Podstawy sztucznej inteligencji
|
|
- Radosław Andrzejewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 wykład I Czym jest SI? Przeszukiwanie problemy oraz jak je rozwiązywać 13 październik 2011
2 Plan wykładu Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii 1 Czym jest sztuczna inteligencja? Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii 2
3 Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii Czym jest inteligencja? Psychologia cecha umysłu odpowiadająca za sprawność w zakresie myślenia, rozwiązywania problemów i innych czynności poznawczych Filozofia czynność intelektu, polegająca na aktualnym rozumieniu poznawanej rzeczy; INTELEKT - umysł, rozum; całokształt wiedzy, doświadczenia i zdolności umysłowych człowieka; utożsamiany niekiedy z inteligencją. Biologia obserwowana w warunkach naturalnych lub eksperymentalnych umiejętność niektórych zwierząt szybkiego znalezienia najtrafniejszego postępowania w nowej, nieznanej sytuacji
4 Definicje Sztucznej Inteligencji Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii Stworzono wiele definicji według różnych kryteriów. Dwa wymiary: 1 myślenie/rozumowanie kontra działanie/zachowanie 2 sukces w naśladowaniu ludzkich standardów kontra sukces w osiągnięciu idealnej inteligencji (niezawodnej) nazwijmy ją racjonalnej System, który myśli jak człowiek. System, który zachowuje się jak człowiek. System, który myśli racjonalnie. System, który zachowuje się racjonalnie.
5 Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii Dlaczego studiuje się sztuczną inteligencję? SI próbuje odkryć jak działają jednostki inteligentne. SI próbuje budować inteligentne programy, urządzenia. Czy są nam one potrzebne? SI na pewno ma i będzie miała wpływ na naszą przyszłość. SI jest dziedziną silnie interdyscyplinarną. Czy można zrozumieć jak to jest możliwe, że za pomocą małego i wolnego mózgu można postrzegać, rozumieć, przewidywać i manipulować elementami świata dużo bardziej złożonego? Jak myślimy?
6 Interdyscyplinarność SI Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii Filozofia Matematyka Psychologia Ekonomia Informatyka Sterowanie i cybernetyka Neuroscience Lingwistyka logika, metody dowodzenia rozum jako fizyczny model podstawy uczenia się, język naturalny, rozumowanie formalna reprezentacja i dowodzenie algorytmy, obliczenia, teoria złożoności prawdopodobieństwo behavioryzm, kognitywistyka zjawisko postrzegania i sterowania motorycznego techniki eksperymentalne formalna teoria racjonalnych decyzji, game theory software & hardware budowanie optymalnych systemów sterowania studia nad budową układu nerwowego w szczególności mózgu reprezentacja wiedzy gramatyka
7 Turing i jego eksperyment 1950r Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii Alan Turing (1950) Computing machinery and intelligence : Czy maszyna myśli? Czy maszyna może zachowywać się inteligentnie? Test operacyjny na myślenie w sensie Turinga.
8 Loebner Prize Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii Home Page of The Loebner Prize in Artificial Intelligence winner Do-Much-More http: // Talk with Hal Two chatbots conversation
9 Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii System symboliczny (Newell i Simon 1975) System symboliczny Zawiera zbiór jednostek, które są wzorcem w innej jednostce zwanej wyrażeniem. W każdej chwili system zawiera zbiór wyrażeń. Jest modelem umysłu. Wyrażenie zbudowane jest z pewnej liczby różnych symboli odniesionych względem siebie w pewien fizyczny sposób (np.. leżą obok siebie). Ponadto zdefiniowane są procesy (tworzenie, modyfikacja, reprodukcja, destrukcja), które definiują operacje na wyrażeniach, by tworzyć nowe wyrażenia. Nie bierze się pod uwagę treści tylko formę.
10 Hipoteza systemu symbolicznego Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii Definicja System symboli jest konieczny i wystarczający do wykonania inteligentnego działania Nie istnieje metoda analityczna na udowodnienie lub obalenie hipotezy. Można jedynie stwierdzić, że większość dowodów przemawia za tym, że jest to prawda. Jedyną drogą uzyskania dowodów jest eksperyment. Komputery są doskonałym medium do eksperymentów, od kiedy są programowane i symulują systemy symboliczne. Dowody poparcia dla hipotezy pochodziły z teorii gier, percepcji wizualnej. Hipoteza pozwala wierzyć, że możliwe jest zbudowanie programu komputerowego zdolnego do wykonywania inteligentnych zadań.
11 Plan wykładu 1 Czym jest sztuczna inteligencja? 2
12 Przeszukiwanie jest istotnym sposobem na rozwiązywanie dużej grupy problemów, w których z licznej przestrzeni szukamy rozwiązania. Techniki przeszukiwania są jednymi z ważniejszych i szeroko stosowanych w AI. Główna koncepcja: zanim dokona się rozwiązania problemu (łamigłówki) przeszukuje się pewną przestrzeń możliwości. Zanim podejmiemy decyzję, która z możliwości jest rozwiązaniem musimy sprawdzić pewną przestrzeń, by porównać różne możliwości. Przeszukiwanie eksploracja możliwości, a możliwość jest potencjalnym rozwiązaniem
13 Jakie problemy możemy rozwiązywać? Zanim gracz w szachy zdecyduje się na ruch rozważa różne możliwości przesuwania bierek na szachownicy. Decyduje się na ruch przynoszący największą korzyść. Układając kostkę Rubika gracz próbuje w głowie kilka ruchów zanim wybierze jeden z nich. Rozwiązując krzyżówkę szukamy w pamięci słowa pasującego do definicji o odpowiedniej długości i pasujące do już wstawionych liter. Wybieramy najlepiej pasujące. Błądząc w labiryncie możemy trafić na ślepy zaułek i wówczas musimy się wycofać i szukać innej drogi. Jadąc z Gdańska do Warszawy samochodem rozważamy możliwe trasy i wybieramy jedną z nich.
14 Formułowanie problemu, czyli jak formalnie przedstawić możliwości Ogólna reprezentacja stanu Jest to formalny i ogólny sposób przedstawiania możliwości (potencjalnych rozwiązań). Wykorzystuje się pewną strukturę danych, np. kilka zmiennych, tablicę dwuwymiarową. Określenie stanu początkowego i końcowego Podstawiając do ogólnej reprezentacji stanu pewne wartości (np. liczbowe) uzyskuje się opis konfiguracji początkowej problemu i końcowej (czyli oczekiwanego rozwiązania). Lista operatorów Każdy problem jest związany z pewnym działaniem. Działanie to opisane w sposób formalny (funkcja działająca na reprezentacji stanu) tworzy listę operatorów.
15 Misjonarze i kanibale Stan mógłby być reprezentowany jako: (CanLeft, MissLeft, BoatPos, CanRight, MissRight) np. (2, 2, RIGHT, 1, 1) Dopuszczalne ruchy to takie, które pozwalają na przewożenie dwóch lub jednej osoby w łódce, tak by kanibale nie byli liczniejsi niż misjonarze na żadnym z brzegów Przy takich założeniach: 1 Stan początkowy: (3, 3, LEFT, 0, 0) 2 Stan końcowy: (0, 0, RIGHT, 3, 3) 3 Możliwe ruchy: z (3, 3, LEFT, 0, 0) do (2, 2, RIGHT, 1, 1) z (2, 2, RIGHT, 1, 1) do (2, 3, LEFT, 1, 0)
16 Misjonarze i kanibale Sprawa trudniejsza - operatory! Załóżmy iż bieżący stan, to: (cleft, mleft, boatpos, cright, mright) Definiujemy operator MOVE 1m1c-lr: Jeden misjonarz i jeden kanibal płyną z lewej na prawą. Warunki początkowe: 1 boatpos = LEFT 2 cleft >= 1 AND mleft >= 1 3 (mleft-1 >= cleft-1) OR mleft = 0 4 (mright+1 >= cright+1) OR mright = 0 Nowy stan to zatem: (cleft-1, mleft-1, RIGHT, cright+1, mright+1)
17 Misjonarze i kanibale Na rysunku widać cykle poprzez powroty do już odwiedzonych węzłów. Taka struktura to graf.
18 w przeszukiwaniu przestrzeni stanów Graf jest dobrą reprezentacją odzwierciedlającą relacje pomiędzy stanami. Każdy węzeł grafu reprezentuje stan. Każdy łuk w grafie reprezentuje zastosowanie operatora. Stan musi zawierać pełną niezbędną informację, na podstawie której będzie można powiedzieć co zrobić dalej i nie zawiera informacji nieistotnych. Reprezentacja stanu jest krytyczna dla zadania. Dobra reprezentacja może skrócić obliczenia. Oczekuje się jednego z dwu rozwiązań: albo ścieżka od stanu początkowego do końcowego, albo po prostu osiągnięcie pewnego stanu, który uznano za końcowy.
19 Stan versus węzeł
20 Przelewanie wody w wiadrach Stan mógłby być reprezentowany jako: (x,y) np. (3, 5) Dopuszczalne ruchy to takie, które napełniają wiadra wodą lub ją przelewają między nimi lub ją wylewają Przy takich założeniach: 1 Stan początkowy: ( 0, 0) 2 Stan końcowy: (1, 0) 3 Możliwe ruchy: from (0, 0) to (3, 0) from (0,0) to (0,5)
21 Przelewanie wody w wiadrach Lista operatorów dla tego problemu obejmuje czynności: Napełnij wodą wiadro o pojemności 3 do pełna ze źródła wody. Napełnij wodą wiadro o pojemności 5 do pełna ze źródła wody. Wylej wodę z wiadra 3. Wylej wodę z wiadra 5. Przelej wodę z wiadra 3 do 5 dopóki się nie jedno nie zapełni lub opróżni. Przelej wodę z wiadra 5 do 3 dopóki się nie jedno nie zapełni lub opróżni.
22 Puzzle Stan musi być przystosowany, by można było śledzić przemieszczanie elementów na planszy: ((x1,y1,z1),(x2,y2,z2),(x3,y3,z3)) Dopuszczalne ruchy to takie, które przesuwają pusty element oznaczone przez 0 po planszy. Przy takich założeniach: 1 Stan początkowy: np. ((2,8,3),(1,6,4),(7,0,5)) 2 Stan końcowy: ( (1,2,3) (8,0,4), (7,6,5) ) 3 Możliwe ruchy: przemieszczanie pustego: prawo, lewo, góra, dół.
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Wprowadzenie Wprowadzenie 1 Program przedmiotu Poszukiwanie rozwiązań w przestrzeni stanów Strategie w grach Systemy decyzyjne i uczenie maszynowe Wnioskowanie
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku
Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku Piotr Konderak kondorp@bacon.umcs.lublin.pl Zakład Logiki i Filozofii Nauki WFiS UMCS Kognitywistyka: odkrywanie labiryntu umysłu
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Alan M. TURING. Matematyk u progu współczesnej informatyki
Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów
wykład 1 Wprowadzanie do sztucznej inteligencji dr inż. Joanna Kołodziejczyk Zakład Sztucznej Inteligencji ISZiMM
Wprowadzanie do sztucznej inteligencji wykład 1 dr inż. Joanna Kołodziejczyk jkolodziejczyk@wi.ps.pl Zakład Sztucznej Inteligencji ISZiMM ESI - wykład 1 p. 1 Organizacja wykładu 1. Co to jest sztuczna
Między umysłem, mózgiem i maszyną. O kognitywistyce
Między umysłem, mózgiem i maszyną. O kognitywistyce Piotr Konderak Zakład Logiki i Filozofii Nauki Kognitywistyka... próbuje zrozumieć przyswajanie, reprezentowanie i wykorzystywanie wiedzy przez: umysły,
Elementy kognitywistyki II: Sztuczna inteligencja
Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu
Sztuczna inteligencja - wprowadzenie
Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.
Wstęp do kognitywistyki. Wykład 12: Wprowadzenie do SI. Obliczeniowa teoria umysłu
Wstęp do kognitywistyki Wykład 12: Wprowadzenie do SI. Obliczeniowa teoria umysłu Sztuczna inteligencja...to próba zrozumienia i wyjaśnienia jednostek inteligentnych. Specyfika SI polega na metodzie: wyjaśnianie
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz
WIEDZA prawda komunikat symbol DANE fałsz kod INFORMACJA (nie tyko w informatyce) liczba znak forma ENTROPIA przekaz wiadomość Czy żyjemy w erze informacji? TAK Bo używamy nowego rodzaju maszyn maszyn
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych
Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
Podstawy sztucznej inteligencji
wykład II Problem solving 03 październik 2012 Jakie problemy możemy rozwiązywać? Cel: Zbudować inteligentnego agenta planującego, rozwiązującego problem. Szachy Kostka rubika Krzyżówka Labirynt Wybór trasy
O REDUKCJI U-INFORMACJI
O REDUKCJI U-INFORMACJI DO DANYCH Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki o komunikacji KOMPUTER informatyka elektronika
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład 1 Studia Inżynierskie Dlaczego badania nad sztuczną inteligencją? Próba zrozumienia istot inteligentnych - lepsze poznanie samego siebie (filozofia, psychologia)
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład II: Modele pojęciowe Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe) przeformułowanie
Metody sztucznej inteligencji w układach sterowania METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Metody sztucznej inteligencji w układach sterowania Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
M T E O T D O ZI Z E E A LG L O G R O Y R TM
O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające
KIERUNEK: KOGNITYWISTYKA
KIERUNEK: KOGNITYWISTYKA Plan studiów pierwszego stopnia Cykl kształcenia 2018-2021 Rok akademicki 2018/2019 Zbo zaliczenie bez oceny Z zaliczenie z oceną E egzamin Jeżeli wykłady odbywają się równolegle
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
LOGIKA Wprowadzenie. Robert Trypuz. Katedra Logiki KUL GG października 2013
LOGIKA Wprowadzenie Robert Trypuz Katedra Logiki KUL GG 43 e-mail: trypuz@kul.pl 2 października 2013 Robert Trypuz (Katedra Logiki) Wprowadzenie 2 października 2013 1 / 14 Plan wykładu 1 Informacje ogólne
Koło matematyczne 2abc
Koło matematyczne 2abc Autor: W. Kamińska 17.09.2015. Zmieniony 08.12.2015. "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ W RAZIE POTRZEBY MOŻESZ PÓJŚĆ RAZ JESZCZE" G. CH.
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
O ISTOTNYCH OGRANICZENIACH METODY
O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
Inteligencja. Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych
Wstęp Inteligencja Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych inteligencja psych. zdolność rozumienia, kojarzenia; pojętność, bystrość; zdolność znajdowania właściwych, celowych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
Wydział Filozofii i Socjologii Uniwersytet Marii Curie-Skłodowskiej w Lublinie
Wydział Filozofii i Socjologii Uniwersytet Marii Curie-Skłodowskiej w Lublinie Kierunki studiów: Europeistyka Filozofia Kognitywistyka Kreatywność społeczna Socjologia Zarządzanie w politykach publicznych
Autorski program nauczania
Grzegorz Kaczorowski Innowacja pedagogiczna: Algorytmika i programowanie Typ innowacji: programowa Autorski program nauczania poziom edukacyjny: PONADGIMNAZJALNY Realizatorzy innowacji: uczniowie klas
Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski
Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski Architektura umysłu Pojęcie używane przez prawie wszystkie współczesne ujęcia kognitywistyki Umysł Przetwornik informacji 2 Architektura
Percepcja, język, myślenie
Psychologia procesów poznawczych Plan wykładu Percepcja, język, myślenie Historia psychologii poznawczej W 2 Wstęp do psychologii poznawczej Historia psychologii poznawczej dawniej Psychologia poznawcza
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia
:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Metody uczenia się i studiowania. 1 15 1 Środowisko programisty. 1 30 3 Komputerowy
KOGNITYWISTYKA PROGRAM OBOWIĄZUJĄCY STUDENTÓW Z REKRUTACJI OD ROKU 2012/2013. Rok I Semestr I
KOGNITYWISTYKA PROGRAM OBOWIĄZUJĄCY STUDENTÓW Z REKRUTACJI OD ROKU 2012/2013 A. NAZWA KIERUNKU STUDIÓW: KOGNITYWISTYKA B. POZIOM KSZTAŁCENIA: STUDIA JEDNOLITE MAGISTERSKIE C. PROFIL KSZTAŁCENIA: OGÓLNOAKADEMICKI
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład X/XI: Architektury poznawcze (symboliczne) III: GLAIR/SNePS GLAIR/SNePS - przegląd GLAIR/SNePS (Grounded Layered Architecture with Integrated
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XII: Modele i architektury poznawcze
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XII: Modele i architektury poznawcze Architektury poznawcze Architektura poznawcza jako teoria poznania ludzkiego Anderson (1993): Architektura
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Przeszukiwanie Przeszukiwanie przestrzeni stanów Motywacja Rozwiązywanie problemów: poszukiwanie sekwencji operacji prowadzącej do celu poszukiwanie
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz
K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach
Uniwersytet Śląski w Katowicach str. 1 Efekty dla: nazwa kierunku poziom profil Informatyka inżynierska pierwszy ogólnoakademicki Kod efektu (kierunek) K_1_A_I_W01 K_1_A_I_W02 K_1_A_I_W03 K_1_A_I_W04 K_1_A_I_W05
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Plan wykładów METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Plan wykładów Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie formysztucznej inteligencji Elementy
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego wojtow@uw.edu.pl 1 2 1. SFORMUŁOWANIE PROBLEMU Czy są empiryczne aspekty dowodów matematycznych? Jeśli tak to jakie stanowisko filozoficzne
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Inteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A
Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z
Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych
Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, Matematyka,
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
FILOZOFIA. Studia stacjonarne
FILOZOFIA Studia stacjonarne I stopnia Studia filozoficzne I stopnia na kierunku filozofia prowadzone są w ramach dwóch specjalności: Filozofia teoretyczna Kognitywistyka Studia na każdej specjalności
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VIII: Architektury poznawcze (symboliczne) I: ACT Zintegrowana teoria umysłu ACT-R (adaptive control of thought rational) hipoteza dotycząca
PRZEDMIOTY REALIZOWANE W RAMACH KIERUNKU INFORMATYKA I STOPNIA STUDIA STACJONARNE
PRZEDMIOTY REALIZOWANE W RAMACH KIERUNKU INFORMATYKA I STOPNIA STUDIA STACJONARNE Analiza matematyczna i algebra liniowa Metody probabilistyczne i statystyka Matematyka dyskretna Fizyka Podstawy elektrotechniki
Wprowadzenie. Jacek Bartman. Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski
Sztuczna inteligencja Wprowadzenie Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski INFORMACJE ORGANIZACYJNE Forma zajęć: Studia stacjonarne Wykłady 30h Laboratorium
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom I: Optymalizacja. Nie panikuj!
Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień Tom I: Optymalizacja Nie panikuj! Autorzy: Iwo Błądek Konrad Miazga Oświadczamy, że w trakcie produkcji tego tutoriala nie zginęły żadne zwierzęta,
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister
BIOCYBERNETYKA PROLOG
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia
:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Repetytorium z matematyki. 1 30 3 Środowisko programisty. 1 30 3 Komputerowy
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Załącznik 2. Symbol efektu obszarowego. Kierunkowe efekty uczenia się (wiedza, umiejętności, kompetencje) dla całego programu kształcenia
Załącznik 2 Opis kierunkowych efektów kształcenia w odniesieniu do efektów w obszarze kształcenia nauk ścisłych profil ogólnoakademicki Kierunek informatyka, II stopień. Oznaczenia efektów obszarowych
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku
6. TWORZYMY OPOWIEŚĆ DO RZUTÓW KOSTKĄ CZYLI O UKŁADANIU OPOWIADAŃ
6. TWORZYMY OPOWIEŚĆ DO RZUTÓW KOSTKĄ CZYLI O UKŁADANIU OPOWIADAŃ 27 Małgorzata Sieńczewska 6. TWORZYMY OPOWIEŚĆ DO RZUTÓW KOSTKĄ CZYLI O UKŁADANIU OPOWIADAŃ Cele ogólne w szkole podstawowej: zdobycie
Teoretyczne podstawy informatyki
1 Wykład cz. 2 dyżur: środa 9.00-10.00 czwartek 10.00-11.00 ul. Wieniawskiego 17/19, pok.10 e-mail: joanna.jozefowska@cs.put poznan.pl materiały do wykładów: http://www.cs.put.poznan.pl/jjozefowska/ hasło:
Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK
Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK SPRAWY ORGANIZACYJNE Konsultacje: czwartek 12-14, pokój 33 Email: wioleta.drobik@gmail.com, wioleta_drobik@sggw.pl Wykład 30 h (10 x 3 h w tygodniu) Ćwiczenia 15
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Wstęp do logiki. Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża,
Prof. UAM, dr hab. Zbigniew Tworak Zakład Logiki i Metodologii Nauk Instytut Filozofii Wstęp do logiki Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża, kto poprawnie wnioskuje i uzasadnia
30 2 Zal. z oc. Język obcy nowożytny 60/4 30 30 4 Zal z oc. 8 Psychologia 15/1 15 1 Zal z oc. 9 Pedagogika 30/2 30 2 Zal z oc.
Lp. Przedmiot Załącznik Nr 1 do Uchwały nr XX Rady Wydziału Nauk Technicznych z dnia 29 maja 2013 roku Program i plan kształcenia dla studiów doktoranckich - stacjonarnych w dyscyplinie inżynieria rolnicza.
Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria