Przykład. Przykład. Litera Homofony C F H I M
|
|
- Stefan Wiśniewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Napisał Administrator 1. Klasyczne metody szyfrowania Zabezpieczanie informacji przed odczytaniem lub modyfikacją przez osoby niepowołane stosowane było już w czasach starożytnych. Ówczesne metody szyfrowania tekstów oparte były głownie na zamianie i przestawianiu znaków lub symboli, a skuteczność utajniania zależała przede wszystkim od utrzymania w tajemnicy sposobu szyfrowania. Poszukiwanie doskonalszych metod szyfrowania zaowocowało powstaniem oddzielnej dziedziny wiedzy, zwanej kryptologią. Kryptologia dzieli się na kryptografię która zajmuje się utajnianiem informacji, oraz kryptoanalizę, która poszukuje dróg jej odzyskania z postaci utajnionej. Samą kryptologię można także postrzegać jako gałąź matematyki stosowanej i informatyki. Faktycznie w zastosowaniach informatycznych kryptologia nabiera praktycznego znaczenia w połączeniu z zagadnieniami dostępu do systemów operacyjnych, baz danych oraz sieci komputerowych i przesyłania danych. 1.1 Szyfry podstawieniowe monoalfabetyczne Zamieniają one każdy znak tekstu jawnego na odpowiedni znak kryptogramu, przy czym w całej wiadomości do zamiany każdego znaku jawnego na zaszyfrowany stosuje się odwzorowanie typu jeden do jednego. Jednym z najstarszych szyfrów podstawieniowych jest szyfr Cezara. Pochodzi on od Juliusza Cezara, który szyfrował swoją korespondencję z Cyceronem. Sposób ten polegał na tym, że zamiast każdej litery pisało się literę występującą w alfabecie trzy miejsca dalej. Tak więc, jeśli użyjemy dzisiejszego alfabetu łacińskiego: alfabet jawny ABCDEFGHIJKLMNOPQRSTUVWXYZ alfabet szyfru DEFGHIJKLMNOPQRSTUVWXYZABC to zamiast A będziemy pisać D, zamiast K piszemy N, zamiast Y piszemy B. Widzimy więc, że alfabet traktujemy "cyklicznie", tzn. po ostatniej literze Z następuje znów pierwsza A itd. Przykład. Tekst jawny: SYSTEM Tekst tajny: VBVWHP 1.2 Szyfry podstawieniowe homofoniczne Szyfry te, podobnie jak poprzednio omówione szyfry monoalfabetyczne, zamieniają każdy znak tekstu jawnego na odpowiedni znak kryptogramu, z tą jednak różnicą, że odwzorowanie ma tu charakter jeden do wielu i każdy znak może być zaszyfrowany jako jeden z pewnej grupy znaków alfabetu szyfrowego. Na przykład literze możemy przypisać kilka różnych symboli szyfrowych: 16, 74, 35, i 21, i stosować je rotacyjnie bądź losowo. Jeśli liczba symboli przypisanych każdej literze jest proporcjonalna do częstości względnej tej litery, informacja o częstości pojedynczej litery zostaje całkowicie zatarta i zupełnie nieużyteczna dla kryptoanalityka. Przykład. Litera Homofony C F H I M
2 N O R S Y Z Komunikat zaszyfrowany według powyższego klucza może mieć wiele postaci np.: Tekst jawny: S Z Y F R H O M O F O N I C Z N Y Tekst tajny: Szyfry podstawieniowe wieloalfabetyczne Stosuje się w nich wiele odwzorowań znaków tekstu jawnego na znaki kryptogramu, przy czym każde odwzorowanie jest z reguły typu jeden do jednego. Jak więc widzimy szyfry wieloalfabetyczne ukrywają rozkład częstości przez użycie wielu podstawień. Szyfrowanie wiadomości przebiega tu na podstawie dowolnie wybranego słowa kluczowego (hasła). W przypadku znaków ASCI może to być dowolny ich ciąg. Do numeru każdego kolejnego znaku tekstu jawnego dodajemy numer odpowiadającego mu znaku słowa kluczowego i uzyskujemy znak kryptogramu. Gdy słowo kluczowe się skończy, bierzemy je kolejny raz od początku. Przykładem szyfrów wieloalfabetowych są: a) wieloalfabetowy szyfr Vigenere a - okresowy szyfr podstawieniowy oparty na alfabetach przesuniętych. Wykorzystuje klucz szyfrowania K, który tworzy sekwencja liter: K = k1... kd Liczba przesunięć w i-tym alfabecie określana jest przez ki (i = 1,..., d), gdzie d jest to okres oraz liczba alfabetów szyfrowych. Szyfrowanie opiera się zatem na wykorzystaniu formuły: fi (a) = (a + ki) mod n Przykład. Zostanie zaszyfrowany tekst szyfry podstawieniowe, z wykorzystaniem klucza MONIKA: Tekst jawny: S Z Y F R Y P O D S T A W I E N I O W E Klucz: M O N I K A M O N I K A M O N I K A M O Tekst tajny: E N L N B Y B C Q A D A I W R V S O I S W przykładzie tym pierwszą literę każdej 5-literowej grupy przesunięto (mod 26) o 18, drugą o 14, trzecią o 13, czwartą o 9, a piątą o 0. Inaczej: Działanie szyfru Vigenere a oparte jest na następującej tablicy: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
3 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Jak można zauważyć, każdy z wierszy tablicy odpowiada szyfrowi Cezara, przy czym w pierwszym wierszu przesunięcie wynosi 0, w drugim 1 itd. Aby zaszyfrować pewien tekst, potrzebne jest słowo kluczowe. Słowo kluczowe jest tajne i mówi, z którego wiersza (lub kolumny) należy w danym momencie skorzystać. Przypuśćmy, że chcemy zaszyfrować prosty tekst, np.: TO JEST BARDZO TAJNY TEKST Do tego celu użyjemy znanego tylko nam słowa kluczowego, np. TAJNE Na początku zauważamy, że użyte słowo kluczowe jest zbyt krótkie, by wystarczyło do zaszyfrowania całego tekstu, więc należy użyć jego wielokrotności. Będzie to miało następującą postać: TO JEST BARDZO TAJNY TEKST TA JNET AJNETA JNETA JNETA Następnie wykonujemy szyfrowanie w następujący sposób: litera szyfrogramu odpowiada literze z tabeli znajdującej się na przecięciu wiersza, wyznaczanego przez literę tekstu jawnego i kolumny wyznaczanej przez literę słowa kluczowego, np. po kolei T i T daje M, O i A daje O itd. W efekcie otrzymujemy zaszyfrowany tekst: MO SRWM BJEHSO CNNGY CROLT b) wieloalfabetowy szyfr Beauforta - odwraca kolejność liter w alfabecie, po czym przesuwa je w prawo o (ki + 1) pozycji. Jest on bardzo podobny do szyfru Vigenere a, a stosowane w nim podstawienie wyraża wzór fi (a) = ( ki - a ) mod n Jeśli więc za ki przyjmiemy E, to możemy zaszyfrować tekst REMIGIUSZ jak następuje: Tekst jawny: R E M I G I U S Z Klucz: E E E E E E E E E Tekst tajny: N A S W Y W K M F Jeśli natomiast za ki przyjmiemy MONIKA, to Tekst jawny: R E M I G I U S Z Klucz: M O N I K A M O N Tekst tajny: V K B A E S S W O 1.4 Szyfry podstawieniowe poligramowe Szyfry tego typu, w odróżnieniu od wyżej przedstawionych innych rodzajów szyfrów podstawieniowych, "obrabiają" jednocześnie większe grupy liter. Złamanie takiego szyfru jest zatem dużo trudniejsze dzięki odebraniu znaczenia częstości występowania
4 liter lub znaków. Dobrym, choć dosyć prostym, przykładem szyfru poligramowego jest szyfr Playfaira, wykorzystywany przez Anglików w czasie I wojny światowej. Kluczem jest tu macierz o wymiarach 5x5, w której skład wchodzą wszystkie litery alfabetu łacińskiego z wyjątkiem J. Użyjmy jako słowa-klucza słowa SZYFR. Zatem pierwszą czynnością będzie zapisanie liter alfabetu w kwadracie 5 x 5, zaczynając od słowa kluczowego i łącząc litery I oraz J. S Z Y F R A B C D E G H I/J K L M N O P Q T U V W X Jeżeli postanowisz używać innego słowa-klucza, w którym litery się powtarzają (dotyczy to szczególnie imion, np. MAGDA), pamiętaj że powtórzenia liter musisz pominąć (w tym przypadku słowem-kluczem będzie MAGD). Potem dzielimy tekst, który mamy zamiar zaszyfrować (nazywajmy go tekstem jawnym) na dygramy, czyli pary liter. Każda z par powinna się składać z dwóch różnych od siebie liter. W razie potrzeby możemy w tym celu wstawić np. x. Dodajemy je także na końcu wtedy, gdy tekst nie kończy się pełnym dygramem. Litery szyfruje się tu parami (m1m2) według następujących zasad: Jeśli m1 i m2 znajdują się w tym samym wierszu, to c1 i c2 (czyli litery kryptogramu) są znakami z prawej strony m1 i m2, przy czym pierwszą kolumnę traktuje się jako położoną na prawo od ostatniej kolumny. Jeśli m1 i m2 znajdują się w tej samej kolumnie, to c1 i c2 są znakami położonymi poniżej m1 i m2, przy czym pierwszy wiersz traktuje się jako leżący pod ostatnim wierszem. Jeśli m1 i m2 znajdują się w różnych wierszach i kolumnach, to c1 i c2 są brane z przeciwległych rogów prostokąta wyznaczonego przez m1 i m2, przy czym c1 pochodzi z wiersza zawierającego m1, a c2 z wiersza zawierającego m2. Jeśli m1 = m2, to do tekstu jawnego między te litery wstawia się literę nieznaczącą (np. X), co eliminuje powtórzenia. Przykład Tekst jawny: SZ YF RY PO LI GR AM OW EX Tekst tajny: ZY FR SF QP GK LS GT PV LR 1.5 Szyfry przestawieniowe Szyfry te zmieniają uporządkowanie znaków w danych według pewnego schematu. Zazwyczaj dokonuje się przestawienia za pomocą pewnej figury geometrycznej. Szyfrowanie przebiega więc w dwóch krokach: tekst jawny wpisuje się do figury w sposób określony pewną tzw. ścieżką zapisu, a następnie odczytuje się go według określonego porządku (ścieżki odczytu) otrzymując tekst zaszyfrowany. Klucz obejmuje więc figurę geometryczną oraz ścieżki zapisu i odczytu. Jako pierwszy przykład weźmy prosty szyfr płotowy. Litery tekstu jawnego zapisuje się tu tak, aby tworzyły kształt przypominający wierzchołek płotu zbudowanego ze sztachet. Tekst zaszyfrowany otrzymujemy odczytując kolejne wiersze tak utworzonej konstrukcji. Proces szyfrowania możemy przedstawić na prostym przykładzie.
5 Przykład. "JUTRO JEST SOBOTA" (pomińmy przy zapisie spacje): J O T O U R J S S B T T E O A Kryptogram w tym wypadku brzmi: "JOTO URJSSBT TEOA". Klucz tego szyfru jest określony wysokością płotu, która w tym wypadku wynosi 3. Często figurą jest macierz dwuwymiarowa. Tekst jawny zapisuje się do macierzy wierszami. Tekst zaszyfrowany powstaje przez odczytanie kolumn w określonym porządku. Przykład. BEZPIECZEŃSTWO BEZP I E C ZENSTWO Tekst zaszyfrowany po odczycie kolumn w kolejności , będzie miał postać: EEPSCOBZEWZNIT
Akademia Techniczno-Humanistyczna w Bielsku-Białej
Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 10 Temat ćwiczenia: Systemy szyfrowania informacji. 1. Wstęp teoretyczny.
Bardziej szczegółowoII klasa informatyka rozszerzona SZYFROWANIE INFORMACJI
II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI STEGANOGRAFIA Steganografia jest nauką o komunikacji w taki sposób by obecność komunikatu nie mogła zostać wykryta. W odróżnieniu od kryptografii
Bardziej szczegółowoBezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków
Bardziej szczegółowoZADANIE 1 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D
ZADANIE 1 Za pomocą szyfru Cezara zaszyfrujcie: MARIAN REJEWSKI Dla ułatwienia zadania napiszcie poniżej alfabet pomocniczy (przesunięty o 3 litery w prawo): A B C D E F G H I J K L M N O P Q R S T U V
Bardziej szczegółowoAlgorytmy podstawieniowe
Algorytmy podstawieniowe Nazwa: AtBash Rodzaj: Monoalfabetyczny szyfr podstawieniowy, ograniczony Opis metody: Zasada jego działanie polega na podstawieniu zamiast jednej litery, litery lezącej po drugiej
Bardziej szczegółowokryptografię (z gr. κρυπτός oraz γράφω gráfo pisać ), czyli gałąź wiedzy o utajnianiu wiadomości;
Już w starożytności ludzie używali szyfrów do przesyłania tajnych wiadomości. Początkowo były one proste, jednak z biegiem czasu wprowadzano coraz bardziej skomplikowane metody szyfrowania. Wraz z rozwojem
Bardziej szczegółowoBezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe.
Bezpieczeństwo systemów komputerowych Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym tekstem jawnym Łamanie z adaptacyjnie wybranym tekstem jawnym Łamanie
Bardziej szczegółowoBezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym
Bardziej szczegółowoBezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Szyfry przestawieniowe
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne Algorytmy kryptograficzne (1) Przestawieniowe zmieniają porządek znaków według pewnego schematu, tzw. figury Podstawieniowe monoalfabetyczne
Bardziej szczegółowoBezpieczeństwo danych i przykłady kryptoanalizy prostych szyfrów. Błędy szyfrowania. Typy ataku kryptoanalitycznego
Bezpieczeństwo danych i przykłady kryptoanalizy prostych szyfrów Błędy szyfrowania Typy ataku kryptoanalitycznego Kryptoanalityk dysponuje pewnymi danymi, które stara się wykorzystać do złamania szyfru.
Bardziej szczegółowoKodowanie i szyfrowanie na lekcjach matematyki. Częstochowa, r.
Kodowanie i szyfrowanie na lekcjach matematyki Agnieszka Perczak perczak@womczest.edu.pl Częstochowa, 25.04.2019 r. Podstawowe kierunki realizacji polityki oświatowej państwa w roku szkolnym 2018/2019
Bardziej szczegółowoSzyfrowanie wiadomości
Szyfrowanie wiadomości I etap edukacyjny / II etap edukacyjny Już w starożytności ludzie używali szyfrów do przesyłania tajnych wiadomości. Początkowo były one proste, jednak z biegiem czasu wprowadzano
Bardziej szczegółowoAlgorytmy podstawieniowe
Algorytmy podstawieniowe Nazwa: AtBash Rodzaj: Monoalfabetyczny szyfr podstawieniowy, ograniczony Opis metody: Zasada jego działanie polega na podstawieniu zamiast jednej litery, litery lezącej po drugiej
Bardziej szczegółowoLaboratorium nr 1 Podstawy kryptografii i kryptoanalizy
Laboratorium nr 1 Podstawy kryptografii i kryptoanalizy Wprowadzenie Klasyczne algorytmy szyfrowania danych (szyfry klasyczne) możemy podzielić na cztery grupy: Proste (monoalfabetyczne) pojedynczy znak
Bardziej szczegółowo2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Bardziej szczegółowoZadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje
Bardziej szczegółowoINŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM ROZSZERZONY CZĘŚĆ I WYBRANE: Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Bardziej szczegółowoTajna wiadomość. Scenariusz lekcji
1 scenariusz 1 CELE OGÓLNE poznanie metod szyfrowania wiadomości zrozumienie algorytmu szyfru Cezara Tajna wiadomość Scenariusz lekcji CELE SZCZEGÓŁOWE Uczeń: Zapamiętanie wiadomości (A): wymienia podstawowe
Bardziej szczegółowoZarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
Bardziej szczegółowoKryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym
Krótkie vademecum (słabego) szyfranta Podstawowe pojęcia: tekst jawny (otwarty) = tekst zaszyfrowany (kryptogram) alfabet obu tekstów (zwykle różny) jednostki tekstu: na przykład pojedyncza litera, digram,
Bardziej szczegółowoŁAMIEMY SZYFR CEZARA. 1. Wstęp. 2. Szyfr Cezara w szkole. Informatyka w Edukacji, XV UMK Toruń, 2018
Informatyka w Edukacji, XV UMK Toruń, 2018 ŁAMIEMY SZYFR CEZARA Ośrodek Edukacji Informatycznej i Zastosowań Komputerów 02-026 Warszawa, ul. Raszyńska 8/10 {maciej.borowiecki, krzysztof.chechlacz}@oeiizk.waw.pl
Bardziej szczegółowoZadanie 4.3. (0 5) Błąd bezwzględny przybliżonej wartości liczby pi, wyznaczonej z n punktów, definiujemy następująco:
Zadanie 4.3. (0 5) Błąd bezwzględny przybliżonej wartości liczby pi, wyznaczonej z n punktów, definiujemy następująco: n = pi n gdzie: π wartość liczby pi, będąca wynikiem standardowej funkcji z narzędzia
Bardziej szczegółowo1 Rozwiązanie zadania 1. Szyfr Cezara
1 Rozwiązanie zadania 1. Szyfr Cezara Metoda TAJNY G G G P A R K Q V U J G P Q O P K JAWNY A A A Korzystając z podpowiedzi wpisujemy w puste pola w drugim rzędzie litery A. Wiadomo, że szyfr Cezara jest
Bardziej szczegółowoScenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą;
Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Kryptografia i kryptoanaliza. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje pojęć: kryptologia, kryptografia i kryptoanaliza; wymienić
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI 11 MAJA 2018 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY
Bardziej szczegółowoDlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji
Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka + 2 Plan Szyfrowanie (kryptologia):
Bardziej szczegółowoKryptografia szyfrowanie i zabezpieczanie danych
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Kryptografia szyfrowanie i zabezpieczanie danych www.agh.edu.pl
Bardziej szczegółowoMatematyczna podróż w głąb Enigmy
Barbara Roszkowska Lech Matematyczna podróż w głąb Enigmy MATEMATYKA LA CIEKAWYCH ŚWIATA Kryptologia Steganografia (steganos- zakryty) zajmuje się ukrywaniem istnienia wiadomości Kryptografia (kryptos)
Bardziej szczegółowoSzyfr ten w odróżnieniu od prostych szyfrów różni się tym że literę zastępuje się obrazkiem, a nie inną literą.
Z biblioteki w tajemniczych okolicznościach ginie cenny historyczny dokument. Jaką tajemnicę kryje stara biblioteka? Miejsce pełne zagadkowych zakamarków, nieoczekiwanych zaułków, sekretnych przejść i
Bardziej szczegółowoBezpieczeństwo danych i systemów informatycznych. Wykład 4
Bezpieczeństwo danych i systemów informatycznych Wykład 4 ZAGROŻENIA I MECHANIZMY OBRONY POUFNOŚCI INFORMACJI (C.D.) 2 Mechanizmy obrony poufności informacji uwierzytelnianie autoryzacja i kontrola dostępu
Bardziej szczegółowoa) Zapisz wynik działania powyższego algorytmu dla słów ARKA i MOTOR...
2 Egzamin maturalny z informatyki Zadanie 1. Szyfrowanie (8 pkt) Poniższy algorytm szyfruje słowo s przy pomocy pewnego szyfru przestawieniowego. Zaszyfrowane słowo zostaje zapisane w zmiennej w. Algorytm
Bardziej szczegółowoTajemnice szyfrów. Barbara Roszkowska Lech. MATEMATYKA DLA CIEKAWYCH ŚWIATA marzec 2017
Tajemnice szyfrów Barbara Roszkowska Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA marzec 2017 Dążenie do odkrywania tajemnic tkwi głęboko w naturze człowieka, a nadzieja dotarcia tam, dokąd inni nie dotarli, pociąga
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoMonoalfabetyczny szyfr Beauforta. omnma pvazw hcybn cibcv jzwag vmjha
Monoalfabetyczny szyfr Beauforta omnma pvazw hcybn cibcv jzwag vmjha Litery i ich pozycja w alfabecie Aby wykonywać działania na literach, przypisujemy im odpowiedniki liczbowe. A B C D E F G H I 0 1 2
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowo1) indeks koincyndencji Określa prawdopodobieostwo wystąpienia w szyfrogramie dwóch jednakowych liter: N długośd szyfrogramu
Pytania z ubiegłych lat 1) indeks koincyndencji Określa prawdopodobieostwo wystąpienia w szyfrogramie dwóch jednakowych liter: Fβ liczba wystąpieo litery β alfabetu B; N długośd szyfrogramu 2) szyfr podstawieniowy+2
Bardziej szczegółowoCzym jest szyfrowanie?
XXIV Konferencja Stowarzyszenia Nauczycieli Matematyki Zakopane (Kościelisko), luty 2015 warsztaty: Matematyczne czasoumilacze Tajniki szyfrowania i zabawa z kalkulatorem Szyfr sposób utajniania (szyfrowania)
Bardziej szczegółowoBezpieczeństwo danych, zabezpieczanie safety, security
Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός
Bardziej szczegółowoPotencjalne ataki Bezpieczeństwo
Potencjalne ataki Bezpieczeństwo Przerwanie przesyłania danych informacja nie dociera do odbiorcy Przechwycenie danych informacja dochodzi do odbiorcy, ale odczytuje ją również strona trzecia szyfrowanie
Bardziej szczegółowoLaboratorium kryptograficzne dla licealistów 4
Laboratorium kryptograficzne dla licealistów 4 Projekt Matematyka dla ciekawych świata Łukasz Mazurek 20.04.2017 1 Poszukiwanie klucza Szyfr Cezara udało nam się złamać już kilkukrotnie. Za każdym razem
Bardziej szczegółowoLiga zadaniowa - Informatyka. Zad 1. (Python lub Logomocja)
Zad 1. (Python lub Logomocja) Janek postanowił zaprojektować logo swojej szkoły i wykonać projekt w języku Python lub Logomocja. Sporządził w tym celu rysunek pomocniczy i przyjął następujące założenia:
Bardziej szczegółowoPolcode Code Contest PHP-10.09
Polcode Code Contest PHP-10.09 Przedmiotem konkursu jest napisanie w języku PHP programu, którego wykonanie spowoduje rozwiązanie zadanego problemu i wyświetlenie rezultatu. Zadanie konkursowe Celem zadania
Bardziej szczegółowoŁamanie szyfrów. Kryptografia w szkole podstawowej
REFLEKSJE Łamanie szyfrów Kryptografia w szkole podstawowej Jerzy Kołodziejczyk, dyrektor Szkoły Podstawowej nr 4 w Gryficach 42 Uczniowie klas IV VI Szkoły Podstawowej nr 4 w Gryficach wykazujący zainteresowanie
Bardziej szczegółowoLudzie od dawien dawna próbowali utajniać wysyłane do siebie wiadomości. Robili to za pomocą szyfrowania przekazywanych sobie tekstów przy użyciu wymyślanych przez siebie mechanizmów (szyfrów). Jeszcze
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowoHistoria kryptografii
Historia kryptografii Cezary Drak & Jakub Olczyk Koło Naukowe Wolnego Oprogramowania Slimak Uniwersytet Jagielloński cd@openmailbox.org jakub.olczyk@openmailbox.org 25 września 2015 Cezary Drak & Jakub
Bardziej szczegółowoSzyfry afiniczne. hczue zfuds dlcsr
Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12
Bardziej szczegółowoRozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26
Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak
Bardziej szczegółowoZadanie 1. Suma silni (11 pkt)
2 Egzamin maturalny z informatyki Zadanie 1. Suma silni (11 pkt) Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco: 1 dla n = 1 n! = ( n 1! ) n dla n> 1 Rozpatrzmy funkcję
Bardziej szczegółowo(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku.
Zadanie 1 Już w starożytności matematycy ze szkoły pitagorejskiej, którzy szczególnie cenili sobie harmonię i ład wśród liczb, interesowali się liczbami bliźniaczymi, czyli takimi parami kolejnych liczb
Bardziej szczegółowoLaboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie
Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję
Bardziej szczegółowoProjekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki 2007-2013 CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja
Bardziej szczegółowoRozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Bardziej szczegółowoINŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 3. 1 Proste szyfry podstawieniowe przypomnienie wiadomości z laboratorium nr 1
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 3 SZYFRY PODSTAWIENIOWE: WIELOALFABETOWE, HOMOFONICZNE, POLIGRAMOWE WSTĘP DO KRYPTOANALIZY 1 Proste szyfry podstawieniowe przypomnienie wiadomości z laboratorium
Bardziej szczegółowoPodstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Bardziej szczegółowoGrupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Bardziej szczegółowoLaboratorium kryptograficzne dla licealistów 3
Laboratorium kryptograficzne dla licealistów 3 Projekt Matematyka dla ciekawych świata Łukasz Mazurek 19.05.2016 1 Wczytywanie danych z pliku Do tej pory wszystkie dane, z których korzystały nasze programy,
Bardziej szczegółowoUrządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):
1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu
Bardziej szczegółowoKryptologia(nie)stosowana
Jest to zapis odczytu wygłoszonego na XLI Szkole Matematyki Poglądowej, Konkret i abstrakcja, sierpień 2008; za ten odczyt Autor otrzymał Medal Filca. Kryptologia(nie)stosowana Andrzej GRZESIK, Kraków
Bardziej szczegółowoLuty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoMetoda eliminacji Gaussa
Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny
Bardziej szczegółowoINFORMATYKA WYBRANE ALGORYTMY OPTYMALIZACYJNE KRYPTOLOGIA.
INFORMATYKA WYBRANE ALGORYTMY OPTYMALIZACYJNE KRYPTOLOGIA http://www.infoceram.agh.edu.pl Klasy metod algorytmicznych Metoda TOP-DOWN (zstępująca, analityczna) Metoda BOTTOM-UP (wstępująca, syntetyczna)
Bardziej szczegółowoSzyfry Vigenere a. Grzegorz Szkibiel
Szyfry Vigenere a Grzegorz Szkibiel Blaise de Vigenere 1523-1596, 1596, francuski dyplomata i krypto- graf. Szyfr Vigenere a został akurat tak nazwany z powodu błęb łędnego przypisu dokonanego w XIX wieku.
Bardziej szczegółowoAlgorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
Bardziej szczegółowoŁAMACZE SZYFRÓW kurs kryptologii WYKŁAD 2, str. 1
ŁAMACZE SZYFRÓW kurs kryptologii WYKŁAD 2, str. 1 Wykład 2, ŚCIŚLE TAJNE w którym poznamy szyfr Ottendorfa, którego teoretycznie nie można złamać bez znajomości klucza. Poznamy też historię, która dowiodła,
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z INFORMATYKI
ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-1_1-091 RÓBNY EGZAMIN MATURALNY Z INORMATYKI OZIOM ODSTAWOWY CZĘŚĆ I Czas pracy 75 minut Instrukcja dla
Bardziej szczegółowoLaboratorium kryptograficzne dla licealistów 2
Laboratorium kryptograficzne dla licealistów 2 Projekt Matematyka dla ciekawych świata Łukasz Mazurek 30.03.2017 1 Szyfr Cezara Uwaga We wszystkich zadaniach dotyczących szyfrowania (o ile nie powiedziano
Bardziej szczegółowoProjekty zaliczeniowe Podstawy Programowania 2012/2013
Projekty zaliczeniowe Podstawy Programowania 2012/2013 0. Zasady ogólne W skład projektu wchodzą następujące elementy: dokładny opis rozwiązywanego problemu opis słowny rozwiązania problemu wraz z pseudokodami
Bardziej szczegółowoPODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Bardziej szczegółowoLaboratorium kryptograficzne dla gimnazjalistów 3
Laboratorium kryptograficzne dla gimnazjalistów 3 Projekt Matematyka dla ciekawych świata Łukasz Mazurek 21.04.2016 1 Wczytywanie danych z pliku Do tej pory wszystkie dane, z których korzystały nasze programy,
Bardziej szczegółowoINFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Informatyka poziom rozszerzony Szyfrowanie i inne algorytmy tekstowe
Bardziej szczegółowo1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Bardziej szczegółowoTechnologie baz danych
Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów
Bardziej szczegółowo(b) (d) 3,3,2,3,3,0,0,
-KOLO A -- 441 [1] Wykonaj poniższe operacje w arytmetyce (mod m). Podaj rozwiązanie w zbiorze {0 1... m-1}. [9] Wyznacz wartość symbolu Jacobiego. Zapisz numery własności z których kolejno korzystałeś.
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoOdwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski:
Przykład 2 odwrotność macierzy 4x4 Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Będziemy dążyli do tego, aby po lewej stronie kreski pojawiła się macierz jednostkowa. Na początek
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoCo to jest arkusz kalkulacyjny?
Co to jest arkusz kalkulacyjny? Arkusz kalkulacyjny jest programem służącym do wykonywania obliczeń matematycznych. Za jego pomocą możemy również w czytelny sposób, wykonane obliczenia przedstawić w postaci
Bardziej szczegółowoTreść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Bardziej szczegółowo1.10. Algorytmy asymetryczne z kluczem publicznym
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej Wydział Elektroniki Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik Robert
Bardziej szczegółowoZastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
Bardziej szczegółowon = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
Bardziej szczegółowoZajęcia 6 pliki tekstowe
Zajęcia 6 pliki tekstowe 1. Napisać funkcję liczznakislowa, która zlicza: liczbę znaków w pliku, liczbę białych znaków w pliku (białe znaki to spacja, tabulator, znacznik końca wiersza), liczbę słów w
Bardziej szczegółowoUniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński
Bardziej szczegółowoBezpieczeństwo danych i systemów. Technologia informacyjna
Bezpieczeństwo danych i systemów Technologia informacyjna Bezpieczeństwo danych Ochrona poufnych danych przed nieautoryzowanym dostępem Zabezpieczenie przed utratą danych Ochrona danych przed zewnętrznymi
Bardziej szczegółowoZestaw 2 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp)!!!
ZESTAWY A Zestaw 2 1. Napisać program pobierający od użytkownika wartości całkowite aż do podania wartości 0 kończącej pobieranie. W trakcie pobierania, dla każdych dwóch niezerowych ostatnio wczytanych
Bardziej szczegółowoLaboratorium kryptograficzne dla licealistów 3
Laboratorium kryptograficzne dla licealistów 3 Projekt Matematyka dla ciekawych świata Łukasz Mazurek 06.04.2017 1 Wczytywanie danych z pliku Do tej pory wszystkie dane, z których korzystały nasze programy,
Bardziej szczegółowoProgramowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Bardziej szczegółowoDefinicje. Algorytm to:
Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi
Bardziej szczegółowoPomorski Czarodziej 2016 Zadania. Kategoria C
Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz
Bardziej szczegółowoLICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Bardziej szczegółowoWykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:
Bardziej szczegółowoMetoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Bardziej szczegółowoSzymon Dąbrowski. Kurs kryptologii - scenariusz zajęć dodatkowych. Przedział wiekowy uczestników: lat Zakładany czas: 45 minut
Kurs kryptologii - scenariusz zajęć dodatkowych Szymon Dąbrowski Przedział wiekowy uczestników: 14-18 lat Zakładany czas: 45 minut Temat: Śladami pogromców Enigmy 1. Główne zagadnienia zajęć: 2. Cele zajęć
Bardziej szczegółowoKryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................
Bardziej szczegółowoKryptografia, pojęcia podstawowe
Bezpieczeństwo w sieciach bezprzewodowych Dr inż. Piotr Remlein remlein@et.put.poznan.pl Kryptografia, pojęcia podstawowe Kryptografia (cryptography)) z języka greckiego Krypto ukryty, tajny, graph pismo
Bardziej szczegółowoPytanie 1. Pytanie 2. Pytanie 3. Przyporządkuj rozszerzenie nazwy pliku z jego poprawnym opisem: WOJEWÓDZKI KONKURS INFORMATYCZNY.
WOJEWÓDZKI KONKURS INFORMATYCZNY PRZEPROWADZANY W SZKOŁACH PODSTAWOWYCH W ROKU SZK. 2018/2019 Etap wojewódzki Pytanie 1 Przyporządkuj rozszerzenie nazwy pliku z jego poprawnym opisem: Pytanie 2 Przykładem
Bardziej szczegółowoSzyfrowanie informacji
Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane
Bardziej szczegółowo