POMIARY TEMPERATURY. 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Pomiar temperatury.

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIARY TEMPERATURY. 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Pomiar temperatury."

Transkrypt

1 POMIARY TEMPERATURY 1. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z metodami pomiaru temperatury oraz wyznaczenie charakterystyk wybranych czujników temperatury (NTC, PTC, PT100, LM35, termopara typu K). 2. Przebieg ćwiczenia. Należy dokonać pomiarów wielkości przedstawionych w dalszej części instrukcji. Do zasilania czujnika LM 35 wykorzystać napięcie 5V z zasilacza stanowiska. Zwrócić szczególną uwagę na wybrany zakres pomiarowy i wielkość mierzoną przyrządów przy naprzemiennym pomiarze rezystancji i napięcia. 3. Pomiar temperatury. Realizacja pomiaru temperatury może odbywać się z wykorzystaniem metod dotykowych (konieczny jest prawidłowy kontakt czujnika z przedmiotem) oraz bezdotykowych (pomiar parametrów promieniowania emitowanego przez ciało - pirometria). W zależności od wykorzystanych do pomiaru własności fizycznych czujnika pomiarowego, wyróżnić można: Czujniki generacyjne: o wytwarzania napięcia elektrycznego na styku dwóch metali (termopara) w różnych temperaturach, Czujniki parametryczne o zmiany rezystancji elementu (termistor), o zmiany objętości cieczy, gazu lub długości ciała stałego, o zmiana barwy - barwa żaru, barwa nalotowa stali, farba zmieniająca kolor pod wpływem temperatury, o zmiany parametrów złącza półprzewodnikowego o odkształcenia bimetalu, o stożki Segera. W przypadku automatycznego pomiarów temperatury do celów regulacji procesów najszerzej znajdują zastosowanie pomiary z wykorzystaniem pomiaru zmian rezystancji oraz napięcia termopary. Coraz powszechniej wykorzystywane są również scalone czujniki temperatury jak analogowy LM35 czy cyfrowy DS18B Termopara to złącze dwóch różnych metali, na którym powstaje napięcie zależne od różnicy temperatury miedzy zimnymi i gorącymi końcami. Współczynnik temperaturowy jest rzędu µv/ C. Zakres pracy od -270 C do ok+2000 C. Spoiny termopar wykonuje się najczęściej przez spawanie, a rzadziej lutowanie, zgrzewanie czy skręcanie i zwalcowywanie. Materiały stosowane na termoelementy powinny wykazywać następujące cechy: wysoka temperatura topnienia, wysoka dopuszczalna temperatura pracy ciągłej, duża odporność na wpływy atmosferyczne, możliwie mała rezystywność, mały cieplny współczynnik rezystancji, stałość parametrów w czasie. Działanie termopar opiera się na zjawiskach Seebecka, Peltiera i Thomsona. Największą rolę odgrywa zjawisko Seebecka, 1

2 które polega na powstawaniu siły elektromotorycznej i przepływie prądu elektrycznego w miejscu styku dwóch metali lub półprzewodników o różnych temperaturach, w zamkniętym obwodzie. Typowe charakterystyki dla temperatury odniesienia 0 C przedstawione są na wykresie: Przykładowy układ do pomiaru temperatury za pomocą termopary: Wartość mierzonego napięcia zależy od różnicy temperatur obu złącz E=f(T1-T2). Pomiar bezwzględny temperatury jest możliwy za pomocą termopar tylko wtedy, gdy temperatura zacisków odniesienia jest znana, np. złącze odniesienia umieszcza się w stałej temperaturze (np. 0 C woda+lód). W specjalizowanych listwach pomiarowych, do określenia temperatury zimnych końców, stosuje się zazwyczaj rezystancyjny czujnik temperatury. Należy zwrócić uwagę na podłączenie układu pomiarowego. W miejscu styku Cu oraz przewodów termopary również powstaje siła termoelektryczna, która ma wpływ na wynik pomiaru. W takim przypadku konieczne jest utrzymanie stałej temperatury między miejscem połączenia przewodów przyrządów pomiarowych a termoparą. Rozwiązaniem jest stosowanie specjalizowanych listew pomiarowych, których zaciski wykonane są z materiałów, które nie powodują powstawania siły termoelektrycznej oraz zapewniają pomiar temperatury zimnych końców. 2

3 Zakresy pracy i tolerancje poszczególnych typów termopar Termoelement Typ Maksymalna temperatura pracy Fe-CuNi J 750 C Cu-CuNi T 350 C NiCr-NiAl K 1200 C NiCr-CuNi E 900 C NiCrSi-NiSi N 1200 C Pt10Rh-Pt S 1600 C Pt13Rh-Pt R 1600 C Pt30Rh-Pt6Rh B 1800 C Klasa tolerancji PN-EN Klasa 1-40 do +750oC: ± x t Klasa 2-40 do +750 oc: ± x t Klasa 1-40 do +350oC: ± x t Klasa 2-40 do +350 oc: ± x t Klasa do +40 oc: ± x t Klasa 1-40 do +1000oC: ± x t Klasa 2-40 do oc: ± x t Klasa do +40 oc: ± x t Klasa 1-40 do +800oC: ± x t Klasa 2-40 do +900 oc: ± x t Klasa do +40 oc: ± x t Klasa 1-40 do +1000oC: ± x t Klasa 2-40 do oc: ± x t Klasa do +40 oc: ± x t Klasa 1-0 do +1600oC: ± [ 1 + ( t 1100 ) x ] Klasa 2-40 do oc: ± x t Klasa 1-0 do +1600oC: ± [ 1 + ( t 1100 ) x ] Klasa 2-40 do oc: ± x t Klasa do oc: ± x t Klasa do oc: ± x t Wartość siły termoelektrycznej µv dla termopary K i temperatury odniesienia 0 C C x x x x Tolerancja dla termopary J (do 750 C) i K wykonanej w 1 i 2 klasie Pomiar temperatury rezystorami termometrycznymi i termistorami sprowadza się do pomiaru zmian rezystancji wywołanych zmianą temperatury. Stosowane są różne metody (ilorazowa, kompensacyjna, mostka zrównoważonego i niezrównoważonego) w zależności od wymaganej dokładności pomiaru. 3

4 Pomiar rezystancji metodą kompensacyjną polega na pomiarze spadku napięcia na rezystorze termometrycznym R i porównaniu go ze spadkiem napięcia na rezystorze porównawczym. Zaletą tej metody jest zupełna niezależność pomiaru od rezystancji przewodów łączących czujnik z przyrządem (stosowana wtedy, gdy rezystancje przewodów doprowadzających są znaczne i jest wymagany bardzo dokładny pomiar temperatury). Schemat zrównoważonego mostka Wheatstone'a przedstawiony jest na rys.1, gdzie R jest rezystancją czujnika temperatury, a R1,R2, R3 stanowią elementy mostka, a potencjometr P służy do jego równoważenia. Mostek znajduje się w równowadze, gdy napięcie przekątnej Ug = 0V. Warunek równowagi mostka. R1 R2 = R3+ r3 R + r w zależności od wybranego czujnika temperatury jego wartość zmienia się od Rmin do Rmax. Należy dobrać wartość potencjometru P tak aby możliwe było zrównoważenie mostka w całym zakresie pomiarowym tzn. spełnione były równania: R1 R2 = R3 R min+ P R1 R2 = R3+ P R max a w rezultacie: R R R R R R P = ( min 3) ( min 3) 4 3 max Rezystor wyrównawczy można wprost wyskalować w stopniach temperatury. Zaletą równoważonych mostków do pomiaru temperatury jest niezależność ich wskazań do zmian napięcia zasilającego i zmian temperatury otoczenia (przy założeniu, że rezystory R1, R2, R3,r, są wykonane z manganinu). Mostek wymaga równoważenia, które może być przeprowadzane ręcznie lub w sposób zautomatyzowany. W praktyce stosowane są czujniki wykonane z platyny (Pt, duża stałość własności fizycznych, odporność na korozję, C), niklu (Ni, względnie duży współczynnik temperaturowy, duża odporność na działanie związków agresywnych i utlenianie, duża 4

5 nieliniowość charakterystyki powyżej C, C), miedzi (Cu, niewielkie rezystancje, szybkie utlenianie C) oraz stopy żelaza i niklu (Ni/Fe) o rezystancjach w temperaturze 0 C 100, 1000Ω. Materiał czujnika powinien cechować się: - dużym współczynnikiem temperaturowym zmian rezystancji, - dużą rezystywnością umożliwiającą wykonanie czujników o małych wymiarach, - odpornością na korozję, - wysoką temperaturą topnienia, - stałością właściwości fizycznych i chemicznych w wykorzystywanym zakresie temperatury, - łatwością obróbki mechanicznej ( ciągliwością i wytrzymałością ), - brakiem histerezy, ciągłością funkcji przetwarzania, - powtarzalnością podstawowych parametrów czujników wykonanych z tego samego materiału. Przykładowe charakterystyki zmian rezystancji dla poszczególnych materiałów przedstawione są na rysunku: Współczynnik temperaturowy oraz zakres pracy dla metalowych czujników rezystancyjnych przedstawione są w tabeli. Materiał Pt Ni Cu Ni/Fe (70/30) A Ω/Ω/ C Zakr. pracy C 200 do do do do 343 Opis Najlepsza dokładność i stabilność, niemal liniowa charakterystyka, najszerszy zakres temperatur, duża rezystywność: dostępne w wersjach 100, 200, 500, 1000Ω przy 0 C (Pt100 Pt1000); Najwyższy współczynnik temperaturowy, gorsza stabilność niż Pt. Po przekroczeniu punktu Curie (352 C) nieprzewidywalna histereza. Tani klimatyzacja, sprzęt AGD Najbardziej liniowa charakterystyka, mały zakres temperatur. Bardzo niska rezystywność. Stosowane rzadko. Przeważnie wykorzystują już istniejące uzwojenia (np. w silnikach i generatorach) Wysoki współczynnik temperaturowy. Tańsze niż Ni. Szerszy zakres temperatur. Dokładność pomiaru temperatury czujnikami rezystancyjnymi uzależniona jest od klasy czujnika. Norma IEC 751 określa błąd dla: T = ± T dla 2- i 3-przewodowych w zakresie -200 C do 650 C, klasy A ( ) klasy B T ( T ) = ± + w całym zakresie pomiarowym. 5

6 Graficzne przedstawienie tolerancja dla rezystancyjnych czujników temperatury PT100 wykonanych w klasie A i B zamieszczone jest na rysunku. W czujnikach rezystancyjnych metalowych zmiany rezystancji można opisać wzorem: R = R + a T + a T + + a T T 2 n 0( n ) gdzie: R T rezystancja w temperaturze rezystora T R 0 rezystancja rezystora w temperaturze odniesienia a 1 - a n stałe wyznaczane doświadczalnie Dla temperatur bliskich 0 C wzór można zapisać jako zależność liniową: R (1 ) T = R0 + αt gdzie: α temperaturowy współczynnik rezystancji [ Ω/Ω/0 C] T przyrost temperatury względem temperatury odniesienia 3.3 Termistory to półprzewodnikowe elementy rezystancyjne o ujemnym lub dodatnim współczynniku temperaturowym zmian rezystancji. Na ogół stosowane są termistory o rezystancji, w temperaturze pokojowej, rzędu kilku kω. Ze względu na dużą rezystancję, charakteryzują się dużą zmianą jej wartości na każdy stopień zmiany temperatury. W praktyce oznacza to łatwiejszy pomiar większych zmian rezystancji niż ma to miejsce w przypadku czujników np. PT100. Wadą jest stosunkowo duży rozrzut parametrów. Termistory charakteryzują się nieliniową funkcją zmian rezystancji od temperatury o charakterystykach: NTC ujemny współczynnik, PTC dodatni współczynnik temperaturowy oraz CTR o skokowej zmianie rezystancji, w którym wzrost temperatury powyżej określonej powoduje gwałtowną zmianę wzrost/spadek rezystancji. Charakterystyki termistora, w przybliżeniu, opisują równania: dla NTC: R T B T = Ae oraz PTC: RT = A1 + Ae BT 6

7 Najprostszym sposobem linearyzacji jest połączenie szeregowe termistora z dodatkowym rezystorem. Przykładowe charakterystyki przed i po linearyzacji przedstawione są na rysunku: 3.4 Scalony czujnik temperatury LM 35. Czujnik ten jest precyzyjnym analogowym czujnikiem temperatury, mogącym pracować w zakresie temperatur od -50 do +125ºC. Sygnałem wyjściowym jest napięcie, które jest wprost proporcjonalne do temperatury otoczenia ze współczynnikiem 10mV/ ºC. Szczegóły budowy i parametry układu znajdują się w załączonej karcie katalogowej. 4. Układy pomiarowe Czujniki rezystancyjne wykonywane są w wersji: 2-, 3- i 4-ro przewodowej. 4.1 Układ 2-przewodowy. Łączenie czujnika z układem pomiarowym odbywa się z wykorzystaniem dwóch przewodów. Przy znacznym oddaleniu czujnika od układu pomiarowego rezystancja przewodów może mieć znaczący wpływ na wynik pomiaru. Przy wykorzystaniu mostka pomiarowego rezystancje przewodów wraz z rezystancją czujników występują w tej samej gałęzi. Dodatkowo, przewody wykonane są z miedzi co powoduje zmianę ich rezystancji w funkcji temperatury. Powoduje to trudności w skompensowaniu mostka. Układ stosowany przy krótkich przewodach. Najmniej dokładny. 4.2 Układ 3- przewodowy. Wpływy rezystancji doprowadzeń oraz fluktuacji wraz z temperaturą są znacznie zredukowane. W takim układzie rezystancja przewodów doprowadzających występuje w 2 gałęziach mostka, co poprawia jego kompensowanie. Dzięki temu, również zmiany temperaturowe rezystancji przewodów są kompensowane. Ze względu na znaczą rezystancję wewnętrzną przetwornika pomiarowego, spadek napięcia na RL jest pomijalny. Stosowany przy znacznych długościach przewodów. 7

8 4.3 Układ 4- przewodowy. W układzie tym prąd i jest wymuszany przez stabilne źródło prądowe. Jego wartość jest stała niezależnie od wartości rezystancji przewodów oraz ich zmian. Do pomiaru napięcia wykorzystywane są dodatkowe zaciski. Również w tym układzie ze względu na dużą rezystancję wewnętrzną obwodów pomiarowych spadek napięcia na RL jest pomijalny. Spadek napięcia określany tą drogą jest praktycznie niezależny od właściwości przewodów łączących. Stosowane są również układy z pętlą kompensacyjną. Dzięki temu możliwa jest kompensacja temperaturowa mostka poprzez uwzględnienie takich samych zmian rezystancji wynikających ze zmian temperatury w innej gałęzi mostka. Warunkiem jest wykonanie połączeń takim samym przewodem. Rozwiązanie stosowane sporadycznie. 4.4 Samonagrzewanie Przez czujnik rezystancyjny włączony w jedną z gałęzi mostka pomiarowego płynie prąd zależny m.in. od napięcia zasilania mostka. Powoduje on wydzielanie się energii cieplnej na rezystorze pomiarowym, zwiększając tym samym jego temperaturę. W rezultacie pomiar jest obarczony błędem związanym z efektem samonagrzewania czujnika. W zależności od środowiska pracy i zdolności do przekazywania energii z czujnika do otoczenia błąd ten może wahać się od 0.1 C dla czujnika zanurzonego w cieczy do 1.5 C dla czujnika w nieruchomym powietrzu. W celu minimalizacji omawianego zjawiska stosuje się pomiary wykonywane okresowo, a nie ciągle. Ważne jest również ograniczenie do minimum wartości prądu płynącego przez rezystor pomiarowy (typowo 1mA). Możliwe jest również przeprowadzenie kalibracji układu i wyznaczenie poprawki. 5. Dynamiczne właściwości czujników temperatury O właściwościach dynamicznych czujników temperatury w głównej mierze decyduje budowa i sposób wykonania czujnika. W przypadku czujników PT100 wykonanych w postaci spirali ułożonej w korpusie porcelanowym stała czasowa będzie znacznie większa niż czujników, gdzie warstwa rezystancyjna napylona jest na ceramiczne podłoże czy też nieosłoniętego złącza termopary. Właściwości czujnika można w przybliżeniu opisać za pomocą transmitancji G(s): 8

