne Należą do czujników generacyjnych, których działanie oparte jest na zjawisku Seebecka. Zjawisko Seebecka (1821) W obwodzie składającym się z dwu przewodników A oraz B, których złącza mają temp. T + ΔT oraz T, powstaje siła termoelektryczna i płynie prąd termoelektryczny A(+) metal A dodatni w stos. do B Bezwzględna różnicowa termo-sem danego materiału: a de/dt wiąże powstałe pole elektryczne E a z gradientem temperatury E T a a 16

17 Czujniki termoelektryczne Prąd występuje w obwodzie składającym się z co najmniej dwu różnych materiałów. Względna różnicowa termo-sem a AB a B a A Wartości α AB dla metali są rzędu 1 10 μv/k, dla półprzewodników kilka rzędów wielkości większe. Ponieważ α jest funkcją temp., termo-sem dla złącz w temp. T 1 oraz T 2 wyznacza się w wyniku całkowania V T 2 a (T )dt f (T T AB AB 1 2 T 1 ) Dla niedużego przedziału temperatur można posłużyć się przybliżeniem V a (T AB T ) AB 0 Jeżeli znamy temperaturę spoiny odniesienia T 0 to z pomiaru termo-sem wyznaczy się temp. spoiny pomiarowej T (termopara). W praktyce nie korzysta się z wart. bezwzględnych α (wymaga to całkowania) a posługujemy się wartościami tablicowymi α danego materiału w stos. np. do Pt. Przykład wyznaczania STEM dla konkretnej spoiny (t 0 = 0 0 C, t = C): dane Au-Pt: +1,84 mv dane Pd-Pt : - 1,23 mv obliczone Au-Pd: 1,84 (-1,23)= 3,07 mv 17

18 Termopary Powszechnie stosowane termopary są standaryzowane, a wytwarzane są głównie z materiałów stopowych o składzie często zastrzeżonym przez producenta. Typ (wg.ansi) Materiały E chromel/konstantan J Fe/konstantan K chromel/alumel, znane również jako NiCr/NiAl T Cu/konstantan R Pt/Pt-13%Rh S Pt/Pt-10%Rh B Pt-6%Rh/Pt-30%Rh Właściwości termoelementu typu K: termoelektroda pierwsza NiCr (plusowa), skład: 85% Ni, 12% Cr oraz inne pierwiastki w małych ilościach termoelektroda druga NiAl (minusowa), skład: 95% Ni, 2% Al, 2% Mn, 1% Si, prawie prostoliniowa charakterystyka termometryczna, odporny na atmosferę utleniającą, w wyższych temperaturach wrażliwy na atmosferę redukującą i na obecność związków siarki, zakres roboczy od C do C, średnia czułość 41 μv/k. 18

19 Termopary Typowe termopary wykonywane są jako tzw. termoelementy płaszczowe Z wykorzystaniem technologii mikromechanicznej wytwarzane są termopary na membranie. Ich mała pojemność cieplna i dobra izolacja termiczna umożliwiają pomiary promieniowania temperaturowego. W przedstawionym rozwiązaniu złącze zimne znajduje się na podłożu dobrze przewodzącym ciepło. Złącze gorące umieszczone jest w centralnej części membrany o małym przewodnictwie cieplnym. Dodatkowo absorber umieszczony jest tak aby ogrzewać złącze gorące. 19

20 Pomiary z wykorzystaniem termoelementów Podstawowy obwód pomiarowy termoelementu Zmiana temperatury odniesienia wprwadza błąd pomiaru. W temp. odniesienia 0 0 C mierzy się ε t. W temp. odniesienia t r mierzy się ε a = ε t - ε r Sposoby kompensacji zmian temperatury odniesienia 1. Oddalenie złącza odniesienia od źródła ciepła z zastosowaniem przewodów kompensacyjnych PX, NX - przewody o właściwościach termoelektrycznych identycznych z termoelementami (dla PtRh-Pt stopy miedzi i niklu) 20

21 Sposoby kompensacji zmian temperatury odniesienia, c.d. 2. Termostat stablizujący temp. odniesienia, np C 3. Automatyczna korekcja zmian temp. odniesienia termometr: R t = R 0 [1 + α (t 0 t 0 )] termopara: Δε = k (t 0 t 0 ) warunek kompensacji: Δε = - U N warunek ten jest spełniony dla U z = 4k/α 4. Obliczenia mikroprocesora wg. relacji: t = t d + C t r t d, t r temp. mierzone, C stała dla termopary 21

22 Pirometry Są to termometry do zdalnego pomiaru temperatury (bezkontaktowe), których działanie oparte jest na analizie wysyłanego przez ciała promieniowania. Od temp. krzepnięcia Ag (961,78 0 C) pirometry monochromatyczne używane są jako termometry wzorcowe. Podział pirometrów: pirometry promieniowania całkowitego (szerokopasmowe) pirometry monochromatyczne pirometry dwubarwowe (stosunkowe) pirometry wielobarwowe Podstawowe prawa promieniowania temperaturowego: Prawo Plancka Natężenie promieniowania monochromatycznego (emitancja energetyczna), tj. moc na jednostkę powierzchni i jednostkę długości fali (Wm -2 µm -1 ) wynosi: c1e 5 c2 / ( e T 1) λ- dług. fali, c 1,c 2 stałe radiacyjne ε λ emisyjność monochromatyczna źródła (dla c.dosk. czarn. równa 22 1)

23 Pirometry Prawo Stefana-Boltzmanna Promieniowanie jest absorbowane przez detektor w skończonym przedziale długości fali. Całkownie wzoru Plancka wzgl. dług. fali daje moc na jednostkę powierzchni promieniowaną przez obiekt o temp.t 4 b e T σ = 5.67x10-8 W/m 2 K 4 ε - emisyjność, zależna od stanu powierzchni i temperatury Powyższa zależność, zwana prawem S-B jest podstawą działania pirometrów szerokopasmowych. Dokładna analiza zjawiska wymiany prom. między obiektem i sensorem musi uwzględnić również prom. odbite oraz wyemitowane przez sensor. Prowadzi to do zależności: ee s ( T 4 Ts 4 ) ε S, T S emisyjność i temp. sensora 23

24 Pirometr dwubarwny Analiza przebiegu emitancji energetycznej Φ λ w zależności od emisyjności źródła ε wskazuje, że dla sąsiednich długości fali obowiązuje zależność x y e 0. 4 e 0. 4 x y e 0. 7 e 0. 7 x y e 1 e 1 Zatem pomiar sygnału w dwu sąsiednich wąskich zakresach spektralnych eliminuje potrzebę wyznaczania emisyjności źródła ε. Stanowi to podstawę tzw. pirometrii dwubarwnej. Spektrum emisyjne dla źródła o temp. 600 o C i trzech różnych emisyjnościach ε 24

25 Budowa pirometrów Pirometr dwubarwny Pirometr szerokopasmowy Jako detektory stosuje się tzw. detektory fotonowe (fotowoltaiczne lub fotoprzewodnościowe), λ 1, λ 2 określają wąskie pasma leżące blisko siebie. Jako detektory stosuje się tzw. detektory termiczne (bolometry termistorowe lub termostosy). Wymagane jest szerokopasmowe okno wejściowe. 25

26 Złącze p/n jako czujnik temperatury Polaryzujemy złącze p/n diody (wytw. z tranzystora) w kierunku przewodzenia. I = I S [exp(qu BE /kt) 1] dla qu BE >> kt U BE = (kt/q) ln (I/I S ) dla I = const uzysk. dobrą liniowość w zakr C do C Dla tranzystorów krzemowych U BE / T - 2,25 mv/k dla T=300 K i I=10 μa I S zależy jednak nieznacznie od temperatury. Poprawę liniowości uzyskuje się w układzie różnicowym 26

27 Złącze p/n jako czujnik temperatury, c.d. Spadki napięć na złączach przy zasilaniu prądowym wynoszą U F1 kt q I ln I F1 S1 U F2 kt q I ln I F2 S2 Napięcie różnicowe U kt IF1 IS 2 kt IF1 JS 2 UF1 UF 2 ln( ) ln( q I I q I J F2 S1 F2 S1 A A e2 e1 ) Dla danej technologii tranzystorów można przyjąć, że gęstości prądów emiterowych są jednakowe J S1 = J S2. Oznaczając stosunek przekrojów emiterów jako r = A S2 /A S1 otrzymuje się U kt I ln( q I F1 F2 r ) Dla I F1 = I F2 oraz r = 4 otrzymuje się U kt q ln4 120V T [ K ] 27

28 Złączowy czujnik temperatury, układ scalony Przedstawiony układ jest praktyczną realizacją omawianej metody różnicowej z wykorzystaniem złączy p/n. Wytwarzany jest często jako element scalony w podłożu krzemowym w układach wymagających regulacji temperatury (np. w mikromechanicznych cz. ciśnienia). Tranzystory Q 3 i Q 4 tworzą tzw. lustro prądowe zapewniające równość I C1 = I C2 = I Napięcie V T na rezyst. R jest równe V T V V be1 be2 I T R 2 ln rt a zatem jest proporcjonalne do temp. bezwzględnej. Tego typu czujniki temp. nazywane są PTAT. k q 28

29 Półprzewodnikowy czujnik temperatury z wykorzystaniem techniki światłowodowej Przesunięcie krawędzi absorpcji półprzewodnika ze wzrostem temperatury w kierunku dłuższych fal na tle widma emisji diody nadawczej. Po przejściu przez półprzewodnik natężenie światła maleje. Wzrost temp. powoduje dalszy spadek natężenia. 29

Technika sensorowa. Czujniki temperatury. dr inż. Wojciech Maziarz, prof. dr hab. T. Pisarkiewicz Katedra Elektroniki C-1, p.301, tel.

Technika sensorowa. Czujniki temperatury. dr inż. Wojciech Maziarz, prof. dr hab. T. Pisarkiewicz Katedra Elektroniki C-1, p.301, tel. Technika sensorowa Czujniki temperatury dr inż. Wojciech Maziarz, prof. dr hab. T. Pisarkiewicz Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Kontakt: Wojciech.Maziarz@agh.edu.pl 1 Czujniki temperatury

Bardziej szczegółowo

Czujniki temperatury

Czujniki temperatury Czujniki temperatury Pomiar temperatury Pomiar temperatury jest jednym z najczęściej wykonywanych pomiarów wielkości nieelektrycznej w gospodarstwach domowych jak i w przemyśle. Do pomiaru temperatury

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH. Instrukcja do ćwiczenia. Pomiary temperatur metodami stykowymi.

POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH. Instrukcja do ćwiczenia. Pomiary temperatur metodami stykowymi. POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH Instrukcja do ćwiczenia Pomiary temperatur metodami stykowymi. Wrocław 2005 Temat ćwiczenia: Pomiary temperatur czujnikami stykowymi

Bardziej szczegółowo

Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY

Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY Pojęcie temperatury jako miary stanu cieplnego kojarzy się z odczuciami fizjologicznymi Jeden ze parametrów stanu termodynamicznego układu charakteryzujący

Bardziej szczegółowo

Czujniki temperatur, termopary

Czujniki temperatur, termopary Czujniki temperatur, termopary 1 Termopara Czujniki termoelektryczne są to przyrządy reagujące na zmianę temperatury zmianą siły termodynamicznej wbudowanego w nie termoelementu. Połączone na jednym końcu

Bardziej szczegółowo

Projektowanie systemów pomiarowych

Projektowanie systemów pomiarowych Projektowanie systemów pomiarowych 10 Pomiar temperatury wybrane metody http://www.acse.pl/czujniki-temperatury 1 Pomiary temperatury Skale temperatury: - Celsjusza (1742) uporządkowana przez Stromera

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

Wzorcowanie termometrów i termopar

Wzorcowanie termometrów i termopar Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wzorcowanie termometrów i termopar - 1 - Wstęp teoretyczny Temperatura jest jednym z parametrów określających stan termodynamiczny ciała

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 9. Czujniki temperatury

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 9. Czujniki temperatury Cel ćwiczenia: Poznanie budowy i zasady działania oraz parametrów charakterystycznych dla stykowych czujników temperatury. Zapoznanie się z metodami pomiaru temperatur czujnikami stykowymi oraz sposobami

Bardziej szczegółowo

Ćwiczenie. Elektryczne metody pomiaru temperatury

Ćwiczenie. Elektryczne metody pomiaru temperatury Program Rozwojowy Politechniki Warszawskiej, Zadanie 36 Przygotowanie i modernizacja programów studiów oraz materiałów dydaktycznych na Wydziale Elektrycznym Laboratorium Akwizycja, przetwarzanie i przesyłanie

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska Instytut Inżynierii Biomedycznej i Pomiarowej Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Laboratorium Pomiarów Wielkości Nieelektrycznych Pomiary temperatur metodami stykowymi Wrocław

Bardziej szczegółowo

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH Rzeszów 2001 2 1. WPROWADZENIE 1.1. Ogólna charakterystyka

Bardziej szczegółowo

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi 1.Wiadomości podstawowe Termometry termoelektryczne należą do najbardziej rozpowszechnionych przyrządów, służących do bezpośredniego pomiaru

Bardziej szczegółowo

Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica

Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica Układ pomiaru temperatury termoelementem typu K o dużej szybkości Paweł Kowalczyk Michał Kotwica Plan prezentacji Fizyczne podstawy działania termopary Zalety wykorzystania termopar Właściwości termoelementu

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia II Wyznaczanie charakterystyk statycznych czujników temperatury 1 1. Wstęp Temperatura jest jedną z najważniejszych wielkości fizycznych

Bardziej szczegółowo

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 6 Temat: Pomiar zależności oporu półprzewodników

Bardziej szczegółowo

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik

Bardziej szczegółowo

Badanie półprzewodnikowych elementów bezzłączowych

Badanie półprzewodnikowych elementów bezzłączowych Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i

Bardziej szczegółowo

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

Ćwiczenie 3 Czujniki temperatury

Ćwiczenie 3 Czujniki temperatury POLITECHNIKA WARSZAWSKA WYDZIAŁ INśYNIERII PRODUKCJI INSTYTUT TECHNIK WYTWARZANIA SENSORYKA http://www.cim.pw.edu.pl/sensoryka Ćwiczenie 3 Czujniki temperatury ZAKŁAD AUTOMATYZACJI, OBRABIAREK I OBRÓBKI

Bardziej szczegółowo

WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY

WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 3 str. 1/9 ĆWICZENIE 3 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi czujnikami elektrycznymi

Bardziej szczegółowo

CZUJNIKI I UKŁADY POMIAROWE

CZUJNIKI I UKŁADY POMIAROWE POLITECHNIKA WARSZAWSKA Wydział Mechaniczny Energetyki i Lotnictwa Instytut Techniki Lotniczej i Mechaniki Stosowanej Zakład Automatyki i Osprzętu Lotniczego CZUJNIKI I UKŁADY POMIAROWE Czujniki przykładowe

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH

Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WEL WAT ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH A. Cel ćwiczenia:

Bardziej szczegółowo

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia Termodynamika Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2013 1. INSTRUKCJA

Bardziej szczegółowo

Zjawisko termoelektryczne

Zjawisko termoelektryczne 34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH. Pomiary temperatur. Laboratorium miernictwa

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH. Pomiary temperatur. Laboratorium miernictwa POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Pomiary temperatur Laboratorium miernictwa (M-III, M-XI) Opracował: dr inż. Leszek Remiorz Sprawdził:

Bardziej szczegółowo

SYSTEMY POMIAROWE POLITECHNIKA KRAKOWSKA ZAGADNIENIA DR INŻ. JAN PORZUCZEK

SYSTEMY POMIAROWE POLITECHNIKA KRAKOWSKA ZAGADNIENIA DR INŻ. JAN PORZUCZEK POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Ochrony Powietrza SYSTEMY POMIAROWE DR INŻ. JAN PORZUCZEK ZAGADNIENIA Podstawa prawna Pojęcia podstawowe. Błąd i niepewność pomiaru. Struktura toru

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Cel ćwiczenia: Wyznaczenie współczynnika temperaturowego oporu platyny oraz pomiar charakterystyk termopary miedź-konstantan.

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska. Zygmunt Kubiak 1

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska. Zygmunt Kubiak 1 Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak 1 Wprowadzenie Kryteria podziału sensorów temperatury Zjawisko fizyczne Rozszerzalność metali, cieczy, gazów Zmiana rezystancji

Bardziej szczegółowo

2.1 Cechowanie termopary i termistora(c1)

2.1 Cechowanie termopary i termistora(c1) 76 Ciepło 2.1 Cechowanie termopary i termistora(c1) Celem ćwiczenia jest zbadanie zależności temperaturowej oporu termistora oraz siły elektromotorycznej indukowanej w obwodach z termoparą. Przeprowadzane

Bardziej szczegółowo

CECHOWANIE TERMOPARY I TERMISTORA

CECHOWANIE TERMOPARY I TERMISTORA INSYU ELEKRONIKI I SYSEMÓW SEROWANIA WYDZIAŁ ELEKRYCZNY POLIECHNIKA CZĘSOCHOWSKA LAORAORIUM FIZYKI ĆWICZENIE NR E-6 CECHOWANIE ERMOPARY I ERMISORA I. Zagadnienia do przestudiowania 1. Stosowane aktualnie

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 310 Wydział/Kierunek Nazwa zajęć laboratoryjnych Nr zajęć

Bardziej szczegółowo

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi:

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: 1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: A. 10 V B. 5,7 V C. -5,7 V D. 2,5 V 2. Zasilacz dołączony jest do akumulatora 12 V i pobiera z niego prąd o natężeniu

Bardziej szczegółowo

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2.1. Cel ćwiczenia: zapoznanie się ze zjawiskami fizycznymi, na których oparte jest działanie termoelementów i oporników

Bardziej szczegółowo

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Termodynamika Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2016 1. INSTRUKCJA

Bardziej szczegółowo

Czujniki i urządzenia pomiarowe

Czujniki i urządzenia pomiarowe Czujniki i urządzenia pomiarowe Czujniki zbliŝeniowe (krańcowe), detekcja obecności Wyłączniki krańcowe mechaniczne Dane techniczne Napięcia znamionowe 8-250VAC/VDC Prądy ciągłe do 10A śywotność mechaniczna

Bardziej szczegółowo

EMT-133. Elektroniczny miernik temperatury. Instrukcja obsługi. Karta gwarancyjna

EMT-133. Elektroniczny miernik temperatury. Instrukcja obsługi. Karta gwarancyjna CZAKI THERMO-PRODUCT 05-090 Raszyn ul.19 Kwietnia 58 tel. 22 7202302 fax. 22 7202305 handlowy@czaki.pl www.czaki.pl Elektroniczny miernik temperatury EMT-133 Instrukcja obsługi Karta gwarancyjna Wersja

Bardziej szczegółowo

SERIA IV ĆWICZENIE 4_3. Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia:

SERIA IV ĆWICZENIE 4_3. Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia: SERIA IV ĆWICZENIE 4_3 Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia: 1. Rodzaje, budowa, symbole, zasada działania i zastosowanie termistorów i warystorów. 2. Charakterystyka

Bardziej szczegółowo

POMIARY TEMPERATURY. 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Pomiar temperatury.

POMIARY TEMPERATURY. 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Pomiar temperatury. POMIARY TEMPERATURY 1. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z metodami pomiaru temperatury oraz wyznaczenie charakterystyk wybranych czujników temperatury (NTC, PTC, PT100, LM35, termopara

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

Wykład Mechanizmy przekazu ciepła. Przewodnictwo cieplne. Konwekcja. Radiacja (promieniowanie)

Wykład Mechanizmy przekazu ciepła. Przewodnictwo cieplne. Konwekcja. Radiacja (promieniowanie) Wykład 2 Przekaz ciepła Mechanizmy przekazu ciepła Promieniowanie Ciała Doskonale Czarnego (wstęp) Temperatura Pomiar temperatury Termometry Ciśnienie W. Dominik Wydział Fizyki UW Termodynamika 2017/2018

Bardziej szczegółowo

Wykaz urządzeń Lp Nazwa. urządzenia 1. Luksomierz TES 1332A Digital LUX METER. Przeznaczenie/ dane techniczne Zakres 0.. 200/2000/20000/ 200000 lux

Wykaz urządzeń Lp Nazwa. urządzenia 1. Luksomierz TES 1332A Digital LUX METER. Przeznaczenie/ dane techniczne Zakres 0.. 200/2000/20000/ 200000 lux Wykaz urządzeń Lp Nazwa urządzenia 1 Luksomierz TES 1332A Digital LUX METER Przeznaczenie/ dane techniczne Zakres 0 200/2000/20000/ 200000 lux 2 Komora klimatyczna Komora jest przeznaczona do badania oporu

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INFOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

POMIARY TEMPERATURY I

POMIARY TEMPERATURY I Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi

Bardziej szczegółowo

(zwane również sensorami)

(zwane również sensorami) Czujniki (zwane również sensorami) Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do

Bardziej szczegółowo

ĆWICZENIE nr 5. Pomiary wielkości nieelektrycznych

ĆWICZENIE nr 5. Pomiary wielkości nieelektrycznych Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONIZNEJ ĆWIZENIE nr 5 Pomiary wielkości nieelektrycznych EL ĆWIZENIA: elem ćwiczenia

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 5 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n. Zagadnienia

Bardziej szczegółowo

Podstawy fizyki wykład 6

Podstawy fizyki wykład 6 Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie współczynnika oporu platyny. Pomiar charakterystyki termopary miedź-konstantan.

Cel ćwiczenia: Wyznaczenie współczynnika oporu platyny. Pomiar charakterystyki termopary miedź-konstantan. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE:

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE: M-1TI PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA Konwersja sygnału z czujnika temperatury (RTD, TC), rezystancji (R) lub napięcia (U) na sygnał pętli prądowej 4-20mA Dowolny wybór zakresu

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Przykład 2. Przykład 3. Spoina pomiarowa

Przykład 2. Przykład 3. Spoina pomiarowa Wykład 10. Struktura toru pomiarowego. Interfejsy, magistrale, złącza. Eksperyment pomiarowy zjawisko lub model metrologiczny mezurand, czujniki przetwarzanie na sygnał elektryczny, kondycjonowanie sygnału

Bardziej szczegółowo

Czujnik Rezystancyjny

Czujnik Rezystancyjny Czujnik Rezystancyjny Slot RTD Punktowy w dodatkowej obudowie, Karta katalogowa, Edycja 016 Zastosowanie Silniki elektryczne Generatory Właściwości techniczne Wykonania pojedyncze i podwójne Obwód pomiarowy

Bardziej szczegółowo

POMIAR TEMPERATURY INSTYTUT MERTOLOGII I INŻYNIERII BIOMEDYCZNEJ SENSORY I POMIARY WIELKOŚCI NIEELEKTRYCZNYCH ĆWICZENIE LABORATORYJNE:

POMIAR TEMPERATURY INSTYTUT MERTOLOGII I INŻYNIERII BIOMEDYCZNEJ SENSORY I POMIARY WIELKOŚCI NIEELEKTRYCZNYCH ĆWICZENIE LABORATORYJNE: INSTYTUT MERTOLOGII I INŻYNIERII BIOMEDYCZNEJ SENSORY I POMIARY WIELKOŚCI NIEELEKTRYCZNYCH ĆWICZENIE LABORATORYJNE: POMIAR TEMPERATURY Opracowali: dr inż. Elżbieta Ślubowska mgr. Mateusz Szumilas 1. Wstęp

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH

CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH Rozważmy tylko takie czujniki, które nie zawierają żadnych części ruchomych. Zasadniczo, wyróżnia się dwa rodzaje czujników wielkości nieelektrycznych. Pierwszy rodzaj,

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

Czujnik Rezystancyjny

Czujnik Rezystancyjny Czujnik Rezystancyjny Slot RTD Bifilarny w dodatkowej obudowie, TOPE60 Karta katalogowa TOPE60, Edycja 016 Zastosowanie Silniki elektryczne Generatory Właściwości techniczne Wykonania pojedyncze i podwójne

Bardziej szczegółowo

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem

Bardziej szczegółowo

Repeta z wykładu nr 2. Detekcja światła. Parametry fotodetektorów. Co to jest detektor?

Repeta z wykładu nr 2. Detekcja światła. Parametry fotodetektorów. Co to jest detektor? Repeta z wykładu nr 2 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Eksperyment pomiary zgazowarki oraz komory spalania

Eksperyment pomiary zgazowarki oraz komory spalania Eksperyment pomiary zgazowarki oraz komory spalania Damian Romaszewski Michał Gatkowski Czym będziemy mierzyd? Pirometr- Pirometry tworzą grupę bezstykowych mierników temperatury, które wykorzystują zjawisko

Bardziej szczegółowo

WYZNACZANIE ZMIAN TERMICZNYCH REZYSTANCJI METALI I PÓŁPRZEWODNIKÓW

WYZNACZANIE ZMIAN TERMICZNYCH REZYSTANCJI METALI I PÓŁPRZEWODNIKÓW POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS02137; KN02137; LS02137; LN02137 Ćwiczenie Nr 6 WYZNACZANIE ZMIAN TERMICZNYCH

Bardziej szczegółowo

SKALE TERMOMETRYCZNE

SKALE TERMOMETRYCZNE TEMPERATURA Jeden ze parametrów stanu termodynamicznego układu charakteryzujący stopień jego ogrzania. Skalarna wielkość fizyczna charakteryzująca stan równowagi termodynamicznej układu makroskopowego.

Bardziej szczegółowo

( ) u( λ) w( f) Sygnał detektora

( ) u( λ) w( f) Sygnał detektora PARAMETRY DETEKTORÓW FOTOELEKTRYCZNYCH Sygnał detektora V = V(b,f, λ,j,a) b f λ J A - polaryzacja, - częstotliwość modulacji, - długość fali, - strumień (moc) padającego promieniowania, - pole powierzchni

Bardziej szczegółowo

Pomiar współczynnika przewodzenia ciepła ciał stałych

Pomiar współczynnika przewodzenia ciepła ciał stałych Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar współczynnika przewodzenia ciepła ciał stałych - - Wiadomości wstępne Przewodzenie ciepła jest procesem polegającym na przenoszeniu

Bardziej szczegółowo

POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI

POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Zasada działania termometru rezystancyjnego. Elementy

Bardziej szczegółowo

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu.

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. THICK 800A DO POMIARU GRUBOŚCI POWŁOK THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zoptymalizowany do pomiaru grubości warstw Detektor Si-PIN o rozdzielczości

Bardziej szczegółowo

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p) 1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.

Bardziej szczegółowo

Termometr dylatacyjny

Termometr dylatacyjny Termometr dylatacyjny cieczowy szklany mechaniczny bimetaliczny wydłuŝeniowy Termometr manometryczny (gazowy) kapilara manometr bańka termometryczna Termometr oporowy metalowy Pt 100, Ni 100 bifilarne

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki

Bardziej szczegółowo

ZJAWISKA TERMOELEKTRYCZNE

ZJAWISKA TERMOELEKTRYCZNE Wstęp W ZJAWISKA ERMOELEKRYCZNE W.1. Wstęp Do zjawisk termoelektrycznych zaliczamy: zjawisko Seebecka - efekt powstawania różnicy potencjałów elektrycznych na styku metali lub półprzewodników, zjawisko

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

SENSORY W BUDOWIE MASZYN I POJAZDÓW

SENSORY W BUDOWIE MASZYN I POJAZDÓW SENSORY W BUDOWIE MASZYN I POJAZDÓW Wykład WYDZIAŁ MECHANICZNY Automatyka i Robotyka, rok II, sem. 4 Rok akademicki 2015/2016 Fizyczne zasady działania sensorów elementy oporowe Przy pomiarach wielkości

Bardziej szczegółowo

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Zadania z podstaw elektroniki Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Układ stanowi szeregowe połączenie pojemności C1 z zastępczą pojemnością równoległego połączenia

Bardziej szczegółowo

Spektrometr XRF THICK 800A

Spektrometr XRF THICK 800A Spektrometr XRF THICK 800A DO POMIARU GRUBOŚCI POWŁOK GALWANIZNYCH THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zaprojektowany do pomiaru grubości warstw

Bardziej szczegółowo

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

Laboratorium Metrologii. Ćwiczenie nr 8 Pomiary temperatury.

Laboratorium Metrologii. Ćwiczenie nr 8 Pomiary temperatury. Laboratorium Metrologii Ćwiczenie nr 8 Pomiary temperatury. I. Zagadnienia do przygotowania na kartkówkę: 1. Zdefiniuj jednostki: kelwin, stopień Celsjusza, stopień Fahrenheita. Ilu kelwinom i ilu stopniom

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C300 018

ELEMENTY ELEKTRONICZNE TS1C300 018 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

str. 1 d. elektron oraz dziura e.

str. 1 d. elektron oraz dziura e. 1. Półprzewodniki samoistne a. Niska temperatura b. Wzrost temperatury c. d. elektron oraz dziura e. f. zjawisko fotoelektryczne wewnętrzne g. Krzem i german 2. Półprzewodniki domieszkowe a. W półprzewodnikach

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

EL08s_w03: Diody półprzewodnikowe

EL08s_w03: Diody półprzewodnikowe EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez

Bardziej szczegółowo

Elementy przełącznikowe

Elementy przełącznikowe Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W W4 Unoszenie Dyfuzja 2 Półprzewodnik w stanie nierównowagi termodynamicznej np n 2 i n = n0 + n' p = p0 + p ' Półprzewodnik w stanie nierównowagi termodynamicznej Generacja i rekombinacja

Bardziej szczegółowo

Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL

Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL SEMINARIUM INSTYTUTOWE Problem pomiaru szybkozmiennych temperatur w aplikacjach silnikowych badania eksperymentalne Dr inż. Jan Kindracki Warszawa,

Bardziej szczegółowo

ELEKTRYCZNE METODY POMIARU TEMPERATURY 48

ELEKTRYCZNE METODY POMIARU TEMPERATURY 48 ELEKTRYCZNE METODY POMIRU TEMPERTURY 48 I.. Temperatura Temperatura jest wielkością fizyczną, ściślej mówiąc termodynamiczną, która odgrywa niezmiernie istotną rolę zarówno w opisie praw przyrody, w technologii

Bardziej szczegółowo