POMIARY TEMPERATURY. 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Pomiar temperatury.
|
|
- Janusz Kaczmarek
- 9 lat temu
- Przeglądów:
Transkrypt
1 POMIARY TEMPERATURY 1. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z metodami pomiaru temperatury oraz wyznaczenie charakterystyk wybranych czujników temperatury (NTC, PTC, PT100, LM35, termopara typu K). 2. Przebieg ćwiczenia. Należy dokonać pomiarów wielkości przedstawionych w dalszej części instrukcji. Do zasilania czujnika LM 35 wykorzystać napięcie 5V z zasilacza stanowiska. Zwrócić szczególną uwagę na wybrany zakres pomiarowy i wielkość mierzoną przyrządów przy naprzemiennym pomiarze rezystancji i napięcia. 3. Pomiar temperatury. Realizacja pomiaru temperatury może odbywać się z wykorzystaniem metod dotykowych (konieczny jest prawidłowy kontakt czujnika z przedmiotem) oraz bezdotykowych (pomiar parametrów promieniowania emitowanego przez ciało - pirometria). W zależności od wykorzystanych do pomiaru własności fizycznych czujnika pomiarowego, wyróżnić można: Czujniki generacyjne: o wytwarzania napięcia elektrycznego na styku dwóch metali (termopara) w różnych temperaturach, Czujniki parametryczne o zmiany rezystancji elementu (termistor), o zmiany objętości cieczy, gazu lub długości ciała stałego, o zmiana barwy - barwa żaru, barwa nalotowa stali, farba zmieniająca kolor pod wpływem temperatury, o zmiany parametrów złącza półprzewodnikowego o odkształcenia bimetalu, o stożki Segera. W przypadku automatycznego pomiarów temperatury do celów regulacji procesów najszerzej znajdują zastosowanie pomiary z wykorzystaniem pomiaru zmian rezystancji oraz napięcia termopary. Coraz powszechniej wykorzystywane są również scalone czujniki temperatury jak analogowy LM35 czy cyfrowy DS18B Termopara to złącze dwóch różnych metali, na którym powstaje napięcie zależne od różnicy temperatury miedzy zimnymi i gorącymi końcami. Współczynnik temperaturowy jest rzędu µv/ C. Zakres pracy od -270 C do ok+2000 C. Spoiny termopar wykonuje się najczęściej przez spawanie, a rzadziej lutowanie, zgrzewanie czy skręcanie i zwalcowywanie. Materiały stosowane na termoelementy powinny wykazywać następujące cechy: wysoka temperatura topnienia, wysoka dopuszczalna temperatura pracy ciągłej, duża odporność na wpływy atmosferyczne, możliwie mała rezystywność, mały cieplny współczynnik rezystancji, stałość parametrów w czasie. Działanie termopar opiera się na zjawiskach Seebecka, Peltiera i Thomsona. Największą rolę odgrywa zjawisko Seebecka, 1
2 które polega na powstawaniu siły elektromotorycznej i przepływie prądu elektrycznego w miejscu styku dwóch metali lub półprzewodników o różnych temperaturach, w zamkniętym obwodzie. Typowe charakterystyki dla temperatury odniesienia 0 C przedstawione są na wykresie: Przykładowy układ do pomiaru temperatury za pomocą termopary: Wartość mierzonego napięcia zależy od różnicy temperatur obu złącz E=f(T1-T2). Pomiar bezwzględny temperatury jest możliwy za pomocą termopar tylko wtedy, gdy temperatura zacisków odniesienia jest znana, np. złącze odniesienia umieszcza się w stałej temperaturze (np. 0 C woda+lód). W specjalizowanych listwach pomiarowych, do określenia temperatury zimnych końców, stosuje się zazwyczaj rezystancyjny czujnik temperatury. Należy zwrócić uwagę na podłączenie układu pomiarowego. W miejscu styku Cu oraz przewodów termopary również powstaje siła termoelektryczna, która ma wpływ na wynik pomiaru. W takim przypadku konieczne jest utrzymanie stałej temperatury między miejscem połączenia przewodów przyrządów pomiarowych a termoparą. Rozwiązaniem jest stosowanie specjalizowanych listew pomiarowych, których zaciski wykonane są z materiałów, które nie powodują powstawania siły termoelektrycznej oraz zapewniają pomiar temperatury zimnych końców. 2
3 Zakresy pracy i tolerancje poszczególnych typów termopar Termoelement Typ Maksymalna temperatura pracy Fe-CuNi J 750 C Cu-CuNi T 350 C NiCr-NiAl K 1200 C NiCr-CuNi E 900 C NiCrSi-NiSi N 1200 C Pt10Rh-Pt S 1600 C Pt13Rh-Pt R 1600 C Pt30Rh-Pt6Rh B 1800 C Klasa tolerancji PN-EN Klasa 1-40 do +750oC: ± x t Klasa 2-40 do +750 oc: ± x t Klasa 1-40 do +350oC: ± x t Klasa 2-40 do +350 oc: ± x t Klasa do +40 oc: ± x t Klasa 1-40 do +1000oC: ± x t Klasa 2-40 do oc: ± x t Klasa do +40 oc: ± x t Klasa 1-40 do +800oC: ± x t Klasa 2-40 do +900 oc: ± x t Klasa do +40 oc: ± x t Klasa 1-40 do +1000oC: ± x t Klasa 2-40 do oc: ± x t Klasa do +40 oc: ± x t Klasa 1-0 do +1600oC: ± [ 1 + ( t 1100 ) x ] Klasa 2-40 do oc: ± x t Klasa 1-0 do +1600oC: ± [ 1 + ( t 1100 ) x ] Klasa 2-40 do oc: ± x t Klasa do oc: ± x t Klasa do oc: ± x t Wartość siły termoelektrycznej µv dla termopary K i temperatury odniesienia 0 C C x x x x Tolerancja dla termopary J (do 750 C) i K wykonanej w 1 i 2 klasie Pomiar temperatury rezystorami termometrycznymi i termistorami sprowadza się do pomiaru zmian rezystancji wywołanych zmianą temperatury. Stosowane są różne metody (ilorazowa, kompensacyjna, mostka zrównoważonego i niezrównoważonego) w zależności od wymaganej dokładności pomiaru. 3
4 Pomiar rezystancji metodą kompensacyjną polega na pomiarze spadku napięcia na rezystorze termometrycznym R i porównaniu go ze spadkiem napięcia na rezystorze porównawczym. Zaletą tej metody jest zupełna niezależność pomiaru od rezystancji przewodów łączących czujnik z przyrządem (stosowana wtedy, gdy rezystancje przewodów doprowadzających są znaczne i jest wymagany bardzo dokładny pomiar temperatury). Schemat zrównoważonego mostka Wheatstone'a przedstawiony jest na rys.1, gdzie R jest rezystancją czujnika temperatury, a R1,R2, R3 stanowią elementy mostka, a potencjometr P służy do jego równoważenia. Mostek znajduje się w równowadze, gdy napięcie przekątnej Ug = 0V. Warunek równowagi mostka. R1 R2 = R3+ r3 R + r w zależności od wybranego czujnika temperatury jego wartość zmienia się od Rmin do Rmax. Należy dobrać wartość potencjometru P tak aby możliwe było zrównoważenie mostka w całym zakresie pomiarowym tzn. spełnione były równania: R1 R2 = R3 R min+ P R1 R2 = R3+ P R max a w rezultacie: R R R R R R P = ( min 3) ( min 3) 4 3 max Rezystor wyrównawczy można wprost wyskalować w stopniach temperatury. Zaletą równoważonych mostków do pomiaru temperatury jest niezależność ich wskazań do zmian napięcia zasilającego i zmian temperatury otoczenia (przy założeniu, że rezystory R1, R2, R3,r, są wykonane z manganinu). Mostek wymaga równoważenia, które może być przeprowadzane ręcznie lub w sposób zautomatyzowany. W praktyce stosowane są czujniki wykonane z platyny (Pt, duża stałość własności fizycznych, odporność na korozję, C), niklu (Ni, względnie duży współczynnik temperaturowy, duża odporność na działanie związków agresywnych i utlenianie, duża 4
5 nieliniowość charakterystyki powyżej C, C), miedzi (Cu, niewielkie rezystancje, szybkie utlenianie C) oraz stopy żelaza i niklu (Ni/Fe) o rezystancjach w temperaturze 0 C 100, 1000Ω. Materiał czujnika powinien cechować się: - dużym współczynnikiem temperaturowym zmian rezystancji, - dużą rezystywnością umożliwiającą wykonanie czujników o małych wymiarach, - odpornością na korozję, - wysoką temperaturą topnienia, - stałością właściwości fizycznych i chemicznych w wykorzystywanym zakresie temperatury, - łatwością obróbki mechanicznej ( ciągliwością i wytrzymałością ), - brakiem histerezy, ciągłością funkcji przetwarzania, - powtarzalnością podstawowych parametrów czujników wykonanych z tego samego materiału. Przykładowe charakterystyki zmian rezystancji dla poszczególnych materiałów przedstawione są na rysunku: Współczynnik temperaturowy oraz zakres pracy dla metalowych czujników rezystancyjnych przedstawione są w tabeli. Materiał Pt Ni Cu Ni/Fe (70/30) A Ω/Ω/ C Zakr. pracy C 200 do do do do 343 Opis Najlepsza dokładność i stabilność, niemal liniowa charakterystyka, najszerszy zakres temperatur, duża rezystywność: dostępne w wersjach 100, 200, 500, 1000Ω przy 0 C (Pt100 Pt1000); Najwyższy współczynnik temperaturowy, gorsza stabilność niż Pt. Po przekroczeniu punktu Curie (352 C) nieprzewidywalna histereza. Tani klimatyzacja, sprzęt AGD Najbardziej liniowa charakterystyka, mały zakres temperatur. Bardzo niska rezystywność. Stosowane rzadko. Przeważnie wykorzystują już istniejące uzwojenia (np. w silnikach i generatorach) Wysoki współczynnik temperaturowy. Tańsze niż Ni. Szerszy zakres temperatur. Dokładność pomiaru temperatury czujnikami rezystancyjnymi uzależniona jest od klasy czujnika. Norma IEC 751 określa błąd dla: T = ± T dla 2- i 3-przewodowych w zakresie -200 C do 650 C, klasy A ( ) klasy B T ( T ) = ± + w całym zakresie pomiarowym. 5
6 Graficzne przedstawienie tolerancja dla rezystancyjnych czujników temperatury PT100 wykonanych w klasie A i B zamieszczone jest na rysunku. W czujnikach rezystancyjnych metalowych zmiany rezystancji można opisać wzorem: R = R + a T + a T + + a T T 2 n 0( n ) gdzie: R T rezystancja w temperaturze rezystora T R 0 rezystancja rezystora w temperaturze odniesienia a 1 - a n stałe wyznaczane doświadczalnie Dla temperatur bliskich 0 C wzór można zapisać jako zależność liniową: R (1 ) T = R0 + αt gdzie: α temperaturowy współczynnik rezystancji [ Ω/Ω/0 C] T przyrost temperatury względem temperatury odniesienia 3.3 Termistory to półprzewodnikowe elementy rezystancyjne o ujemnym lub dodatnim współczynniku temperaturowym zmian rezystancji. Na ogół stosowane są termistory o rezystancji, w temperaturze pokojowej, rzędu kilku kω. Ze względu na dużą rezystancję, charakteryzują się dużą zmianą jej wartości na każdy stopień zmiany temperatury. W praktyce oznacza to łatwiejszy pomiar większych zmian rezystancji niż ma to miejsce w przypadku czujników np. PT100. Wadą jest stosunkowo duży rozrzut parametrów. Termistory charakteryzują się nieliniową funkcją zmian rezystancji od temperatury o charakterystykach: NTC ujemny współczynnik, PTC dodatni współczynnik temperaturowy oraz CTR o skokowej zmianie rezystancji, w którym wzrost temperatury powyżej określonej powoduje gwałtowną zmianę wzrost/spadek rezystancji. Charakterystyki termistora, w przybliżeniu, opisują równania: dla NTC: R T B T = Ae oraz PTC: RT = A1 + Ae BT 6
7 Najprostszym sposobem linearyzacji jest połączenie szeregowe termistora z dodatkowym rezystorem. Przykładowe charakterystyki przed i po linearyzacji przedstawione są na rysunku: 3.4 Scalony czujnik temperatury LM 35. Czujnik ten jest precyzyjnym analogowym czujnikiem temperatury, mogącym pracować w zakresie temperatur od -50 do +125ºC. Sygnałem wyjściowym jest napięcie, które jest wprost proporcjonalne do temperatury otoczenia ze współczynnikiem 10mV/ ºC. Szczegóły budowy i parametry układu znajdują się w załączonej karcie katalogowej. 4. Układy pomiarowe Czujniki rezystancyjne wykonywane są w wersji: 2-, 3- i 4-ro przewodowej. 4.1 Układ 2-przewodowy. Łączenie czujnika z układem pomiarowym odbywa się z wykorzystaniem dwóch przewodów. Przy znacznym oddaleniu czujnika od układu pomiarowego rezystancja przewodów może mieć znaczący wpływ na wynik pomiaru. Przy wykorzystaniu mostka pomiarowego rezystancje przewodów wraz z rezystancją czujników występują w tej samej gałęzi. Dodatkowo, przewody wykonane są z miedzi co powoduje zmianę ich rezystancji w funkcji temperatury. Powoduje to trudności w skompensowaniu mostka. Układ stosowany przy krótkich przewodach. Najmniej dokładny. 4.2 Układ 3- przewodowy. Wpływy rezystancji doprowadzeń oraz fluktuacji wraz z temperaturą są znacznie zredukowane. W takim układzie rezystancja przewodów doprowadzających występuje w 2 gałęziach mostka, co poprawia jego kompensowanie. Dzięki temu, również zmiany temperaturowe rezystancji przewodów są kompensowane. Ze względu na znaczą rezystancję wewnętrzną przetwornika pomiarowego, spadek napięcia na RL jest pomijalny. Stosowany przy znacznych długościach przewodów. 7
8 4.3 Układ 4- przewodowy. W układzie tym prąd i jest wymuszany przez stabilne źródło prądowe. Jego wartość jest stała niezależnie od wartości rezystancji przewodów oraz ich zmian. Do pomiaru napięcia wykorzystywane są dodatkowe zaciski. Również w tym układzie ze względu na dużą rezystancję wewnętrzną obwodów pomiarowych spadek napięcia na RL jest pomijalny. Spadek napięcia określany tą drogą jest praktycznie niezależny od właściwości przewodów łączących. Stosowane są również układy z pętlą kompensacyjną. Dzięki temu możliwa jest kompensacja temperaturowa mostka poprzez uwzględnienie takich samych zmian rezystancji wynikających ze zmian temperatury w innej gałęzi mostka. Warunkiem jest wykonanie połączeń takim samym przewodem. Rozwiązanie stosowane sporadycznie. 4.4 Samonagrzewanie Przez czujnik rezystancyjny włączony w jedną z gałęzi mostka pomiarowego płynie prąd zależny m.in. od napięcia zasilania mostka. Powoduje on wydzielanie się energii cieplnej na rezystorze pomiarowym, zwiększając tym samym jego temperaturę. W rezultacie pomiar jest obarczony błędem związanym z efektem samonagrzewania czujnika. W zależności od środowiska pracy i zdolności do przekazywania energii z czujnika do otoczenia błąd ten może wahać się od 0.1 C dla czujnika zanurzonego w cieczy do 1.5 C dla czujnika w nieruchomym powietrzu. W celu minimalizacji omawianego zjawiska stosuje się pomiary wykonywane okresowo, a nie ciągle. Ważne jest również ograniczenie do minimum wartości prądu płynącego przez rezystor pomiarowy (typowo 1mA). Możliwe jest również przeprowadzenie kalibracji układu i wyznaczenie poprawki. 5. Dynamiczne właściwości czujników temperatury O właściwościach dynamicznych czujników temperatury w głównej mierze decyduje budowa i sposób wykonania czujnika. W przypadku czujników PT100 wykonanych w postaci spirali ułożonej w korpusie porcelanowym stała czasowa będzie znacznie większa niż czujników, gdzie warstwa rezystancyjna napylona jest na ceramiczne podłoże czy też nieosłoniętego złącza termopary. Właściwości czujnika można w przybliżeniu opisać za pomocą transmitancji G(s): 8
9 A G( s) = e T 2s + 1 na rysunku: st1 gdzie T1, T2 i A można wyznaczyć z odpowiedzi skokowej jak 6. Przebieg ćwiczenia Należy zdjąć charakterystykę czujników temperatury w zakresie od 20 C do 100 C (minimum 15 pomiarów). W tym celu należy ustawić żądaną temperaturę pokrętłem. Wartość wskazywana przez regulator temperatury traktowana jest jako wzorzec. Dla czujników PT100, NTC i PTC należy dokonać pomiaru rezystancji, a dla LM35 i termopary napięcia. Odczytu dla czujnika LM 35 i termopary dokonać wg schematu: Wyniki przedstawić w formie tabeli i wykresu Dla wybranych 3 różnych temperatur dokonać pomiaru rezystancji czujnika PT100 przy pomocy zrównoważonego mostka. Do tego celu wykorzystać należy rezystor dekadowy. Układ połączyć zgodnie ze schematem: Wyniki zestawić w tabeli i porównać z pomiarami z punktu Zrównoważony mostek z punktu 6.2. należy zmodyfikować tak, aby czujnik Pt 100 podłączony był przez przewody o rezystancji RL znajdujące się w temperaturze otoczenia. 9
10 Czy po przełączeniu układu mostek jest w stanie równowagi? Jeśli nie należy dokonać wyzerowania. Zasymuluj zmiany temperatury otoczenia poprzez naciśnięcie przycisku ZT. Określ temperaturę wskazywaną przez mostek porównując aktualną rezystancję z pomiarami z punktu 6.1. i 6.2. Wykonaj pomiar dla 3 temperatur Należy zmodyfikować układ z punktu 6.3. poprzez zastosowanie czujnika 3- przewodowego jak na schemacie w punkcie 4.2. Wykonaj pomiary jak w punkcie 6.3 dla przewodów w różnej temperaturze (naciśnięcie lub zwolnienie przycisku ZT) Ustawić temperaturę zadaną na 100 C. Połączyć układ jak w punkcie 6.2. Zrównoważyć mostek. W miejsce mv podłączyć oscyloskop. Ostrożnie umieścić czujnik PT100 w zbiorniku z wodą. Zarejestrować odpowiedź i wyznaczyć parametry jak w punkcie Na podstawie pomiarów z punktu 6.1 należy dobrać współczynniki modelu dla czujników PT100, NTC i PTC zgodnie z opisem podanym w punktach 3.2. i Zagadnienia Parametryczne i generacyjne czujniki temperatury. Właściwości, charakterystyki, zastosowanie Zrównoważony mostek pomiarowy. Układy pomiarowe 2-, 3- i 4-ro przewodowe. Problem zimnych końców 8.Literatura Romer E. Miernictwo przemysłowe, PWN Syndenham P. Podręcznik metrologii cz.2 WKiŁ Hagel R., Zakrzewski J.: Miernictwo dynamiczne, WNT Michalski L., Eckersdorf K.: Pomiary temperatury WNT Michalski L., Eckersdorf K., Kucharski J.: Termometria: przyrządy i metody. Rząsa M., Kiczma B.: Elektryczne i elektroniczne czujniki temperatury 10
Czujniki temperatury
Czujniki temperatury Pomiar temperatury Pomiar temperatury jest jednym z najczęściej wykonywanych pomiarów wielkości nieelektrycznej w gospodarstwach domowych jak i w przemyśle. Do pomiaru temperatury
Bardziej szczegółowoTemat nr 3: Pomiar temperatury termometrami termoelektrycznymi
Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi 1.Wiadomości podstawowe Termometry termoelektryczne należą do najbardziej rozpowszechnionych przyrządów, służących do bezpośredniego pomiaru
Bardziej szczegółowoPODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH
PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH Rzeszów 2001 2 1. WPROWADZENIE 1.1. Ogólna charakterystyka
Bardziej szczegółowoĆwiczenie. Elektryczne metody pomiaru temperatury
Program Rozwojowy Politechniki Warszawskiej, Zadanie 36 Przygotowanie i modernizacja programów studiów oraz materiałów dydaktycznych na Wydziale Elektrycznym Laboratorium Akwizycja, przetwarzanie i przesyłanie
Bardziej szczegółowoAutomatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia II Wyznaczanie charakterystyk statycznych czujników temperatury 1 1. Wstęp Temperatura jest jedną z najważniejszych wielkości fizycznych
Bardziej szczegółowoCzujniki temperatur, termopary
Czujniki temperatur, termopary 1 Termopara Czujniki termoelektryczne są to przyrządy reagujące na zmianę temperatury zmianą siły termodynamicznej wbudowanego w nie termoelementu. Połączone na jednym końcu
Bardziej szczegółowoKONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY
IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między
Bardziej szczegółowoPOMIARY TEMPERATURY I
Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi
Bardziej szczegółowoUkład pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica
Układ pomiaru temperatury termoelementem typu K o dużej szybkości Paweł Kowalczyk Michał Kotwica Plan prezentacji Fizyczne podstawy działania termopary Zalety wykorzystania termopar Właściwości termoelementu
Bardziej szczegółowo2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH
2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2.1. Cel ćwiczenia: zapoznanie się ze zjawiskami fizycznymi, na których oparte jest działanie termoelementów i oporników
Bardziej szczegółowoZakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.
Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...
Bardziej szczegółowoProjektowanie systemów pomiarowych
Projektowanie systemów pomiarowych 10 Pomiar temperatury wybrane metody http://www.acse.pl/czujniki-temperatury 1 Pomiary temperatury Skale temperatury: - Celsjusza (1742) uporządkowana przez Stromera
Bardziej szczegółowoPOMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI
POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Zasada działania termometru rezystancyjnego. Elementy
Bardziej szczegółowoNazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Cel ćwiczenia: Wyznaczenie współczynnika temperaturowego oporu platyny oraz pomiar charakterystyk termopary miedź-konstantan.
Bardziej szczegółowoWYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY
Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 3 str. 1/9 ĆWICZENIE 3 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi czujnikami elektrycznymi
Bardziej szczegółowoĆwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem
Bardziej szczegółowoĆwiczenie 9. Mostki prądu stałego. Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a
Bardziej szczegółowoĆWICZENIE 6 POMIARY REZYSTANCJI
ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej
Bardziej szczegółowo4. BADANIE TERMOMETRÓW TERMOELEKTRYCZNYCH
4. DNIE TERMOMETRÓW TERMOELEKTRYCZNYCH 4.. Cel ćwiczenia: zapoznanie się z budową i częściami składowymi róŝnych termometrów termoelektrycznych, określenie warunków prawidłowego pomiaru temperatury spoiny
Bardziej szczegółowoPomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7
Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Ćw. 7. Kondycjonowanie sygnałów pomiarowych Problemy teoretyczne: Moduły kondycjonujące serii 5B (5B34) podstawowa charakterystyka Moduł kondycjonowania
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Bardziej szczegółowoBadanie półprzewodnikowych elementów bezzłączowych
Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i
Bardziej szczegółowoWYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 9. Czujniki temperatury
Cel ćwiczenia: Poznanie budowy i zasady działania oraz parametrów charakterystycznych dla stykowych czujników temperatury. Zapoznanie się z metodami pomiaru temperatur czujnikami stykowymi oraz sposobami
Bardziej szczegółowoLiniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie
Bardziej szczegółowoSERIA IV ĆWICZENIE 4_3. Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia:
SERIA IV ĆWICZENIE 4_3 Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia: 1. Rodzaje, budowa, symbole, zasada działania i zastosowanie termistorów i warystorów. 2. Charakterystyka
Bardziej szczegółowoPOLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH. Instrukcja do ćwiczenia. Pomiary temperatur metodami stykowymi.
POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH Instrukcja do ćwiczenia Pomiary temperatur metodami stykowymi. Wrocław 2005 Temat ćwiczenia: Pomiary temperatur czujnikami stykowymi
Bardziej szczegółowoWydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych
Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 310 Wydział/Kierunek Nazwa zajęć laboratoryjnych Nr zajęć
Bardziej szczegółowoInstytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska
Instytut Inżynierii Biomedycznej i Pomiarowej Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Laboratorium Pomiarów Wielkości Nieelektrycznych Pomiary temperatur metodami stykowymi Wrocław
Bardziej szczegółowoPomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
Bardziej szczegółowoPomiar podstawowych parametrów liniowych układów scalonych
Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,
Bardziej szczegółowoWzorcowanie mierników temperatur Błędy pomiaru temperatury
Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo Energetyczne laboratorium Wzorcowanie mierników temperatur Błędy pomiaru temperatury Instrukcja do ćwiczenia nr 3 Opracował: dr
Bardziej szczegółowoTermodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia
Termodynamika Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2013 1. INSTRUKCJA
Bardziej szczegółowoPOLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 6 Temat: Pomiar zależności oporu półprzewodników
Bardziej szczegółowoLinearyzatory czujników temperatury
AiR Pomiary przemysłowe ćw. seria II Linearyzatory czujników temperatury Zastosowanie opornika termometrycznego 100 do pomiaru temperatury Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów ze sposobami
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze
Bardziej szczegółowoLaboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU
Bardziej szczegółowoĆwiczenie 4 Badanie uogólnionego przetwornika pomiarowego
Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk
Bardziej szczegółowoUwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.
PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów
Bardziej szczegółowoM-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE:
M-1TI PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA Konwersja sygnału z czujnika temperatury (RTD, TC), rezystancji (R) lub napięcia (U) na sygnał pętli prądowej 4-20mA Dowolny wybór zakresu
Bardziej szczegółowoε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ
WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz
Bardziej szczegółowoWybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC
Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik
Bardziej szczegółowoKatedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze
Bardziej szczegółowoPOLITECHNIKA OPOLSKA
POLTECHK OPOLSK STYTT TOMTYK FOMTYK LBOTOM METOLO ELEKTOCZEJ 1. POMY EZYSTCJ METODM MOSTKOWYM 1. METODY POM EZYSTCJ 1.1. Wstęp 1.1.1 Metody techniczne 1.1.1.1.kład poprawnie mierzonego napięcia kład poprawnie
Bardziej szczegółowoEksperyment pomiary zgazowarki oraz komory spalania
Eksperyment pomiary zgazowarki oraz komory spalania Damian Romaszewski Michał Gatkowski Czym będziemy mierzyd? Pirometr- Pirometry tworzą grupę bezstykowych mierników temperatury, które wykorzystują zjawisko
Bardziej szczegółowoStatyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Bardziej szczegółowoWejścia analogowe w sterownikach, regulatorach, układach automatyki
Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia
Bardziej szczegółowoPrzykład 2. Przykład 3. Spoina pomiarowa
Wykład 10. Struktura toru pomiarowego. Interfejsy, magistrale, złącza. Eksperyment pomiarowy zjawisko lub model metrologiczny mezurand, czujniki przetwarzanie na sygnał elektryczny, kondycjonowanie sygnału
Bardziej szczegółowoTermodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia
Termodynamika Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2016 1. INSTRUKCJA
Bardziej szczegółowoBadanie przepływomierzy powietrza typu LMM i HFM
Badanie przepływomierzy powietrza typu LMM i HFM 1. Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie badania oraz określenie charakterystyk dla przepływomierza z przegrodą spiętrzającą oraz termo-anemometru,
Bardziej szczegółowoĆwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH
INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WEL WAT ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH A. Cel ćwiczenia:
Bardziej szczegółowoM-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ. 2
M-1TI PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ www.metronic.pl 2 CECHY PODSTAWOWE Przetwarzanie sygnału z czujnika na sygnał standardowy pętli prądowej 4-20mA
Bardziej szczegółowoPiezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia
MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną
Bardziej szczegółowoInstytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 28 : Wyznaczanie charakterystyk termistorów I. Zagadnienia do opracowania. 1. Pasma energetyczne w
Bardziej szczegółowoPOLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie
Bardziej szczegółowoBadanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Temperaturowa charakterystyka termistora typu NTC ćwiczenie nr 37 Opracowanie ćwiczenia: dr J. Woźnicka, dr S. elica Zakres zagadnień obowiązujących do ćwiczenia
Bardziej szczegółowoCECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE
Bardziej szczegółowoĆwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
Bardziej szczegółowoĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia
ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza
Bardziej szczegółowoINSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH
INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH BADANIE PRZETWORNIKÓW POMIAROWYCH Instrukcja do ćwiczenia Łódź 1996 1. CEL ĆWICZENIA
Bardziej szczegółowoBADANIE DIOD PÓŁPRZEWODNIKOWYCH
BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie
Bardziej szczegółowoPRZEŁĄCZANIE DIOD I TRANZYSTORÓW
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów
Bardziej szczegółowoPOMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Kod przedmiotu:
Bardziej szczegółowoKatedra Elektrotechniki Teoretycznej i Informatyki
Katedra lektrotechniki Teoretycznej i Informatyki Laboratorium Teorii Obwodów Przedmiot: lektrotechnika teoretyczna Numer ćwiczenia: 1 Temat: Liniowe obwody prądu stałego, prawo Ohma i prawa Kirchhoffa
Bardziej szczegółowoĆwiczenie: "Pomiary rezystancji przy prądzie stałym"
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Bardziej szczegółowoPOMIAR TEMPERATURY INSTYTUT MERTOLOGII I INŻYNIERII BIOMEDYCZNEJ SENSORY I POMIARY WIELKOŚCI NIEELEKTRYCZNYCH ĆWICZENIE LABORATORYJNE:
INSTYTUT MERTOLOGII I INŻYNIERII BIOMEDYCZNEJ SENSORY I POMIARY WIELKOŚCI NIEELEKTRYCZNYCH ĆWICZENIE LABORATORYJNE: POMIAR TEMPERATURY Opracowali: dr inż. Elżbieta Ślubowska mgr. Mateusz Szumilas 1. Wstęp
Bardziej szczegółowoMetodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Bardziej szczegółowoĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Bardziej szczegółowoPL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
Bardziej szczegółowoTranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.
I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.
Bardziej szczegółowoĆwiczenie nr 34. Badanie elementów optoelektronicznych
Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
Bardziej szczegółowoLABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych
LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Bardziej szczegółowoWKŁAD POMIAROWY W1P... I PW1P
WŁAD POMIAROWY W1P... I PW1P Zakres pomiarowy: -00...700 C : Pt100, Pt500, Pt100, inny : A, B, inna Materiał osłony: 1H1N9T Wkłady z serii W1P... są zespołem pomiarowym rezystancyjnych czujników temperatury.
Bardziej szczegółowoPOLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH
POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INFOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO
Bardziej szczegółowoBadanie elementów składowych monolitycznych układów scalonych II
1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych
Bardziej szczegółowoPodstawy Badań Eksperymentalnych
Podstawy Badań Eksperymentalnych Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Instrukcja do ćwiczenia. Temat 01 Pomiar siły z wykorzystaniem czujnika tensometrycznego Instrukcję
Bardziej szczegółowoPrzetwornik temperatury RT-01
Przetwornik temperatury RT-01 Wydanie LS 13/01 Opis Głowicowy przetwornik temperatury programowalny za pomoca PC przetwarzający sygnał z czujnika Pt100 na skalowalny analogowy sygnał wyjściowy 4 20 ma.
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze
Bardziej szczegółowoĆwiczenie - 3. Parametry i charakterystyki tranzystorów
Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne
Bardziej szczegółowowzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IM34-11EX-CI/K60
1 / 5 TURCK Inc. ñ 3000 Campus Drive Minneapolis, MN 55441-2656 ñ Phone: 763-553-7300 ñ Application Support: 1-800-544-7769 ñ Fax 763-553-0708 ñ www.turck.com przetwornik pomiarowy temperatury IM34-11Ex-CI/K60
Bardziej szczegółowoZASADA DZIAŁANIA miernika V-640
ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Bardziej szczegółowoBadanie bezzłączowych elementów elektronicznych
Temat ćwiczenia: Badanie bezzłączowych elementów elektronicznych - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - Dzień tygodnia: godzina wykonania ćwiczenia Lp. Nazwisko i imię*: 1 Pluton/Grupa
Bardziej szczegółowoELEMENTY ELEKTRONICZNE TS1C300 018
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO
Bardziej szczegółowonazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5
Ćwiczenie E- Pomiar oporności i indukcyjności metodą mostkową I. el ćwiczenia: Ocena dokładności pomiaru oporności mostkiem Wheatstone`a, pomiar nieznanej oporności i indukcyjności mostkiem ndersona. II.
Bardziej szczegółowoPomiar parametrów tranzystorów
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin Pracownia Elektroniki Pomiar parametrów tranzystorów (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: zasada działania tranzystora
Bardziej szczegółowo2.1 Cechowanie termopary i termistora(c1)
76 Ciepło 2.1 Cechowanie termopary i termistora(c1) Celem ćwiczenia jest zbadanie zależności temperaturowej oporu termistora oraz siły elektromotorycznej indukowanej w obwodach z termoparą. Przeprowadzane
Bardziej szczegółowoCelem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych.
1. Cel ćwiczenia. Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych. 2. Wstęp teoretyczny. Pomiary podstawowych wielkości
Bardziej szczegółowoZakład Zastosowań Elektroniki i Elektrotechniki
Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH
Bardziej szczegółowoLaboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych
Bardziej szczegółowoĆwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Bardziej szczegółowoWYZNACZANIE ZMIAN TERMICZNYCH REZYSTANCJI METALI I PÓŁPRZEWODNIKÓW
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS02137; KN02137; LS02137; LN02137 Ćwiczenie Nr 6 WYZNACZANIE ZMIAN TERMICZNYCH
Bardziej szczegółowoCHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW
CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.
Bardziej szczegółowoBudowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Bardziej szczegółowoTemat: POMIAR SIŁ SKRAWANIA
AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:
Bardziej szczegółowoĆw. III. Dioda Zenera
Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,
Bardziej szczegółowo