9 A G( s) = e T 2s + 1 na rysunku: st1 gdzie T1, T2 i A można wyznaczyć z odpowiedzi skokowej jak 6. Przebieg ćwiczenia Należy zdjąć charakterystykę czujników temperatury w zakresie od 20 C do 100 C (minimum 15 pomiarów). W tym celu należy ustawić żądaną temperaturę pokrętłem. Wartość wskazywana przez regulator temperatury traktowana jest jako wzorzec. Dla czujników PT100, NTC i PTC należy dokonać pomiaru rezystancji, a dla LM35 i termopary napięcia. Odczytu dla czujnika LM 35 i termopary dokonać wg schematu: Wyniki przedstawić w formie tabeli i wykresu Dla wybranych 3 różnych temperatur dokonać pomiaru rezystancji czujnika PT100 przy pomocy zrównoważonego mostka. Do tego celu wykorzystać należy rezystor dekadowy. Układ połączyć zgodnie ze schematem: Wyniki zestawić w tabeli i porównać z pomiarami z punktu Zrównoważony mostek z punktu 6.2. należy zmodyfikować tak, aby czujnik Pt 100 podłączony był przez przewody o rezystancji RL znajdujące się w temperaturze otoczenia. 9

10 Czy po przełączeniu układu mostek jest w stanie równowagi? Jeśli nie należy dokonać wyzerowania. Zasymuluj zmiany temperatury otoczenia poprzez naciśnięcie przycisku ZT. Określ temperaturę wskazywaną przez mostek porównując aktualną rezystancję z pomiarami z punktu 6.1. i 6.2. Wykonaj pomiar dla 3 temperatur Należy zmodyfikować układ z punktu 6.3. poprzez zastosowanie czujnika 3- przewodowego jak na schemacie w punkcie 4.2. Wykonaj pomiary jak w punkcie 6.3 dla przewodów w różnej temperaturze (naciśnięcie lub zwolnienie przycisku ZT) Ustawić temperaturę zadaną na 100 C. Połączyć układ jak w punkcie 6.2. Zrównoważyć mostek. W miejsce mv podłączyć oscyloskop. Ostrożnie umieścić czujnik PT100 w zbiorniku z wodą. Zarejestrować odpowiedź i wyznaczyć parametry jak w punkcie Na podstawie pomiarów z punktu 6.1 należy dobrać współczynniki modelu dla czujników PT100, NTC i PTC zgodnie z opisem podanym w punktach 3.2. i Zagadnienia Parametryczne i generacyjne czujniki temperatury. Właściwości, charakterystyki, zastosowanie Zrównoważony mostek pomiarowy. Układy pomiarowe 2-, 3- i 4-ro przewodowe. Problem zimnych końców 8.Literatura Romer E. Miernictwo przemysłowe, PWN Syndenham P. Podręcznik metrologii cz.2 WKiŁ Hagel R., Zakrzewski J.: Miernictwo dynamiczne, WNT Michalski L., Eckersdorf K.: Pomiary temperatury WNT Michalski L., Eckersdorf K., Kucharski J.: Termometria: przyrządy i metody. Rząsa M., Kiczma B.: Elektryczne i elektroniczne czujniki temperatury 10

Czujniki temperatury

Czujniki temperatury Czujniki temperatury Pomiar temperatury Pomiar temperatury jest jednym z najczęściej wykonywanych pomiarów wielkości nieelektrycznej w gospodarstwach domowych jak i w przemyśle. Do pomiaru temperatury

Bardziej szczegółowo

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi 1.Wiadomości podstawowe Termometry termoelektryczne należą do najbardziej rozpowszechnionych przyrządów, służących do bezpośredniego pomiaru

Bardziej szczegółowo

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH Rzeszów 2001 2 1. WPROWADZENIE 1.1. Ogólna charakterystyka

Bardziej szczegółowo

Ćwiczenie. Elektryczne metody pomiaru temperatury

Ćwiczenie. Elektryczne metody pomiaru temperatury Program Rozwojowy Politechniki Warszawskiej, Zadanie 36 Przygotowanie i modernizacja programów studiów oraz materiałów dydaktycznych na Wydziale Elektrycznym Laboratorium Akwizycja, przetwarzanie i przesyłanie

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia II Wyznaczanie charakterystyk statycznych czujników temperatury 1 1. Wstęp Temperatura jest jedną z najważniejszych wielkości fizycznych

Bardziej szczegółowo

Czujniki temperatur, termopary

Czujniki temperatur, termopary Czujniki temperatur, termopary 1 Termopara Czujniki termoelektryczne są to przyrządy reagujące na zmianę temperatury zmianą siły termodynamicznej wbudowanego w nie termoelementu. Połączone na jednym końcu

Bardziej szczegółowo

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między

Bardziej szczegółowo

POMIARY TEMPERATURY I

POMIARY TEMPERATURY I Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi

Bardziej szczegółowo

Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica

Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica Układ pomiaru temperatury termoelementem typu K o dużej szybkości Paweł Kowalczyk Michał Kotwica Plan prezentacji Fizyczne podstawy działania termopary Zalety wykorzystania termopar Właściwości termoelementu

Bardziej szczegółowo

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2.1. Cel ćwiczenia: zapoznanie się ze zjawiskami fizycznymi, na których oparte jest działanie termoelementów i oporników

Bardziej szczegółowo

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz. Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...

Bardziej szczegółowo

Projektowanie systemów pomiarowych

Projektowanie systemów pomiarowych Projektowanie systemów pomiarowych 10 Pomiar temperatury wybrane metody http://www.acse.pl/czujniki-temperatury 1 Pomiary temperatury Skale temperatury: - Celsjusza (1742) uporządkowana przez Stromera

Bardziej szczegółowo

POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI

POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Zasada działania termometru rezystancyjnego. Elementy

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Cel ćwiczenia: Wyznaczenie współczynnika temperaturowego oporu platyny oraz pomiar charakterystyk termopary miedź-konstantan.

Bardziej szczegółowo

WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY

WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 3 str. 1/9 ĆWICZENIE 3 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi czujnikami elektrycznymi

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a

Bardziej szczegółowo

ĆWICZENIE 6 POMIARY REZYSTANCJI

ĆWICZENIE 6 POMIARY REZYSTANCJI ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej

Bardziej szczegółowo

4. BADANIE TERMOMETRÓW TERMOELEKTRYCZNYCH

4. BADANIE TERMOMETRÓW TERMOELEKTRYCZNYCH 4. DNIE TERMOMETRÓW TERMOELEKTRYCZNYCH 4.. Cel ćwiczenia: zapoznanie się z budową i częściami składowymi róŝnych termometrów termoelektrycznych, określenie warunków prawidłowego pomiaru temperatury spoiny

Bardziej szczegółowo

Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7

Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Ćw. 7. Kondycjonowanie sygnałów pomiarowych Problemy teoretyczne: Moduły kondycjonujące serii 5B (5B34) podstawowa charakterystyka Moduł kondycjonowania

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Badanie półprzewodnikowych elementów bezzłączowych

Badanie półprzewodnikowych elementów bezzłączowych Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 9. Czujniki temperatury

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 9. Czujniki temperatury Cel ćwiczenia: Poznanie budowy i zasady działania oraz parametrów charakterystycznych dla stykowych czujników temperatury. Zapoznanie się z metodami pomiaru temperatur czujnikami stykowymi oraz sposobami

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

SERIA IV ĆWICZENIE 4_3. Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia:

SERIA IV ĆWICZENIE 4_3. Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia: SERIA IV ĆWICZENIE 4_3 Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia: 1. Rodzaje, budowa, symbole, zasada działania i zastosowanie termistorów i warystorów. 2. Charakterystyka

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH. Instrukcja do ćwiczenia. Pomiary temperatur metodami stykowymi.

POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH. Instrukcja do ćwiczenia. Pomiary temperatur metodami stykowymi. POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH Instrukcja do ćwiczenia Pomiary temperatur metodami stykowymi. Wrocław 2005 Temat ćwiczenia: Pomiary temperatur czujnikami stykowymi

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 310 Wydział/Kierunek Nazwa zajęć laboratoryjnych Nr zajęć

Bardziej szczegółowo

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska Instytut Inżynierii Biomedycznej i Pomiarowej Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Laboratorium Pomiarów Wielkości Nieelektrycznych Pomiary temperatur metodami stykowymi Wrocław

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Pomiar podstawowych parametrów liniowych układów scalonych

Pomiar podstawowych parametrów liniowych układów scalonych Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,

Bardziej szczegółowo

Wzorcowanie mierników temperatur Błędy pomiaru temperatury

Wzorcowanie mierników temperatur Błędy pomiaru temperatury Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo Energetyczne laboratorium Wzorcowanie mierników temperatur Błędy pomiaru temperatury Instrukcja do ćwiczenia nr 3 Opracował: dr

Bardziej szczegółowo

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia Termodynamika Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2013 1. INSTRUKCJA

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 6 Temat: Pomiar zależności oporu półprzewodników

Bardziej szczegółowo

Linearyzatory czujników temperatury

Linearyzatory czujników temperatury AiR Pomiary przemysłowe ćw. seria II Linearyzatory czujników temperatury Zastosowanie opornika termometrycznego 100 do pomiaru temperatury Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów ze sposobami

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk

Bardziej szczegółowo

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika. PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów

Bardziej szczegółowo

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE:

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE: M-1TI PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA Konwersja sygnału z czujnika temperatury (RTD, TC), rezystancji (R) lub napięcia (U) na sygnał pętli prądowej 4-20mA Dowolny wybór zakresu

Bardziej szczegółowo

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz

Bardziej szczegółowo

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLTECHK OPOLSK STYTT TOMTYK FOMTYK LBOTOM METOLO ELEKTOCZEJ 1. POMY EZYSTCJ METODM MOSTKOWYM 1. METODY POM EZYSTCJ 1.1. Wstęp 1.1.1 Metody techniczne 1.1.1.1.kład poprawnie mierzonego napięcia kład poprawnie

Bardziej szczegółowo

Eksperyment pomiary zgazowarki oraz komory spalania

Eksperyment pomiary zgazowarki oraz komory spalania Eksperyment pomiary zgazowarki oraz komory spalania Damian Romaszewski Michał Gatkowski Czym będziemy mierzyd? Pirometr- Pirometry tworzą grupę bezstykowych mierników temperatury, które wykorzystują zjawisko

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

Przykład 2. Przykład 3. Spoina pomiarowa

Przykład 2. Przykład 3. Spoina pomiarowa Wykład 10. Struktura toru pomiarowego. Interfejsy, magistrale, złącza. Eksperyment pomiarowy zjawisko lub model metrologiczny mezurand, czujniki przetwarzanie na sygnał elektryczny, kondycjonowanie sygnału

Bardziej szczegółowo

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Termodynamika Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2016 1. INSTRUKCJA

Bardziej szczegółowo

Badanie przepływomierzy powietrza typu LMM i HFM

Badanie przepływomierzy powietrza typu LMM i HFM Badanie przepływomierzy powietrza typu LMM i HFM 1. Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie badania oraz określenie charakterystyk dla przepływomierza z przegrodą spiętrzającą oraz termo-anemometru,

Bardziej szczegółowo

Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH

Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WEL WAT ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH A. Cel ćwiczenia:

Bardziej szczegółowo

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ. 2

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ.  2 M-1TI PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ www.metronic.pl 2 CECHY PODSTAWOWE Przetwarzanie sygnału z czujnika na sygnał standardowy pętli prądowej 4-20mA

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 28 : Wyznaczanie charakterystyk termistorów I. Zagadnienia do opracowania. 1. Pasma energetyczne w

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Temperaturowa charakterystyka termistora typu NTC ćwiczenie nr 37 Opracowanie ćwiczenia: dr J. Woźnicka, dr S. elica Zakres zagadnień obowiązujących do ćwiczenia

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza

Bardziej szczegółowo

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH BADANIE PRZETWORNIKÓW POMIAROWYCH Instrukcja do ćwiczenia Łódź 1996 1. CEL ĆWICZENIA

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Kod przedmiotu:

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra lektrotechniki Teoretycznej i Informatyki Laboratorium Teorii Obwodów Przedmiot: lektrotechnika teoretyczna Numer ćwiczenia: 1 Temat: Liniowe obwody prądu stałego, prawo Ohma i prawa Kirchhoffa

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

POMIAR TEMPERATURY INSTYTUT MERTOLOGII I INŻYNIERII BIOMEDYCZNEJ SENSORY I POMIARY WIELKOŚCI NIEELEKTRYCZNYCH ĆWICZENIE LABORATORYJNE:

POMIAR TEMPERATURY INSTYTUT MERTOLOGII I INŻYNIERII BIOMEDYCZNEJ SENSORY I POMIARY WIELKOŚCI NIEELEKTRYCZNYCH ĆWICZENIE LABORATORYJNE: INSTYTUT MERTOLOGII I INŻYNIERII BIOMEDYCZNEJ SENSORY I POMIARY WIELKOŚCI NIEELEKTRYCZNYCH ĆWICZENIE LABORATORYJNE: POMIAR TEMPERATURY Opracowali: dr inż. Elżbieta Ślubowska mgr. Mateusz Szumilas 1. Wstęp

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

WKŁAD POMIAROWY W1P... I PW1P

WKŁAD POMIAROWY W1P... I PW1P WŁAD POMIAROWY W1P... I PW1P Zakres pomiarowy: -00...700 C : Pt100, Pt500, Pt100, inny : A, B, inna Materiał osłony: 1H1N9T Wkłady z serii W1P... są zespołem pomiarowym rezystancyjnych czujników temperatury.

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INFOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

Badanie elementów składowych monolitycznych układów scalonych II

Badanie elementów składowych monolitycznych układów scalonych II 1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych

Bardziej szczegółowo

Podstawy Badań Eksperymentalnych

Podstawy Badań Eksperymentalnych Podstawy Badań Eksperymentalnych Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Instrukcja do ćwiczenia. Temat 01 Pomiar siły z wykorzystaniem czujnika tensometrycznego Instrukcję

Bardziej szczegółowo

Przetwornik temperatury RT-01

Przetwornik temperatury RT-01 Przetwornik temperatury RT-01 Wydanie LS 13/01 Opis Głowicowy przetwornik temperatury programowalny za pomoca PC przetwarzający sygnał z czujnika Pt100 na skalowalny analogowy sygnał wyjściowy 4 20 ma.

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

wzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IM34-11EX-CI/K60

wzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IM34-11EX-CI/K60 1 / 5 TURCK Inc. ñ 3000 Campus Drive Minneapolis, MN 55441-2656 ñ Phone: 763-553-7300 ñ Application Support: 1-800-544-7769 ñ Fax 763-553-0708 ñ www.turck.com przetwornik pomiarowy temperatury IM34-11Ex-CI/K60

Bardziej szczegółowo

ZASADA DZIAŁANIA miernika V-640

ZASADA DZIAŁANIA miernika V-640 ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

Badanie bezzłączowych elementów elektronicznych

Badanie bezzłączowych elementów elektronicznych Temat ćwiczenia: Badanie bezzłączowych elementów elektronicznych - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - Dzień tygodnia: godzina wykonania ćwiczenia Lp. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C300 018

ELEMENTY ELEKTRONICZNE TS1C300 018 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO

Bardziej szczegółowo

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5 Ćwiczenie E- Pomiar oporności i indukcyjności metodą mostkową I. el ćwiczenia: Ocena dokładności pomiaru oporności mostkiem Wheatstone`a, pomiar nieznanej oporności i indukcyjności mostkiem ndersona. II.

Bardziej szczegółowo

Pomiar parametrów tranzystorów

Pomiar parametrów tranzystorów Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin Pracownia Elektroniki Pomiar parametrów tranzystorów (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: zasada działania tranzystora

Bardziej szczegółowo

2.1 Cechowanie termopary i termistora(c1)

2.1 Cechowanie termopary i termistora(c1) 76 Ciepło 2.1 Cechowanie termopary i termistora(c1) Celem ćwiczenia jest zbadanie zależności temperaturowej oporu termistora oraz siły elektromotorycznej indukowanej w obwodach z termoparą. Przeprowadzane

Bardziej szczegółowo

Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych.

Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych. 1. Cel ćwiczenia. Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych. 2. Wstęp teoretyczny. Pomiary podstawowych wielkości

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

WYZNACZANIE ZMIAN TERMICZNYCH REZYSTANCJI METALI I PÓŁPRZEWODNIKÓW

WYZNACZANIE ZMIAN TERMICZNYCH REZYSTANCJI METALI I PÓŁPRZEWODNIKÓW POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS02137; KN02137; LS02137; LN02137 Ćwiczenie Nr 6 WYZNACZANIE ZMIAN TERMICZNYCH

Bardziej szczegółowo

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Temat: POMIAR SIŁ SKRAWANIA

Temat: POMIAR SIŁ SKRAWANIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo