Budowa wnętrza procesora x86

Wielkość: px
Rozpocząć pokaz od strony:

Download "Budowa wnętrza procesora x86"

Transkrypt

1 Budowa wnętrza procesora x86 Marika Kuczyńska, Joanna Tokarz Akademia Górnicz- Hutnicza im. Stanisława Staszica w Krakowie Wydział Fizyki i Informatyki Stosowanej Fizyka Techniczna Kraków,

2 Plan prezentacji 1. Schemat Budowy procesora Intel (IA-32) 3. Jednostka Wykonawcza a) Rejestry ogólnego przeznaczenia - rejestry arytmetyczne - rejestry wskaźnikowe i indeksowe a) Rejestr znaczników (EFLAG, RFLAG) c) Wskaźnik instrukcji (EIP/RIP) d) Jednostka zmiennoprzecinkowa, koprocesor (FPU) e) Rejestry kontrolne (CR) 4. Instrukcje a) rejestry MMX (64bit) b) rejestry XXM (128bit) c) rozszerzenie AVD (rejestr YMM) (255bit)

3 Schemat blokowy mikroprocesora Intel IE-32 (32-bity) Jednostka wykonawcza Jednostka interfejsowa

4 Jednostka Wykonawcza Jednostka wykonawcza składa się z: h - podstawowych rejestrów wykonawczych: ogólnego przeznaczenia segmentów RFlag wskaźnika instrukcji - rejestrów koprocesora - rejestru kontrolnego - rejestru statusu - rejestru znaczników - rejestrów wskaźnikowych - rejestrów XMM i MMX

5 Jednostka wykonawcza mod 32 mod 64

6 Rejestry jednostki wykonawczej Główne rejestry: - 16 rejestrów ogólnego przeznaczenia GPRs (32/64 bity) - 6 rejestrów segmentowych (16 bitów) - rejestr znaczników (EFLAG\RFLAG) (32/64 bity) - licznik rozkazów EIP/RIP (32/64 bity) - 8 rejestrów jednostki zmiennoprzecinkowej - 16 rejestrów XMM (128 bitów)

7 Rejestr ogólnego przeznaczenia W skład bloku rejestru ogólnego przeznaczenia wchodzą: p - rejestr arytmetyczny - rejestr wskaźnikowy - rejestr indeksowy Zastosowanie: pk - Służą jako liczniki (głównie rejestr ECX) - Funkcjonują jako przechowalnie argumentów - Przechowywanie operandów i wyników obliczeń arytmetycznych. - Są wskaźnikami pamięci

8 Rejestr ogólnego przeznaczenia (General-Purpose Register) 8 bits 16 bits 32 bits - Rejestr bajtów (Byte Registers ) AL, BL, CL, DL, AH, BH, CH, DH - Rejestr słów (Word Registers) AX, BX, CX, DX, DI, SI, BP, SP - Rejestr podwójnych słów (Doubleword Registers ) EAX, EBX, ECX, EDX, EDI, ESI, EAX, EBX, ECX, EDX, EDI, ESI, EBP, EBP, ESP

9 Rejestr ogólnego przeznaczenia (General-Purpose Register) - Rejestr poczwórnych słów (Quadword Registers ) RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8 - R15

10 Rejestr ogólnego przeznaczenia (General-Purpose Register) KIEDYŚ: Rejestry danych: EAX rejestr akumulacji EBX - rejestr bazowy ECX - rejestr licznika EDX - rejestr danych Rejestry adresowe: ESP wskaźnik stosu EBP wskaźnik bazowy ESI - wskaźnik źródła EDI - przeznaczenie k TERAZ: Każdy z 16 rejestrów może wykonywać każdą z wyżej wymienionych prac. Nie ma podziału na rejestry poszczególnego przeznaczenia, ponieważ rejestry są przemienne i wymienne. k R8 R15 reprezentują 8 nowych GPR, gotowych do użycia.

11 Rejestr znaczników (flag) Dzięki rejestrowi znaczników mamy możliwość kontrolowania ustawień samego procesora. k Zapisane są w nim takie ustawienia, jak np. : j j - możliwość korzystania z instrukcji wejścia-wyjścia, - informacje nt. ostatnio przeprowadzanej operacji arytmetycznej.

12 Rejestr znaczników (flag) EFLAG Flagi znajdujące się w rejestrze dzielimy na: k - flagi stanu (S) - flagi systemowe (X) - flagi sterowania (C)

13 Znaczenia flag (S) CF (carry flag) - znacznik przeniesienia 0 - wynik operacji arytmetycznej nie powoduje powstania przeniesienia z najbardziej znaczącego bitu 1 - wynik takie przeniesienie powoduje PF (parity flag) - znacznik parzystości - ustawiany w zależności od liczby jedynek w najmniej znaczących 8 bitach wyniku 0 - liczba jedynek w wyniku operacji nieparzysta 1 - liczba jedynek w wyniku operacji parzysta AF (auxiliary carry flag) - znacznik przeniesienia połówkowego (pomocniczego) 0 - brak przeniesienia pomiędzy trzecim i czwartym bitem bajta (BCD) 1 - występuje przeniesienie

14 Znaczenia flag (S) ZF (zero flag) - znacznik zera 0 - wynik operacji różny od zera 1 - wynik operacji równy zeru S SF (sign flag) - znacznik znaku - równy najbardziej znaczącemu bitowi wyniku 0 - wynik operacji dodatni 1 - wynik operacji ujemny F OF (overflow flag) - znacznik nadmiaru 0 - suma modulo 2 przeniesień z najbardziej znaczącej pozycji i pozycji przedostatniej jest równa suma modulo 2 przeniesień z najbardziej znaczącej pozycji i pozycji przedostatniej jest równa 1 (przekroczenie zakresu w kodzie U2) F TF (trap flag) - znacznik pułapki umożliwiającej pracę krokową 0 - praca krokowa wyłączona 1 - praca krokowa włączona, mikroprocesor po wykonaniu każdego rozkazu wykona skok do odpowiedniego podprogramu obsługi przerwania IF (interrupt flag) - znacznik przerwań 0 - brak zezwolenia na przyjmowanie przerwań z wejścia INT 1 - zezwolenie na przyjmowanie przerwań DF (direction flag) (C) - znacznik kierunku 0 - rejestry są zwiększane 1 - rejestry są zmniejszane

