Klasyfikacja z milionami etykiet

Wielkość: px
Rozpocząć pokaz od strony:

Download "Klasyfikacja z milionami etykiet"

Transkrypt

1 Klasyfikacja z milionami etykiet Krzysztof Dembczyński Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Big Data: Przetwarzanie i eksploracja Poznań, 22 kwietnia 2016 r.

2 Geoff Hinton Andrew Ng Yann LeCun Yoshua Bengio 1 / 16

3 Geoff Hinton Andrew Ng Yann LeCun Yoshua Bengio 1 / 16

4 Geoff Hinton Andrew Ng Yann LeCun Yoshua Bengio 1 / 16

5 Dwa rodzaje problemów Klasyfikacja wieloklasowa: jedna etykieta przypisana do obiektu. Klasyfikacja wieloetykietowa: żadna, jedna lub więcej etykiet przypisanych do obiektu. x = (x 1, x 2,..., x p ) R p h(x) y = (y 1, y 2,..., y m ) {0, 1} m x 1 x 2... x p y 1 y 2... y m x ??? 2 / 16

6 Dwa rodzaje problemów Klasyfikacja wieloklasowa: jedna etykieta przypisana do obiektu. Klasyfikacja wieloetykietowa: żadna, jedna lub więcej etykiet przypisanych do obiektu. x = (x 1, x 2,..., x p ) R p h(x) y = (y 1, y 2,..., y m ) {0, 1} m x 1 x 2... x p y 1 y 2... y m x / 16

7 Dwa rodzaje problemów Klasyfikacja wieloklasowa: jedna etykieta przypisana do obiektu. Klasyfikacja wieloetykietowa: żadna, jedna lub więcej etykiet przypisanych do obiektu. x = (x 1, x 2,..., x p ) R p h(x) y = (y 1, y 2,..., y m ) {0, 1} m x 1 x 2... x p y 1 y 2... y m x m klasyfikacja ekstremalna (ang.extreme classification) 2 / 16

8 Zbiory danych #etykiet #cech #test. #trening. przk./etyk. etyk./przk. RCV AmazonCat Wiki Delicious WikiLSHTC Amazon Tabela: Zbiory danych z repozytorium XMLRepository XMLRepository.html 3 / 16

9 Podejście tradycyjne/naiwne 4 / 16

10 Podejście tradycyjne/naiwne Gęsty model liniowy dla każdej etykiety: X T W = Ŷ 4 / 16

11 Podejście tradycyjne/naiwne Gęsty model liniowy dla każdej etykiety: Rozmiar problemu WikiLSHTC: X T W = Ŷ # przykładów treningowych: n = # przykładów testowych: n = # cech: d = # etykiet: m = / 16

12 Podejście tradycyjne/naiwne Gęsty model liniowy dla każdej etykiety: Rozmiar problemu WikiLSHTC: X T W = Ŷ # przykładów treningowych: n = # przykładów testowych: n = # cech: d = # etykiet: m = Złożoność pamięciowa: Złożoność obliczeniowa uczenia: = = Złożoność obliczeniowa testowania: = / 16

13 Podejście tradycyjne Nie musi być aż tak źle: 5 / 16

14 Podejście tradycyjne Nie musi być aż tak źle: Duże dane rzadkie dane (rzadkie cechy i rzadkie etykiety) 5 / 16

15 Podejście tradycyjne Nie musi być aż tak źle: Duże dane rzadkie dane (rzadkie cechy i rzadkie etykiety) Szybkie algorytmy dla tradycyjnych problemów uczenia maszynowego 5 / 16

16 Podejście tradycyjne Nie musi być aż tak źle: Duże dane rzadkie dane (rzadkie cechy i rzadkie etykiety) Szybkie algorytmy dla tradycyjnych problemów uczenia maszynowego Duże moce obliczeniowe 5 / 16

17 Rysunek: Vowpal Wabbit 2 na wykładzie Johna Langforda 3 2 Vowpal Wabbit, / 16

18 Szybka klasyfikacja binarna 4 Zbiór danych: RCV1 Predykcja kategorii: CCAT # przykładów uczących: # cech: 60M Rozmiar: 1.1 GB Linia komend: time vw -sgd rcv1.train.txt -c Czas uczenia: 1-3 sekundy na laptopie / 16

19 Uczenie modeli: Przyśpieszanie modeli liniowych Stochastyczny spadek wzdłuż gradientu. 5 Obsługa rzadkich cech. 6 Negatywne samplowanie. 7 Rozmiar modelu: Regularyzacja: L 1 vs L 2. Haszowanie cech. 8 Dwa kryteria na raz: Projekcja do nisko-wymiarowej przestrzeni X, W, Y, etc. 9 5 Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In COMP- STAT. Springer 6 Duchi, J. i Singer, Y. (2009). Efficient online and batch learning using forward backward splitting. JMLR, 10: Collobert, R. i Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML 8 Weinberger, K., Dasgupta, A., Langford, J., Smola, A., i Attenberg, J. (2009). Feature hashing for large scale multitask learning. In ICML 9 Hsu, D., Kakade, S., Langford, J., i Zhang, T. (2009). Multi-label prediction via compressed sensing. In NIPS 8 / 16

20 Klasyfikacja ekstremalna Wszystkie powyższe techniki poprawiają wydajność, ale... 9 / 16

21 Klasyfikacja ekstremalna Wszystkie powyższe techniki poprawiają wydajność, ale... Czas predykcji ciągle rośnie linowo z liczbą etykiet! 9 / 16

22 Klasyfikacja ekstremalna Wszystkie powyższe techniki poprawiają wydajność, ale... Czas predykcji ciągle rośnie linowo z liczbą etykiet! Redukcja złożoności poprzez wykorzystanie odpowiednich struktur danych: 9 / 16

23 Klasyfikacja ekstremalna Wszystkie powyższe techniki poprawiają wydajność, ale... Czas predykcji ciągle rośnie linowo z liczbą etykiet! Redukcja złożoności poprzez wykorzystanie odpowiednich struktur danych: Funkcje mieszające 9 / 16

24 Klasyfikacja ekstremalna Wszystkie powyższe techniki poprawiają wydajność, ale... Czas predykcji ciągle rośnie linowo z liczbą etykiet! Redukcja złożoności poprzez wykorzystanie odpowiednich struktur danych: Funkcje mieszające ( grupowanie). 9 / 16

25 Klasyfikacja ekstremalna Wszystkie powyższe techniki poprawiają wydajność, ale... Czas predykcji ciągle rośnie linowo z liczbą etykiet! Redukcja złożoności poprzez wykorzystanie odpowiednich struktur danych: Funkcje mieszające ( grupowanie). Sortowanie drzewa 9 / 16

26 Klasyfikacja ekstremalna Wszystkie powyższe techniki poprawiają wydajność, ale... Czas predykcji ciągle rośnie linowo z liczbą etykiet! Redukcja złożoności poprzez wykorzystanie odpowiednich struktur danych: Funkcje mieszające ( grupowanie). Sortowanie drzewa drzewa decyzyjne. drzewa etykiet. 9 / 16

27 Drzewa decyzyjne dla klasyfikacji ekstremalnej Dwa przykładowe podejścia: FastXML 10 i LomTrees 11 Klasyfikatory liniowe w wierzchołkach drzewa. Szybki podział obiektów na prawe/lewe w wierzchołkach. Jedna ścieżka wzdłuż drzewa podczas predykcji. Predykcja logarytmiczna w liczbie przykładów uczących. w 1 x 0 w 2 x 0 w 3 x 0 η 1(x)=0.6 η 12(x)= w 4 x 0 η 44(x)=0.46 η 3(x)=0.15 η 102(x)= η 45(x)=0.45 η 2(x)= η 3(x)=0.46 η 1(x)= η 34(x)=0.8 η 45(x)=0.45 η 5(x)= Prabhu, Y. i Varma, M. (2014). FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In KDD 11 Choromanska, A. i Langford, J. (2015). Logarithmic time online multiclass prediction. In NIPS / 16

28 Drzewa decyzyjne dla klasyfikacji ekstremalnej Dwa przykładowe podejścia: FastXML 10 i LomTrees 11 Klasyfikatory liniowe w wierzchołkach drzewa. Szybki podział obiektów na prawe/lewe w wierzchołkach. Jedna ścieżka wzdłuż drzewa podczas predykcji. Predykcja logarytmiczna w liczbie przykładów uczących. w 1 x 0 w 2 x 0 w 3 x 0 η 1(x)=0.6 η 12(x)= w 4 x 0 η 44(x)=0.46 η 3(x)=0.15 η 102(x)= η 45(x)=0.45 η 2(x)= η 3(x)=0.46 η 1(x)= η 34(x)=0.8 η 45(x)=0.45 η 5(x)= Prabhu, Y. i Varma, M. (2014). FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In KDD 11 Choromanska, A. i Langford, J. (2015). Logarithmic time online multiclass prediction. In NIPS / 16

29 Drzewa etykiet Bazują na b-arnych drzewach y 1 y y 3 y y 5 y y 7 y 8 Każdy liść odpowiada jednej etykiecie. Wewnętrzne klasyfikatory decydują, czy przejść do potomków. Liść może zawierać ostateczny klasyfikator dla danej etykiety. Przykład testowy może odwiedzić wiele ścieżek od korzenia do liści. 12 Bengio, S., Weston, J., i Grangier, D. (2010). Label embedding trees for large multi-class tasks. In NIPS, pages Curran Associates, Inc Jasinka, K., Dembczynski, K., Busa-Fekete, R., Pfannschmidt, K., Klerx, T., i Hüllermeier, E. (2016). Extreme F-measure maximization using sparse probability estimates 11 / 16

30 Drzewa etykiet Bazują na b-arnych drzewach Każdy liść odpowiada jednej etykiecie. Wewnętrzne klasyfikatory decydują, czy przejść do potomków. Liść może zawierać ostateczny klasyfikator dla danej etykiety. Przykład testowy może odwiedzić wiele ścieżek od korzenia do liści. 12 Bengio, S., Weston, J., i Grangier, D. (2010). Label embedding trees for large multi-class tasks. In NIPS, pages Curran Associates, Inc Jasinka, K., Dembczynski, K., Busa-Fekete, R., Pfannschmidt, K., Klerx, T., i Hüllermeier, E. (2016). Extreme F-measure maximization using sparse probability estimates 11 / 16

31 Drzewa etykiet Bazują na b-arnych drzewach Każdy liść odpowiada jednej etykiecie. Wewnętrzne klasyfikatory decydują, czy przejść do potomków. Liść może zawierać ostateczny klasyfikator dla danej etykiety. Przykład testowy może odwiedzić wiele ścieżek od korzenia do liści. 12 Bengio, S., Weston, J., i Grangier, D. (2010). Label embedding trees for large multi-class tasks. In NIPS, pages Curran Associates, Inc Jasinka, K., Dembczynski, K., Busa-Fekete, R., Pfannschmidt, K., Klerx, T., i Hüllermeier, E. (2016). Extreme F-measure maximization using sparse probability estimates 11 / 16

32 Wyniki eksperymentalne #etykiet #cech #test. #trening. przk./etyk. etyk./przk. RCV AmazonCat Wiki Delicious WikiLSHTC Amazon Tabela: Zbiory danych z repozytorium XMLRepository XMLRepository.html 12 / 16

33 Wyniki eksperymentalne PLT FastXML RCV AmazonCat Wiki Delicious WikiLSHTC Amazon PLT FastXML uczen. test. b wysok. #ilocz. uczen. test. wysok. #ilocz. [min] [ms] drzewa skalar.. [min] [ms] drzewa skalar. RCV ,25 43, AmazonCat ,43 54, Wiki ,98 121, Delicious , , WikiLSHTC ,66 622, Amazon ,45 374, / 16

34 Czy szukamy rozwiązania w dobrym miejscu? Rysunek: 14 Podobny rysunek użyty wcześniej przez Aselę Gunawardanę Oryginał: Florence Morning News, Mutt and Jeff Comic Strip, Page 7, Florence, South Carolina, Asela Gunawardana, Evaluating Machine Learned User Experiences. Extreme Classification Workshop. NIPS / 16

35 Wyzwania Redukcja złożoności obliczeniowej: czas vs. pamięć #przykładów vs. #cech vs. #etykiet uczenie vs. walidacja vs. testowanie Poprawa wydajności predykcyjnej: Miary wydajności: błąd Hamminga, miara F,.... Statystyczna teoria uczenia dla dużego m. Uczenie rzadkich etykiet. 15 / 16

36 Koniec Więcej na stronie: 16 / 16

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba Wrocław University of Technology Uczenie głębokie Maciej Zięba UCZENIE GŁĘBOKIE (ang. deep learning) = klasa metod uczenia maszynowego, gdzie model ma strukturę hierarchiczną złożoną z wielu nieliniowych

Bardziej szczegółowo

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania

Bardziej szczegółowo

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja

Bardziej szczegółowo

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber Drzewa decyzyjne Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Drzewa decyzyjne Anna Sztyber / Drzewa decyzyjne w podstawowej wersji algorytm klasyfikacji

Bardziej szczegółowo

Data Mining Wykład 4. Plan wykładu

Data Mining Wykład 4. Plan wykładu Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje

Bardziej szczegółowo

9. Praktyczna ocena jakości klasyfikacji

9. Praktyczna ocena jakości klasyfikacji Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 3 Regresja logistyczna autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest zaimplementowanie modelu

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING

AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING Magdalena Wiercioch Uniwersytet Jagiello«ski 3 kwietnia 2014 Plan Uczenie gª bokie (deep learning) Auto-enkodery Rodzaje Zasada dziaªania Przykªady

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści

Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych

Bardziej szczegółowo

Widzenie komputerowe (computer vision)

Widzenie komputerowe (computer vision) Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Wprowadzenie do sieci neuronowych i zagadnień deep learning

Wprowadzenie do sieci neuronowych i zagadnień deep learning Wprowadzenie do sieci neuronowych i zagadnień deep learning Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Deep learning Anna Sztyber 1 / 28 Deep learning

Bardziej szczegółowo

Deep Learning na przykładzie Deep Belief Networks

Deep Learning na przykładzie Deep Belief Networks Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning

Bardziej szczegółowo

Selekcja zmiennych w klasyfikacji z wieloma etykietami

Selekcja zmiennych w klasyfikacji z wieloma etykietami Seminarium IPIPAN, Maj 2016 Selekcja zmiennych w klasyfikacji z wieloma etykietami Paweł Teisseyre Instytut Podstaw Informatyki PAN Plan prezentacji Klasyfikacja z wieloma etykietami. Selekcja zmiennych

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Systemy agentowe. Uwagi organizacyjne. Jędrzej Potoniec

Systemy agentowe. Uwagi organizacyjne. Jędrzej Potoniec Systemy agentowe Uwagi organizacyjne Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa Zasady oceniania

Bardziej szczegółowo

STRATEGIA DOBORU PARAMETRÓW SIECI NEURONOWEJ W ROZPOZNAWANIU PISMA

STRATEGIA DOBORU PARAMETRÓW SIECI NEURONOWEJ W ROZPOZNAWANIU PISMA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2016 Seria: ORGANIZACJA I ZARZĄDZANIE z. 96 Nr kol. 1963 Wiktor WALENTYNOWICZ wiktorwalentynowicz@hotmail.com Ireneusz J. JÓŹWIAK Politechnika Wrocławska Wydział Informatyki

Bardziej szczegółowo

Drzewa decyzyjne i lasy losowe

Drzewa decyzyjne i lasy losowe Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM

Bardziej szczegółowo

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Złe wieści o teście To jest slajd, przy którym wygłaszam złe wieści. Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Badania w zakresie systemów uczących się w Zakładzie ISWD. Politechnika Poznańska Instytut Informatyki

Badania w zakresie systemów uczących się w Zakładzie ISWD. Politechnika Poznańska Instytut Informatyki Badania w zakresie systemów uczących się w Zakładzie ISWD Politechnika Poznańska Instytut Informatyki Seminarium ML - Poznań, 3 04 2013 Informacje ogólne Politechnika Poznańska Wydział Informatyki, Instytut

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

Metody klasyfikacji danych zaszumionych. Stanisław Kaźmierczak

Metody klasyfikacji danych zaszumionych. Stanisław Kaźmierczak Metody klasyfikacji danych zaszumionych Stanisław Kaźmierczak Agenda Szum Źródła szumu Zaszumianie i odszumianie Nauka i testowanie Architektura sieci Wyniki Wnioski oraz kierunki dalszych badań 2 3 Definicja

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

Rozmyte drzewa decyzyjne. Łukasz Ryniewicz Metody inteligencji obliczeniowej

Rozmyte drzewa decyzyjne. Łukasz Ryniewicz Metody inteligencji obliczeniowej µ(x) x µ(x) µ(x) x x µ(x) µ(x) x x µ(x) x µ(x) x Rozmyte drzewa decyzyjne Łukasz Ryniewicz Metody inteligencji obliczeniowej 21.05.2007 AGENDA 1 Drzewa decyzyjne kontra rozmyte drzewa decyzyjne, problemy

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Predykcja i selekcja zmiennych w klasyfikacji z wieloma etykietami przy użyciu łańcuchów klasyfikatorów i sieci elastycznej

Predykcja i selekcja zmiennych w klasyfikacji z wieloma etykietami przy użyciu łańcuchów klasyfikatorów i sieci elastycznej Seminarium Poznań 2016 Predykcja i selekcja zmiennych w klasyfikacji z wieloma etykietami przy użyciu łańcuchów klasyfikatorów i sieci elastycznej Paweł Teisseyre Instytut Podstaw Informatyki PAN Plan

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Machine learning Lecture 6

Machine learning Lecture 6 Machine learning Lecture 6 Marcin Wolter IFJ PAN 11 maja 2017 Deep learning Convolution network Zastosowanie do poszukiwań bozonu Higgsa 1 Deep learning Poszczególne warstwy ukryte uczą się rozpoznawania

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Klasyfikacja LDA + walidacja

Klasyfikacja LDA + walidacja Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

mgr inż. Magdalena Deckert Poznań, r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas.

mgr inż. Magdalena Deckert Poznań, r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas. mgr inż. Magdalena Deckert Poznań, 01.06.2010r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas. Plan prezentacji Wstęp Concept drift Typy zmian Podział algorytmów stosowanych w uczeniu

Bardziej szczegółowo

Komitety sieci konwolucyjnych w zagadnieniu klasyfikacji przy jednoczesnym zaszumieniu danych wejściowych oraz etykiet klas. Stanisław Kaźmierczak

Komitety sieci konwolucyjnych w zagadnieniu klasyfikacji przy jednoczesnym zaszumieniu danych wejściowych oraz etykiet klas. Stanisław Kaźmierczak Komitety sieci konwolucyjnych w zagadnieniu klasyfikacji przy jednoczesnym zaszumieniu danych wejściowych oraz etykiet klas Stanisław Kaźmierczak Szum i jego rodzaje Źródła szumu Model Architektura sieci

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

SPOTKANIE 9: Metody redukcji wymiarów

SPOTKANIE 9: Metody redukcji wymiarów Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr

Bardziej szczegółowo

UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow

UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow UCZENIE MASZYNOWE III - SVM mgr inż. Adam Kupryjanow Plan wykładu Wprowadzenie LSVM dane separowalne liniowo SVM dane nieseparowalne liniowo Nieliniowy SVM Kernel trick Przykłady zastosowań Historia 1992

Bardziej szczegółowo

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku

Bardziej szczegółowo

SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 2: Wprowadzenie cz. I Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie

Bardziej szczegółowo

2. Empiryczna wersja klasyfikatora bayesowskiego

2. Empiryczna wersja klasyfikatora bayesowskiego Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN

Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN Wstęp do głębokich sieci neuronowych Paweł Morawiecki IPI PAN Liczba projektów z głębokim uczeniem rośnie bardzo szybko liczba projektów w firmie Google 4000 3000 2000 1000 2012 2013 2014 2015 2016 2017

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy

Bardziej szczegółowo

Mail: Pokój 214, II piętro

Mail: Pokój 214, II piętro Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,

Bardziej szczegółowo

Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07 Plan wykładu Systemy baz

Bardziej szczegółowo

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa

Bardziej szczegółowo

Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych

Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych WMIM, Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa, Polska andrzejanusz@gmail.com 13.06.2013 Dlaczego

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering

Bardziej szczegółowo

RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk

RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Wprowadzenie RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Magdalena Deckert Politechnika Poznańska, Instytut Informatyki Seminarium ISWD, 21.05.2013 M. Deckert Przyrostowy

Bardziej szczegółowo

Meta-uczenie co to jest?

Meta-uczenie co to jest? Meta-uczenie co to jest? Uczenie się tego jak się uczyć Uwolnienie się od uciażliwego doboru MODELU i PAREMETRÓW modelu. Bachotek05/1 Cele meta-uczenia Pełna ale kryterialna automatyzacja modelowania danych

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody

Bardziej szczegółowo

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PLAN WYKŁADU WSTĘP W 1 Uczenie się w ujęciu algorytmicznym. W

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Multiklasyfikatory z funkcją kompetencji

Multiklasyfikatory z funkcją kompetencji 3 stycznia 2011 Problem klasyfikacji Polega na przewidzeniu dyskretnej klasy na podstawie cech obiektu. Obiekt jest reprezentowany przez wektor cech Zbiór etykiet jest skończony x X Ω = {ω 1, ω 2,...,

Bardziej szczegółowo

Lokalne klasyfikatory jako narzędzie analizy i

Lokalne klasyfikatory jako narzędzie analizy i Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów 25 listopada 2005 Lokalne klasyfikatory... 2 Część I Hierarchiczne biortogonalne bazy dyskryminacyjne Lokalne klasyfikatory... 3 Sformułowanie

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW

Bardziej szczegółowo

UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji

UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji Filip Wójcik Wydział Zarządzania, Informatyki i Finansów Instytut Informatyki Ekonomicznej

Bardziej szczegółowo

Uczenie maszynowe w zastosowaniu do fizyki cząstek

Uczenie maszynowe w zastosowaniu do fizyki cząstek Uczenie maszynowe w zastosowaniu do fizyki cząstek Wykorzystanie uczenia maszynowego i głębokich sieci neuronowych do ćwiczenia 3. M. Kaczmarczyk, P. Górski, P. Olejniczak, O. Kosobutskyi Instytut Fizyki

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Drzewa decyzyjne. Jak klasyfikować obiekty o cechach nominalnych (opisowych), tj. pochodzących ze skończonego zbioru, bez uporządkowania?

Drzewa decyzyjne. Jak klasyfikować obiekty o cechach nominalnych (opisowych), tj. pochodzących ze skończonego zbioru, bez uporządkowania? Drzewa decyzyjne 1 Jak klasyfikować obiekty o cechach nominalnych (opisowych), tj. pochodzących ze skończonego zbioru, bez uporządkowania? Przykłady cech nominalnych: płeć ϵ {kobieta, mężczyzna}, palenie

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Metody Optymalizacji: Przeszukiwanie z listą tabu

Metody Optymalizacji: Przeszukiwanie z listą tabu Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek

Bardziej szczegółowo

Dariusz Brzeziński. Politechnika Poznańska

Dariusz Brzeziński. Politechnika Poznańska Dariusz Brzeziński Politechnika Poznańska Klasyfikacja strumieni danych Algorytm AUE Adaptacja klasyfikatorów blokowych do przetwarzania przyrostowego Algorytm OAUE Dlasze prace badawcze Blokowa i przyrostowa

Bardziej szczegółowo

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego

Bardziej szczegółowo

Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta

Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych

Bardziej szczegółowo

Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium ZALICZENIE Zadanie nr 3 Rozpoznawanie ręcznie pisanych cyfr autorzy: A. Gonczarek, P. Klukowski, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem

Bardziej szczegółowo

Wrocław University of Technology. Wprowadzenie cz. I. Adam Gonczarek. Rozpoznawanie Obrazów, Lato 2015/2016

Wrocław University of Technology. Wprowadzenie cz. I. Adam Gonczarek. Rozpoznawanie Obrazów, Lato 2015/2016 Wrocław University of Technology Wprowadzenie cz. I Adam Gonczarek adam.gonczarek@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2015/2016 ROZPOZNAWANIE OBRAZÓW / WZORCÓW Definicja z Wikipedii 2/39 ROZPOZNAWANIE

Bardziej szczegółowo

Klasyfikacja. Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji. Eksploracja danych. Klasyfikacja wykład 1

Klasyfikacja. Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji. Eksploracja danych. Klasyfikacja wykład 1 Klasyfikacja Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji Klasyfikacja wykład 1 Niniejszy wykład poświęcimy kolejnej metodzie eksploracji danych klasyfikacji. Na początek

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na

Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji

Bardziej szczegółowo

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie

Bardziej szczegółowo

WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra

Bardziej szczegółowo