15 Znaczenia flag (X) IOPL (I/O priviege field) poziom uprzywilejowania we/wy 0 - odczyt/zapis jest zabroniony 1 odczyt/zapis jest dozwolony d NT (Nested task flag) - flaga zadania zagnieżdżonego 0 - obecny proces nie wywodzi się z żadnego innego 1 - proces jest zadaniem zagnieżdżonym g RF (resume flag) flaga wznowienia 0 nie wystąpiło przerwanie zatrzymujące wykonanie programu 1 - wystąpiło przerwanie zatrzymujące wykonanie programu g VM (Virtual-8086 mode flag) flaga trybu wirtualnego brak przejścia, pozostanie w obecnym trybie 1 - przejście w tryb emulacji procesora 8086 AC (Alignment chcek flag) sprawdzenie wyrownania 0 - włączone 1 - włączone VIF (Virtual interrupt flag) flaga przerwania wirtualnego 0 - nie pozwala na przerwania w trybie wirtualnym 1 pozwala na wirtualne przerwania VIP (Virtual interrupt pending flag) oczekujące przerwanie wirtualne 0 - brak wirtualnych przerwań 1 - trwa wirtualne przerwanie ID (identification flag) - identyfikacja 0 nie można zmienić wartości 1 - można zmienić wartość

16 Wskaźnik instrukcji (instruction pointer) IP - wskazuje na adres aktualnie wykonywanej instrukcji. Procesor ma zapętlony sposób działania: pobiera instrukcję, wykonuje ją i, na koniec cyklu, zwiększa zawartość rejestru IP o długość wykonanej instrukcji. W razie uruchomienia programu, początkowo rejestr IP wskazuje na początek segmentu kodu. EIP rozszerzenie IP na 32 bity RIP rozszerzenie IP na 64 bity - nie możemy się dostać do IP bezpośrednio przez software - kontrolowany jest przez instrukcje takie jak: JMP, Jcc, CALL, RET, przerwania i wyjątki

17 Rejestry koprocesora FPU (floating point unit) Czyli tak zwany koprocesor - Jest to blok procesora wspomagający go w obliczeniach zmiennoprzecinkowych Składa się z: - Rejestrów kontrolnych - Rejestru statusu - rejestru znaczników - wskaźnika instrukcji - wskaźnika opernadów

18 Rejestry kontrolne Istnieje 5 rejestrów kontrolnych: d CR0- Modyfikuje podstawowe operacje procesora. k CR1- Ten rejestr jest zarezerwowany i nie mamy do niego żadnego dostępu. d CR2- Jeśli dojdzie do gdzieś do błędu, to adres wystąpienia tego błędu jest przechowywany właśnie w CR2 d CR3- Używany tylko jeśli bit PG w CR0 jest ustawiony. CR3 umożliwia procesorowi zlokalizowanie położenia tablicy katalogu stron dla obecnego zadania. Ostatnie (wyższe) 20 bitów tego rejestru wskazują na wskaźnik na katalog stron zwany PDBR (ang. Page Directory Base Register). d CR4- Używany w trybie chronionym w celu kontrolowania operacji takich jak wsparcie wirtualnego 8086, technologii stronicowania pamięci, kontroli błędów sprzętowych i innych.

19 Rejestry kontrolne - Mają długość 32 bitów na procesorze 386 lub wyższym. - Na procesorze x86-64 analogicznie rejestry mają długość 64 bitów.

20 Rejestry kontrolne - CR0 PE (Protection Enabled) 0 pracuje w trybie rzeczywistym 1 pracuje w trybie chronionym WP (Write Protection) 0 ochrona wyłączona 1 włącza ochronne zapisu MP (Monitor Coprocessor) 1 kontroluje instrukcje WAIT/FWAIT EM (Emulate Flag) 0 obecność jednostki x87 1 nie ma żadnego koprocesora TS (Task switched) Pozwala zachować zadania x87. 1 przełączanie zadań ES (Extention type) Mówi nam jaki mamy koprocesor NE (Numeric Error) 1 włącza wewnętrzne raportowanie błędów FPU AM (Aligment Mask) 0 maska wyłączona 1 włącza maskę wyrównania NW (No Write-Through) 0 zapis do pamięci poprzez cache 1 bezpośredni zapis do pamięci CD (Casche disable) 0 pamięć cache włączona 1 pamięć cache wyłączona PG (Paging Flag) 0 wyłączone stronicowanie 1 włączone stronicowanie

21 Rejestry kontrolne - CR4 VEM (Virtual 8086 Mode Extensions) PCE (Performance-Monitoring Counter Enable) 1 włącza wirtualną flagę przerwań g 0 - rozkaz może być wykonany tylko w PVI (Protected Mode Virtual Interrupts) trybie jądra (poziom 0) 1 - włącza sprzętowe wsparcie dla wirtualnej 1 - rozkaz RDPMC może być wykonany w flagi przerwań (VIF) w trybie chronionym każdym poziomie uprzywilejowani ;jhbj ;jhbdj TSD (Time Stamp Disable) OSFXSR (Operating system support for FXSAVE 0 - rozkaz RDTSC może być wykonany and FXSTOR instructions) na każdym poziomie uprzywilejowania 1 Wsparcie systemu operacyjnego dla 1 - rozkaz RDTSC może być wykonany instrukcji FXSAVE i FXSTOR g,, tylko w poziomie uprzywilejowania 0 OSXMMEXCEPT (Operating System Support for (czyli w trybie jądra) s Unmasked SIMD Floating-Point Exceptions) PGE (Page Global Enabled) 1 - Wsparcie systemu operacyjnego dla 1 włącza globalne stronicowanie niemaskowanych wyjątków technologii SIMD

22 Rejestr MMX * Rozszerzenie MMX wraz ze swoimi rejestrami zostało wprowadzone w procesorach Pentium (1997). k * Rejestry MMX są ponumerowane od MM0 do MM7 i wszystkie są 64-bitowe. i * Rejestry te nie są wydzielone, lecz są częścią składową rejestrów jednostki stałoprzecinkowej. i * MMX pozwala na : - przeprowadzanie kilku obliczeń stałoprzecinkowych jednocześnie. - wykorzystywane są również przez rozszerzenia stworzone przez AMD - 3DNow oraz 3DNow!, które z kolei umożliwiają przeprowadzanie obliczeń zmiennoprzecinkowych.

23 Rejestr XMM * Rejestry XMM zostały wprowadzone wraz z rozszerzeniem SSE w procesorach Pentium III (1999). * Są ponumerowane od XMM0 do XMM7, każdy po 128 bitów. * Rozszerzenie SSE jest kontynuacją rozszerzenia MMX, gdyż założenia są podobne, lecz umożliwiają dodatkowo obliczenia na liczbach zmiennoprzecinkowych. * Co więcej rejestry XMM nie są "aliasami" na rejestry FPU, zatem koprocesor i Rejestry technologii SSE mogą być używane równolegle.

24 Rejestr YMM AVX (Advanced Vector Extensions) rozszerzenie zestawu instrukcji SSE opublikowane w marcu 2008 przez firmę Intel. * wprowadzono 256-bitowe rejestry * Dodano kilka rozkazów działających wyłącznie na rejestrach YMM (19 instr). * Dodane specjalizowane instrukcje wspomagające szyfrowanie AES (6 instr). * Rozszerzone kodowanie rozkazów(166 instr). * Dodane 4-argumentowe rozkazy akumulujące wyniki mnożenia wektorów liczb zmiennoprzecinkowych (12 instr).

25 Mnemoniki instrukcji PS, PD - wektor liczb zmiennoprzecinkowych, SS, SD - skalar (pierwszy element wektora), tj. liczba zmiennoprzecinkowa, odpowiednio, pojedynczej i podwójnej precyzji. i wyniki mnożenia rozpoczynają się od VFM lub VFNM, np. VFMADDPD natomiast mnemoniki rozkazów wspomagających szyfrowanie od AES. np. AESDEC

26 Instrukcje Przesłaniania: - MOV przesłanianie proste - XCHG wymiana - MIVSX przesłanianie z rozszerzeniem bitu znaku - MOVZX przesłanie z rozszerzonymi zerami Arytmetyczno-logiczne (jednoargumentowe): - INC, DEC inkrementacja, dekrementacja - NOT, NEG negacja bitów, zamiana znaku Arytmetyczno-logiczne (dwuargumentowe): - ADD, ADC inkrementacja, dekrementacja - SUB, SBB odejmowanie zwykłe i z przeniesieniem - CMP porównanie: odejmowanie bez zapisu wyniku - AND, OR, XOR logiczne bitowe - TEST test: iloczyn logiczny bez zapisu wyniku

27 Instrukcje Przesunięcia i rotacje: liczba pozycja zapisana jest jako stała w instrukcji albo w CL - SHL, SHR logiczne w lewo/prawo; z dopełnieniem zerami - SAR arytmetyczne w prawo; z kopiowaniem znaku - ROL, ROR rotacja w lewo/prawo - RCL, RCR rotacja z bitem przeniesienia - SHLD, SHRD przesunięcie dwóch słów w lewo/prawo z zapisem bardziej/mniej znaczącego słowa wyniku Pobieranie adresu efektywnego: LEA - LEA EAX [EBX*8] - LEA EAX [EBX+EBX*8] - stosowane często do mnożenia przez 3,4,5,8,9

28 Instrukcje Mnożenie i dzielenie: - jednoargumentowe zawiera argument domyślny - dwuargumentowe rejestr, rejestr/pamięć - trójargumentowe rejestr, rejestr/pamięć, stała - MUL, IMUL, DIV, IDIV bez znaku i ze znakiem Skoki: - JMP skok bezwarunkowy - CALL skok ze śladem powrotu, przekazanie sterowania do procedury - Jcc skok po spełnieniu warunku - JMP EAX skok ze wskazanym zmiennym adresem docelowym - JMP [EBX+ECX*4] skok ze wskazanym zmiennym adresem docelowym - RET powrót z procedury - RET n powrót z procedury, po zdjęciu ze stosu n bajtów argumentów

29 DZIĘKUJEMY ZA UWAGĘ!

CPU. Architektura FLAGS Bit: dr Paweł Kowalczyk; DPTNS, KFCS UŁ. SI 16 bit. 16 bit. 16 bit.

CPU. Architektura FLAGS Bit: dr Paweł Kowalczyk; DPTNS, KFCS UŁ. SI 16 bit. 16 bit. 16 bit. Architektura 8086 8086 posiada 4 rejestry ogólnego użytku AX, BX, CX, DX, 2 rejestry indeksowe SI, DI, 3 rejestry wskaźnikowe SP, BP, IP, 4 rejestry segmentowe CS, DS, SS i ES oraz rejestr flag FLAG AH

Bardziej szczegółowo

Programowanie niskopoziomowe

Programowanie niskopoziomowe Programowanie niskopoziomowe ASSEMBLER Teodora Dimitrova-Grekow http://aragorn.pb.bialystok.pl/~teodora/ Program ogólny Rok akademicki 2011/12 Systemy liczbowe, budowa komputera, procesory X86, organizacja

Bardziej szczegółowo

Architektura komputerów. Asembler procesorów rodziny x86

Architektura komputerów. Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Rozkazy mikroprocesora Rozkazy mikroprocesora 8086 można podzielić na siedem funkcjonalnych

Bardziej szczegółowo

Rejestry procesora. Nazwa ilość bitów. AX 16 (accumulator) rejestr akumulatora. BX 16 (base) rejestr bazowy. CX 16 (count) rejestr licznika

Rejestry procesora. Nazwa ilość bitów. AX 16 (accumulator) rejestr akumulatora. BX 16 (base) rejestr bazowy. CX 16 (count) rejestr licznika Rejestry procesora Procesor podczas wykonywania instrukcji posługuje się w dużej części pamięcią RAM. Pobiera z niej kolejne instrukcje do wykonania i dane, jeżeli instrukcja operuje na jakiś zmiennych.

Bardziej szczegółowo

Procesory rodziny x86. Dariusz Chaberski

Procesory rodziny x86. Dariusz Chaberski Procesory rodziny x86 Dariusz Chaberski 8086 produkowany od 1978 magistrala adresowa - 20 bitów (1 MB) magistrala danych - 16 bitów wielkość instrukcji - od 1 do 6 bajtów częstotliwośc pracy od 5 MHz (IBM

Bardziej szczegółowo

organizacja procesora 8086

organizacja procesora 8086 Systemy komputerowe Procesor 8086 - tendencji w organizacji procesora organizacja procesora 8086 " # $ " % strali " & ' ' ' ( )" % *"towego + ", -" danych. Magistrala adresowa jest 20.bitowa, co pozwala

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Radosław Maciaszczyk Mirosław Łazoryszczak Sprzęt i architektura komputerów Laboratorium Temat: Mikroprocesory i elementy asemblera Katedra Architektury Komputerów i Telekomunikacji 1. MIKROPROCESORY I

Bardziej szczegółowo

Architektura Systemów Komputerowych

Architektura Systemów Komputerowych Jarosław Kuchta Architektura Systemów Komputerowych ćwiczenie 3 Arytmetyka całkowita instrukcja laboratoryjna Wprowadzenie Celem ćwiczenia jest zapoznanie się z budową i sposobem działania jednostki arytmetyczno-logicznej

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 10: Arytmetyka całkowitoliczbowa Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Wprowadzenie Instrukcje przesunięcia bitowego

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 4: Architektura i zarządzanie pamięcią IA-32 Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Wstęp Tryby pracy Rejestry

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Radosław Maciaszczyk Mirosław Łazoryszczak Sprzęt i architektura komputerów Laboratorium Temat: Mikroprocesory i elementy asemblera Katedra Architektury Komputerów i Telekomunikacji 1. MIKROPROCESORY I

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 5 Jednostka Centralna Zadania realizowane przez procesor Pobieranie rozkazów Interpretowanie rozkazów Pobieranie danych Przetwarzanie danych Zapisanie danych Główne zespoły

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 3 Jan Kazimirski 1 Podstawowe elementy komputera. Procesor (CPU) 2 Plan wykładu Podstawowe komponenty komputera Procesor CPU Cykl rozkazowy Typy instrukcji Stos Tryby adresowania

Bardziej szczegółowo

Wprowadzenie do Architektury komputerów. Asembler procesorów rodziny x86

Wprowadzenie do Architektury komputerów. Asembler procesorów rodziny x86 Wprowadzenie do Architektury komputerów Asembler procesorów rodziny x86 Budowa procesora rodziny x86 Rejestry procesora 8086 ogólnego przeznaczenia Dla procesorów 32-bitowych: EAX, EBX, ECX, EDX Dla procesorów

Bardziej szczegółowo

Programowanie w asemblerze Środowiska 64-bitowe

Programowanie w asemblerze Środowiska 64-bitowe Programowanie w asemblerze Środowiska 64-bitowe 24 listopada 2015 Nieco historii najnowszej Intel wraz z HP rozpoczynaja pracę nad procesorem 64-bitowym z wykorzystaniem technologii VLIW. Powstaje procesor

Bardziej szczegółowo

Architektura systemów komputerowych Laboratorium 14 Symulator SMS32 Implementacja algorytmów

Architektura systemów komputerowych Laboratorium 14 Symulator SMS32 Implementacja algorytmów Marcin Stępniak Architektura systemów komputerowych Laboratorium 14 Symulator SMS32 Implementacja algorytmów 1. Informacje Poniższe laboratoria zawierają podsumowanie najważniejszych informacji na temat

Bardziej szczegółowo

Programowanie w asemblerze Środowiska 64-bitowe

Programowanie w asemblerze Środowiska 64-bitowe Programowanie w asemblerze Środowiska 64-bitowe 17 października 2017 Nieco historii najnowszej Intel wraz z HP rozpoczynaja pracę nad procesorem 64-bitowym z wykorzystaniem technologii VLIW. Powstaje procesor

Bardziej szczegółowo

Mikroinformatyka. Tryb wirtualny

Mikroinformatyka. Tryb wirtualny Mikroinformatyka Tryb wirtualny Tryb wirtualny z ochroną Wprowadzony w 80286. Rozbudowany w 80386. - 4 GB pamięci fizycznej, - 64 TB przestrzeni wirtualnej, - pamięć podzielona na segmenty o rozmiarze

Bardziej szczegółowo

Podstawy techniki cyfrowej Mikroprocesory. Mgr inż. Bogdan Pietrzak ZSR CKP Świdwin

Podstawy techniki cyfrowej Mikroprocesory. Mgr inż. Bogdan Pietrzak ZSR CKP Świdwin Podstawy techniki cyfrowej Mikroprocesory Mgr inż. Bogdan Pietrzak ZSR CKP Świdwin 1 Mikroprocesor to układ cyfrowy wykonany jako pojedynczy układ scalony o wielkim stopniu integracji zdolny do wykonywania

Bardziej szczegółowo

Architektura Systemów Komputerowych, Wydział Informatyki, ZUT

Architektura Systemów Komputerowych, Wydział Informatyki, ZUT Laboratorium: Wprowadzenie Pojęcia. Wprowadzone zostaną podstawowe pojęcia i mechanizmy związane z programowaniem w asemblerze. Dowiemy się co to są rejestry i jak z nich korzystać. Rejestry to są wewnętrzne

Bardziej szczegółowo

Metody Realizacji Języków Programowania

Metody Realizacji Języków Programowania Metody Realizacji Języków Programowania Bardzo krótki kurs asemblera x86 Marcin Benke MIM UW 10 stycznia 2011 Marcin Benke (MIM UW) Metody Realizacji Języków Programowania 10 stycznia 2011 1 / 22 Uwagi

Bardziej szczegółowo

INSTRUKCJE Instrukcje przeniesienia: Instrukcje konwersji: Arytmetyczne instrukcje:

INSTRUKCJE Instrukcje przeniesienia: Instrukcje konwersji: Arytmetyczne instrukcje: INSTRUKCJE Instrukcje przeniesienia: mov, lea, les, push, pop, pushf, popf Instrukcje konwersji: cbw, cwd, xlat Arytmetyczne instrukcje: add, inc sub, dec, cmp, neg, mul, imul, div, idiv Logiczne instrukcje:

Bardziej szczegółowo

Organizacja typowego mikroprocesora

Organizacja typowego mikroprocesora Organizacja typowego mikroprocesora 1 Architektura procesora 8086 2 Architektura współczesnego procesora 3 Schemat blokowy procesora AVR Mega o architekturze harwardzkiej Wszystkie mikroprocesory zawierają

Bardziej szczegółowo

002 Opcode Strony projektu:

002 Opcode Strony projektu: ReverseCraft assem bler by gynvael.coldwind//vx Opcode Strony projektu: http://re.coldwind.pl/ http://www.uw-team.org/ Zasoby! czyli co możemy użyć... Instrukcje procesora Pamięć Wirtualna Rejestry CPU

Bardziej szczegółowo

Lista instrukcji mikroprocesora 8086. Programowanie w assemblerze

Lista instrukcji mikroprocesora 8086. Programowanie w assemblerze Lista instrukcji mikroprocesora 8086 Programowanie w assemblerze Lista instrukcji mikroprocesora 8086 Lista instrukcji mikroprocesora 8086 Lista instrukcji mikroprocesora 8086 Lista instrukcji mikroprocesora

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 8 Jan Kazimirski 1 Assembler x86 2 Podstawowe instrukcje x86 Instrukcje transferu danych Arytmetyka binarna i dziesiętna Instrukcje logiczne Instrukcje sterujące wykonaniem

Bardziej szczegółowo

J. Duntemann Zrozumieć Assembler Leo J. Scanlon Assembler 8086/8088/80286 S. Kruk Programowanie w Języku Assembler

J. Duntemann Zrozumieć Assembler Leo J. Scanlon Assembler 8086/8088/80286 S. Kruk Programowanie w Języku Assembler ASSEMBLER J. Duntemann Zrozumieć Assembler Leo J. Scanlon Assembler 8086/8088/80286 S. Kruk Programowanie w Języku Assembler Geneza (8086, 8088). Rejestry Adresowanie pamięci Stos Instrukcje Przerwania

Bardziej szczegółowo

UTK Można stwierdzić, że wszystkie działania i operacje zachodzące w systemie są sterowane bądź inicjowane przez mikroprocesor.

UTK Można stwierdzić, że wszystkie działania i operacje zachodzące w systemie są sterowane bądź inicjowane przez mikroprocesor. Zadaniem centralnej jednostki przetwarzającej CPU (ang. Central Processing Unit), oprócz przetwarzania informacji jest sterowanie pracą pozostałych układów systemu. W skład CPU wchodzą mikroprocesor oraz

Bardziej szczegółowo

Procesor Intel 8086 model programisty. Arkadiusz Chrobot

Procesor Intel 8086 model programisty. Arkadiusz Chrobot Procesor Intel 8086 model programisty Arkadiusz Chrobot 5 października 2008 Spis treści 1 Wstęp 2 2 Rejestry procesora 8086 2 3 Adresowanie pamięci 4 4 Ważne elementy języka Pascal 6 1 1 Wstęp Głównym

Bardziej szczegółowo

Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2

Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci,

Bardziej szczegółowo

Procesor Intel 8086 model programisty. Arkadiusz Chrobot

Procesor Intel 8086 model programisty. Arkadiusz Chrobot Procesor Intel 8086 model programisty Arkadiusz Chrobot 26 września 2011 Spis treści 1 Wstęp 2 2 Rejestry procesora 8086 2 3 Adresowanie pamięci 4 4 Ważne elementy języka Pascal 8 1 1 Wstęp Głównym celem

Bardziej szczegółowo

Struktura i działanie jednostki centralnej

Struktura i działanie jednostki centralnej Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala

Bardziej szczegółowo

Materiały do wykładu. 7.Architekturax86. Marcin Peczarski. Instytut Informatyki Uniwersytet Warszawski

Materiały do wykładu. 7.Architekturax86. Marcin Peczarski. Instytut Informatyki Uniwersytet Warszawski Materiały do wykładu 7.Architekturax86 Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 25maja2009 Narodziny 7.1 1978 Intel8086 architektura 16-bitowa 5 MHz, obudowa DIP40, 29000 tranzystorów

Bardziej szczegółowo

Architektura Systemów Komputerowych. Jednostka ALU Przestrzeń adresowa Tryby adresowania

Architektura Systemów Komputerowych. Jednostka ALU Przestrzeń adresowa Tryby adresowania Architektura Systemów Komputerowych Jednostka ALU Przestrzeń adresowa Tryby adresowania 1 Jednostka arytmetyczno- logiczna ALU ALU ang: Arythmetic Logic Unit Argument A Argument B A B Ci Bit przeniesienia

Bardziej szczegółowo

Zaawansowane Architektury Procesorów Część 1

Zaawansowane Architektury Procesorów Część 1 1. Rozwój architektury x86 Zaawansowane Architektury Procesorów Część 1 Intel 8086: Procesor w architekturze CISC. Posiadał tylko jeden tryb pracy tj. rzeczywisty, a więc wszystkie programy działały na

Bardziej szczegółowo

CPU ROM, RAM. Rejestry procesora. We/Wy. Cezary Bolek Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki

CPU ROM, RAM. Rejestry procesora. We/Wy. Cezary Bolek Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Cezary Bolek Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Komputer jest urządzeniem, którego działanie opiera się na wykonywaniu przez procesor instrukcji pobieranych z pamięci operacyjnej

Bardziej szczegółowo

Wprowadzenie do Architektury komputerów. Asembler procesorów rodziny x86

Wprowadzenie do Architektury komputerów. Asembler procesorów rodziny x86 Wprowadzenie do Architektury komputerów Asembler procesorów rodziny x86 Rozkazy mikroprocesora Rozkazy mikroprocesora 8086 można podzielić na siedem funkcjonalnych grup: 1. Rozkazy przesłania danych w

Bardziej szczegółowo

Ćwiczenie 3. Konwersja liczb binarnych

Ćwiczenie 3. Konwersja liczb binarnych 1 Laboratorium Architektury Komputerów Ćwiczenie 3 Konwersja liczb binarnych Komputery wykonują operacje przetwarzania danych na wartościach binarnych, podczas gdy współczesna cywilizacja posługuje się

Bardziej szczegółowo

Architektura komputerów. Komputer Procesor Mikroprocesor koncepcja Johna von Neumanna

Architektura komputerów. Komputer Procesor Mikroprocesor koncepcja Johna von Neumanna Architektura komputerów. Literatura: 1. Piotr Metzger, Anatomia PC, wyd. IX, Helion 2004 2. Scott Mueller, Rozbudowa i naprawa PC, wyd. XVIII, Helion 2009 3. Tomasz Kowalski, Urządzenia techniki komputerowej,

Bardziej szczegółowo

BUDOWA I DZIAŁANIE MIKROPROCESORA

BUDOWA I DZIAŁANIE MIKROPROCESORA BUDOWA I DZIAŁANIE MIKROPROCESORA I. Budowa mikroprocesora 1. Schemat blokowy mikroprocesora 2. Jednostka arytmetyczno-logiczna 3. Rejestry a) Rejestry mikroprocesorów Zilog Z80 i Intel 8086 b) Typy rejestrów

Bardziej szczegółowo

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski Układ wykonawczy, instrukcje i adresowanie Dariusz Chaberski System mikroprocesorowy mikroprocesor C A D A D pamięć programu C BIOS dekoder adresów A C 1 C 2 C 3 A D pamięć danych C pamięć operacyjna karta

Bardziej szczegółowo

Wybrane zagadnienia elektroniki współczesnej

Wybrane zagadnienia elektroniki współczesnej Wybrane zagadnienia elektroniki współczesnej y pracy, Marika Kuczyńska Fizyka Techniczna IV rok 20-03-2013, AGH prezentacji y pracy 1 2 y pracy 3 4 5 6 Jednostka wykonawcza, instrukcje (Marika) Rodzina

Bardziej szczegółowo

Technika mikroprocesorowa I Wykład 2

Technika mikroprocesorowa I Wykład 2 Technika mikroprocesorowa I Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci, -odczyt-zapis urządzenia we-wy,

Bardziej szczegółowo

Zadanie Zaobserwuj zachowanie procesora i stosu podczas wykonywania następujących programów

Zadanie Zaobserwuj zachowanie procesora i stosu podczas wykonywania następujących programów Operacje na stosie Stos jest obszarem pamięci o dostępie LIFO (Last Input First Output). Adresowany jest niejawnie przez rejestr segmentowy SS oraz wskaźnik wierzchołka stosu SP. Używany jest do przechowywania

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 8: Procedury Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Wstęp Linkowanie z bibliotekami zewnętrznymi Operacje na stosie

Bardziej szczegółowo

Mikroinformatyka. Wielozadaniowość

Mikroinformatyka. Wielozadaniowość Mikroinformatyka Wielozadaniowość Zadanie Tryb chroniony przynajmniej jedno zadanie (task). Segment stanu zadania TSS (Task State Segment). Przestrzeń zadania (Execution Space). - segment kodu, - segment

Bardziej szczegółowo

LEKCJA TEMAT: Współczesne procesory.

LEKCJA TEMAT: Współczesne procesory. LEKCJA TEMAT: Współczesne procesory. 1. Wymagania dla ucznia: zna pojęcia: procesor, CPU, ALU, potrafi podać typowe rozkazy; potrafi omówić uproszczony i rozszerzony schemat mikroprocesora; potraf omówić

Bardziej szczegółowo

2 Literatura. c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.02 Rok akad. 2011/ / 24

2 Literatura. c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.02 Rok akad. 2011/ / 24 ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH modele programowe komputerów ASK MP.02 c Dr inż. Ignacy Pardyka 1 UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach 2 Literatura Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

Programowanie komputera

Programowanie komputera Programowanie komputera Program jest algorytmem przetwarzania danych zapisanym w sposób zrozumiały dla komputera. Procesor rozumie wyłącznie rozkazy zapisane w kodzie maszynowym (ciąg 0 i 1). Ponieważ

Bardziej szczegółowo

MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW

MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW Projektowanie urządzeń cyfrowych przy użyciu układów TTL polegało na opracowaniu algorytmu i odpowiednim doborze i zestawieniu układów realizujących różnorodne funkcje

Bardziej szczegółowo

J. Ułasiewicz Komputerowe systemy sterowania 1. 1 Architektura PC Ogólna struktura systemu jednoprocesorowego

J. Ułasiewicz Komputerowe systemy sterowania 1. 1 Architektura PC Ogólna struktura systemu jednoprocesorowego J. Ułasiewicz Komputerowe systemy sterowania 1 1 Architektura PC 1.1. Ogólna struktura systemu jednoprocesorowego Już systemy jednoprocesorowe mogą być środowiskiem, w którym wykonywane jest wiele programów

Bardziej szczegółowo

UTK ARCHITEKTURA PROCESORÓW 80386/ Budowa procesora Struktura wewnętrzna logiczna procesora 80386

UTK ARCHITEKTURA PROCESORÓW 80386/ Budowa procesora Struktura wewnętrzna logiczna procesora 80386 Budowa procesora 80386 Struktura wewnętrzna logiczna procesora 80386 Pierwszy prawdziwy procesor 32-bitowy. Zawiera wewnętrzne 32-bitowe rejestry (omówione zostaną w modułach następnych), pozwalające przetwarzać

Bardziej szczegółowo

Architektura systemów komputerowych. Lista instrukcji procesora

Architektura systemów komputerowych. Lista instrukcji procesora Architektura systemów komputerowych Plan wykładu 1. Rozkaz, lista rozkazów procesora. 2. Mikroprogramowanie. 3. Język maszynowy. 4. Projekt P: koncepcja, model rozkazu. Cele Architektura procesorów: von

Bardziej szczegółowo

Adam Kotynia, Łukasz Kowalczyk

Adam Kotynia, Łukasz Kowalczyk Adam Kotynia, Łukasz Kowalczyk Dynamiczna alokacja pamięci Alokacja pamięci oraz dezalokacja pamięci jest to odpowiednio przydział i zwolnienie ciągłego obszaru pamięci. Po uruchomieniu, proces (program)

Bardziej szczegółowo

Programowanie w asemblerze Architektura procesora

Programowanie w asemblerze Architektura procesora Programowanie w asemblerze Architektura procesora 17 stycznia 2017 Zwana też ISA (Instruction Set Architecture). Klasyfikacja stos; akumulator; jeśli dodatkowe rejestry specjalizowane (np. adresowy), to

Bardziej szczegółowo

Architektura Systemów Komputerowych

Architektura Systemów Komputerowych Architektura Systemów Komputerowych Wykład 4: Struktura użytkowego modelu programowego komputera Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Pojęcie użytkowego

Bardziej szczegółowo

Procesor ma architekturę rejestrową L/S. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset nand Rx, Ry, A add Rx, #1, Rz store Rx, [Rz]

Procesor ma architekturę rejestrową L/S. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset nand Rx, Ry, A add Rx, #1, Rz store Rx, [Rz] Procesor ma architekturę akumulatorową. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset or Rx, Ry, A add Rx load A, [Rz] push Rx sub Rx, #3, A load Rx, [A] Procesor ma architekturę rejestrową

Bardziej szczegółowo

Programowalne układy logiczne

Programowalne układy logiczne Programowalne układy logiczne Mikroprocesor Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 6 grudnia 2014 Zbudujmy własny mikroprocesor Bardzo prosty: 16-bitowy, 16 rejestrów

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 6 Jan Kazimirski 1 Architektura x86 2 Środowisko wykonawcze x86 (32-bit) Przestrzeń adresowa Liniowa przestrzeń adresowa do 4 GB Fizyczna przestrzeń adresowa do 64 GB Rejestry

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA SYSTEMY WBUDOWANE Prowadzący: Paweł Janicki Autor sprawozdania: Pol Grzegorz Grupa szkoleniowa: I7X3S1 Numer ćwiczenia: Data oddania: 14.06.2009r. 1. Treść zadania Dokonać

Bardziej szczegółowo

PROGRAMOWANIE NISKOPOZIOMOWE. Systemy liczbowe. Pamięć PN.01. c Dr inż. Ignacy Pardyka. Rok akad. 2011/2012

PROGRAMOWANIE NISKOPOZIOMOWE. Systemy liczbowe. Pamięć PN.01. c Dr inż. Ignacy Pardyka. Rok akad. 2011/2012 PROGRAMOWANIE NISKOPOZIOMOWE PN.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 4 c Dr inż. Ignacy Pardyka (Inf.UJK) PN.01 Rok akad. 2011/2012 1 / 27 c Dr

Bardziej szczegółowo

PROGRAMOWANIE NISKOPOZIOMOWE

PROGRAMOWANIE NISKOPOZIOMOWE PROGRAMOWANIE NISKOPOZIOMOWE PN.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) PN.01 Rok akad. 2011/2012 1 / 27 Wprowadzenie

Bardziej szczegółowo

Załącznik do ćwiczenia w środowisku MASM32 wersji 10 Sterowanie przebiegiem wykonania programu

Załącznik do ćwiczenia w środowisku MASM32 wersji 10 Sterowanie przebiegiem wykonania programu Załącznik do ćwiczenia w środowisku MASM32 wersji 10 Sterowanie przebiegiem wykonania programu Rozkaz cmp jest opisany w grupie rozkazów arytmetycznych (załącznik do ćwiczenia 3). Rozpatrzmy rozkazy procesorów

Bardziej szczegółowo

Sterowanie pracą programu

Sterowanie pracą programu Sterowanie pracą programu Umożliwia podejmowanie decyzji w oparciu o określone warunki. Skoki bezwarunkowe Podstawową instrukcją umożliwiającą przeniesienie sterowania do innego punktu programu oznaczonego

Bardziej szczegółowo

PODSTAWOWE ELEMENTY ASEMBLERA TRYBY ADRESOWANIA. OPERATORY ASEMBLERA

PODSTAWOWE ELEMENTY ASEMBLERA TRYBY ADRESOWANIA. OPERATORY ASEMBLERA PODSTAWOWE ELEMENTY ASEMBLERA TRYBY ADRESOWANIA. OPERATORY ASEMBLERA PODSTAWOWE ELEMENTY ASEMBLERA Składnia języka Postać wiersza programu Dyrektywy i pseudoinstrukcje Deklaracja zmiennych Zmienne łańcuchowe

Bardziej szczegółowo

end start ; ustawienie punktu startu programu i koniec instrukcji w assemblerze.

end start ; ustawienie punktu startu programu i koniec instrukcji w assemblerze. Struktura programu typu program.com ; program według modelu tiny name "mycode" ; nazwa pliku wyjściowego (maksymalnie 8 znaków) org 100h ; początek programu od adresu IP = 100h ; kod programu ret ; koniec

Bardziej szczegółowo

Metody Realizacji Języków Programowania

Metody Realizacji Języków Programowania 1/25 Metody Realizacji Języków Programowania Bardzo krótki kurs asemblera x86 Marcin Benke MIM UW 23 października 2013 /25 Uwagi wstępne Ten, z konieczności bardzo krótki kurs, nie jest w żadnym wypadku

Bardziej szczegółowo

Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski

Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski Układ sterowania, magistrale i organizacja pamięci Dariusz Chaberski Jednostka centralna szyna sygnałow sterowania sygnały sterujące układ sterowania sygnały stanu wewnętrzna szyna danych układ wykonawczy

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC,

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, zapoczątkowana przez i wstecznie zgodna z 16-bitowym procesorem

Bardziej szczegółowo

Jak wiemy, wszystkich danych nie zmieścimy w pamięci. A nawet jeśli zmieścimy, to pozostaną tam tylko do najbliższego wyłączenia zasilania.

Jak wiemy, wszystkich danych nie zmieścimy w pamięci. A nawet jeśli zmieścimy, to pozostaną tam tylko do najbliższego wyłączenia zasilania. Jak wiemy, wszystkich danych nie zmieścimy w pamięci. A nawet jeśli zmieścimy, to pozostaną tam tylko do najbliższego wyłączenia zasilania. Dlatego trzeba je zapisywać do pliku, a potem umieć je z tego

Bardziej szczegółowo

Programowanie na poziomie sprzętu. Tryb chroniony cz. 1

Programowanie na poziomie sprzętu. Tryb chroniony cz. 1 Tryb chroniony cz. 1 Moduł zarządzania pamięcią w trybie chronionym (z ang. PM - Protected Mode) procesorów IA-32 udostępnia: - segmentację, - stronicowanie. Segmentacja mechanizm umożliwiający odizolowanie

Bardziej szczegółowo

1. Operacje logiczne A B A OR B

1. Operacje logiczne A B A OR B 1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Architektura komputera. Cezary Bolek

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Architektura komputera. Cezary Bolek Wstęp do informatyki Architektura komputera Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki System komputerowy systemowa (System Bus) Pamięć operacyjna ROM,

Bardziej szczegółowo

Architektura komputera. Cezary Bolek. Uniwersytet Łódzki. Wydział Zarządzania. Katedra Informatyki. System komputerowy

Architektura komputera. Cezary Bolek. Uniwersytet Łódzki. Wydział Zarządzania. Katedra Informatyki. System komputerowy Wstęp do informatyki Architektura komputera Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki System komputerowy systemowa (System Bus) Pamięć operacyjna ROM,

Bardziej szczegółowo

Podstawy programowania w języku C i C++

Podstawy programowania w języku C i C++ Podstawy programowania w języku C i C++ Część czwarta Operatory i wyrażenia Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu,

Bardziej szczegółowo

Mikroprocesor Intel 8088 (8086)

Mikroprocesor Intel 8088 (8086) Mikroprocesor Intel 8088 (8086) Literatura: Mroziński Z.: Mikroprocesor 8086. WNT, Warszawa 1992 iapx 86,88 Users Manual Intel 80C86 Intersil 1997 [Źródło: www.swistak.pl] Architektura wewnętrzna procesora

Bardziej szczegółowo

Magistrala systemowa (System Bus)

Magistrala systemowa (System Bus) Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki systemowa (System Bus) Pamięć operacyjna ROM, RAM Jednostka centralna Układy we/wy In/Out Wstęp do Informatyki

Bardziej szczegółowo

Programowanie w asemblerze Wprowadzenie

Programowanie w asemblerze Wprowadzenie Programowanie w asemblerze Wprowadzenie 17 stycznia 2017 Motto: R7 is used by the processor as its program counter (PC). It is recommended that R7 not be used as a stack pointer. Źródło: PDP-11 04/34/45/55

Bardziej szczegółowo

Architektura systemów komputerowych Laboratorium 8 Symulator SMS32 Instrukcje skoku i pętle

Architektura systemów komputerowych Laboratorium 8 Symulator SMS32 Instrukcje skoku i pętle Marcin Stępniak Architektura systemów komputerowych Laboratorium 8 Symulator SMS32 Instrukcje skoku i pętle 1. Informacje 1.1. Instrukcje skoku Instrukcje skoku zmieniają wskaźnik instrukcji w rejestrze

Bardziej szczegółowo

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...

Bardziej szczegółowo

Mikroprocesory rodziny INTEL 80x86

Mikroprocesory rodziny INTEL 80x86 Mikroprocesory rodziny INTEL 80x86 Podstawowe wła ciwo ci procesora PENTIUM Rodzina procesorów INTEL 80x86 obejmuje mikroprocesory Intel 8086, 8088, 80286, 80386, 80486 oraz mikroprocesory PENTIUM. Wprowadzając

Bardziej szczegółowo

Kurs Zaawansowany S7. Spis treści. Dzień 1

Kurs Zaawansowany S7. Spis treści. Dzień 1 Spis treści Dzień 1 I Konfiguracja sprzętowa i parametryzacja stacji SIMATIC S7 (wersja 1211) I-3 Dlaczego powinna zostać stworzona konfiguracja sprzętowa? I-4 Zadanie Konfiguracja sprzętowa I-5 Konfiguracja

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Ćwiczenie nr 4. Zasady kodowania podprogramów

Ćwiczenie nr 4. Zasady kodowania podprogramów Ćwiczenie nr 4 Zasady kodowania podprogramów 4.1 Wstęp W praktyce programowania spotykamy się często z sytuacjami, gdy identyczne czynności wykonywane są w wielu miejscach programu. W takich przypadkach

Bardziej szczegółowo

Schematy zarzadzania pamięcia

Schematy zarzadzania pamięcia Schematy zarzadzania pamięcia Segmentacja podział obszaru pamięci procesu na logiczne jednostki segmenty o dowolnej długości. Postać adresu logicznego: [nr segmentu, przesunięcie]. Zwykle przechowywana

Bardziej szczegółowo

Załącznik do ćwiczenia w środowisku MASM32 Przesyłanie danych i zarządzanie danymi

Załącznik do ćwiczenia w środowisku MASM32 Przesyłanie danych i zarządzanie danymi 4. Kdwanie rzkazów Załącznik d ćwiczenia w śrdwisku MASM32 Przesyłanie danych i zarządzanie danymi Prcesr 32-bitwy Intel ma skmplikwane reguły kdwania rzkazów, pnieważ prcesr mże perwać 8-, 16- lub 32-bitwymi

Bardziej szczegółowo

Wprowadzenie do architektury komputerów. Model programowy procesora i jego struktura Procesory CISC i RISC

Wprowadzenie do architektury komputerów. Model programowy procesora i jego struktura Procesory CISC i RISC Wprowadzenie do architektury komputerów Model programowy procesora i jego struktura Procesory CISC i RISC Użytkowy model programowy Użytkowym modelem programowym nazywamy zestaw zasobów logicznych komputera

Bardziej szczegółowo

Materiały do wykładu. 4. Mikroprocesor. Marcin Peczarski. Instytut Informatyki Uniwersytet Warszawski

Materiały do wykładu. 4. Mikroprocesor. Marcin Peczarski. Instytut Informatyki Uniwersytet Warszawski Materiały do wykładu 4. Mikroprocesor Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 19 marca 2007 Małe przypomnienie 4.1 Rejestry Układ współpracy z szynami Jednostka sterująca połączenia

Bardziej szczegółowo

Mikroinformatyka. Mechanizmy ochrony pamięci

Mikroinformatyka. Mechanizmy ochrony pamięci Mikroinformatyka Mechanizmy ochrony pamięci Mechanizmy ochrony pamięci Ochrona na poziomie segmentów: - limit - typ segmentu - selektor zerowy - poziom uprzywilejowania Ochrona na poziomie stronicowania:

Bardziej szczegółowo

Architektura systemów komputerowych. Konstrukcja i zasada działania mikroprocesora

Architektura systemów komputerowych. Konstrukcja i zasada działania mikroprocesora Architektura systemów komputerowych Konstrukcja i zasada działania mikroprocesora Plan wykładu 1. Mikroprocesor. 2. Rodziny procesorów. 3. Modułowa budowa procesora. 4. Wykonanie programu przez procesor.

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC

Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC Architektura Systemów Komputerowych Rozwój architektury komputerów klasy PC 1 1978: Intel 8086 29tys. tranzystorów, 16-bitowy, współpracował z koprocesorem 8087, posiadał 16-bitową szynę danych (lub ośmiobitową

Bardziej szczegółowo

Programowanie w asemblerze Architektury równoległe

Programowanie w asemblerze Architektury równoległe Programowanie w asemblerze Architektury równoległe 24 listopada 2015 1 1 Ilustracje: Song Ho Anh Klasyfikacja Flynna Duża różnorodność architektur równoległych, stad różne kryteria podziału. Najstarsza

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie

Bardziej szczegółowo

Architektura typu Single-Cycle

Architektura typu Single-Cycle Architektura typu Single-Cycle...czyli budujemy pierwszą maszynę parową Przepływ danych W układach sekwencyjnych przepływ danych synchronizowany jest sygnałem zegara Elementy procesora - założenia Pamięć

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo