Algorytmy i Struktury Danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy i Struktury Danych"

Transkrypt

1 POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl

2 Wykład 4: R e k u r s j a 1. Pojęcie rekursji. 2. Rekursja liniowa i drzewiasta. 3. Rekurencyjne wyznaczanie wartości ciągów: silnia, liczby Fibonacciego, współczynniki dwumienne 4. Inne algorytmy rekurencyjne: wieże Hanoi, sortowanie MergeSort i QuickSort trawersowanie drzew binarnych 5. Analiza zalet i wad rekursji. 6. Eliminacja rekursji: iteracja, zastosowanie stosu. 7. Rozwiązywanie rekurencji: metoda podstawiania, metoda iteracyjna, metoda rekurencji uniwersalnej.

3 Pojęcie rekursji Rekursja jest silnym narzędziem w definicjach matematycznych. Potęga rekursji uwidacznia się w możliwości definiowania nieskończonego zbioru obiektów (liczb naturalnych, drzew, krzywych Hilberta, krzywych Sierpińskiego) za pomocą skończonego wyrażenia. (Wirth 1980) W informatyce rekursja jest techniką programowania, w której procedura lub funkcja wywołuje samą siebie (przykład: wybór maksimum zbioru).

4 Rekursja liniowa Rekursyjną funkcją liniową nazywamy rekursję, która wykonuje tylko jedno wywołanie rekurencyjne samej siebie. Uwaga 1: nie wystarczy, że wywołanie występuje w jednym miejscu funkcji, bo może być np. wewnątrz pętli. Uwaga 2: wywołanie może następować w dwóch miejscach funkcji, np. w instrukcji warunkowej if else, a być wykonywane tylko jeden raz. Uwaga 3: drzewo rekursji dla rekursyjnej funkcji liniowej ma bardzo prostą postać łańcucha, w którym każdy wierzchołek posiada jednego potomka; przykładem jest tu funkcja obliczająca wartość silni.

5 Rekursja drzewiasta Rekursyjną funkcją drzewiastą nazywamy rekursję, która wykonuje więcej niż jedno wywołanie rekurencyjne samej siebie. Uwaga 1: najbardziej znane są fukcje z dwoma wywołaniami samych siebie (tzw. rekursja podwójna). Uwaga 2: podwójna rekursja jest czasem optymalna (z dokładnością do stałej); przykłady: trawersowanie drzewa w czasie zależnym od jego rozmiaru, rozwiązanie problemu wież Hanoi w czasie wykładniczym odpowiadającym naturze problemu. Uwaga 3: funkcja rekurencyjna może zostać zastąpiona przez równoważną jej z punktu widzenia złożoności funkcję iteracyjną (przy wykorzystaniu stosu i pewnego schematu konwersji); rozwiązania iteracyjne można tworzyć bezpośrednio bez definiowania rekursji i posługiwania się schematem.

6 Ciągi liczbowe definicje rekurencyjne

7 Silnia (ang. Factorial) Ciągi liczbowe: silnia n!=n (n-1) 2 1= n (n-1)! 1!=1 2!=2 3!=6 4!=24 5!=120 6!= Formuła Stirlinga : n! (n/e)^n (2πn)^(1/2) Program rekurencyjny: unsigned long silnia(int x) { if (x==0) return 1; else return x * silnia(x-1); }

8 Wykonanie silnia(3) rekursja liniowa unsigned long silnia(int x) { if (x==0) return 1; else return x * silnia(x-1); }

9 Ciągi liczbowe: liczby Fibonacciego Liczby Fibonacciego można obliczyć ze wzorów: F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2), dla n>2. Sekwencja liczb Fibonacciego to: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 377, 610, 987, 1597, 2584, Dla dużych wartości n zachodzi F(n)/F(n-1) Jest to tzw. złoty podział, stosowany jako miara klasycznych proporcji w architekturze. Program rekurencyjny: unsigned long f(int x) { if (x<2) return 1; else return (f(x-1) + f(x-2)); }

10 Ciągi liczbowe: współczynniki dwumienne Współczynnik dwumienny C(n,k) liczba wszystkich kombinacji k-elementowych zbioru n-elementowego: C(n,k)=0, C(n,k)=1, C(n,k)=C(n-1,k)+C(n-1,k-1), dla k >n; dla k=0 i dla k=n; dla 0<k<n. Liczby C(n,k) tworzą tzw. trójkąt Pascala. Program rekurencyjny: unsigned long C(int x, int y) { if (y>x) return 0; else if (y==0 (y==x) return 1; else if (y>0)&&(y<x) return (C(x-1,y) + C(x-1,y-1)); }

11 Wieże Hanoi 1

12 Wieże Hanoi 2

13 Sortowanie przez scalanie (MergeSort) 1

14 Sortowanie przez scalanie (MergeSort) 2

15 Sortowanie przez scalanie (MergeSort) 3

16 Sortowanie szybkie (QuickSort) 1

17 Sortowanie szybkie (QuickSort) 2

18 Sortowanie szybkie (QuickSort) 3

19 Sortowanie szybkie (QuickSort) 4

20 Sortowanie szybkie (QuickSort) 5

21 Trawersowanie drzew binarnych porządki: preorder, inorder oraz postorder

22 Zalety rekursji 1. Ogólna metoda rozwiązywania rozmaitych problemów. 2. Często jest to metoda wynikająca z rekurencyjnego zdefiniowania rozwiazania problemu ( dziel i zwyciężaj ). 3. Zapis algorytmu (programu rekurencyjnego) jest bardzo zwięzły. 4. Niejawne wykorzystywanie stosu jest bardzo wygodne dla programisty. 5. Istnieją metody wyznaczania złożoności obliczeniowej funkcji rekurencyjnych.

23 1. Metoda nie jest uniwersalna. Wady rekursji 2. Często nie jest łatwo znaleźć rozwiązanie rekurencyjne. 3. Rekursja drzewiasta wymaga często znacznej ilości pamięci na przechowanie stanu obliczeń w momencie każdego wywołania funkcji. 4. Rekursja drzewiasta wymaga często wielokrotnego obliczania tych samych wartości, które ulegają zatarciu, stąd wykładnicza złożoność czasowa tej metody. 5. Program rekurencyjny korzysta w sposób niejawny ze stosu, co może prowadzić do błędu wykonania programu polegającego na przepełnieniu stosu (stack overflow). 6. Niektóre języki programowania (FORTRAN) zabraniały stosowania rekursji. 7. Wyznaczenie złożoności obliczeniowej funkcji rekurencyjnej może być bardzo żmudne.

24 Analiza złożoności rekursji w strukturach drzewiastych liczby Fibonacciego Drzewo binarne pokazuje wykonanie algorytmu rekursyjnego. Obliczając funkcję f(5) otrzymujemy drzewo wywołań rekurencyjnych w algorytmie trawersowane w porządku preorder. Krawędzie skierowane w dół odpowiadają argumentowi funkcji f, a skierowane w górę zwróconej wartości funkcji. Obserwujemy wielokrotne wywołania z tym samym argumentem. Liczba liści drzewa odpowiada sumie liczby wywołań f(1) i f(2) z wartościami 1, czyli f(n). Stąd f(n)= Rekursja dekomponuje f(n) na funkcje zwracające 1 a następnie sumuje te jedynki wykonując f(n)-1 operacji +, z których każda jest wykonywana w odrębnym wywołaniu! Liczba wszystkich wywołań f jest równa 2f(n)-1.

25 Analiza złożoności rekursji w strukturach drzewiastych liczby Fibonacciego Twierdzenie Funkcja f(n) rośnie wykładniczo z n. Dowód. Zaobserwujmy, że f(n) = f(n-1) + f(n-2) = f(n-2)+f(n-3)+f(n-2) = 2f(n-2)+f(n-3) > > 2f(n-2). Stąd f(n) > 2f(n-2) > 2(2f(n-2-2) = 4f(n-4) > 4(2f(n-4-2) = 8f(n-6) > > (2^k) f(n-2k), dla n-2k>0. Jeśli n jest parzyste zatrzymujemy się dla n-2k=2; w przeciwnym wypadku - dla n-2k=1. W obu przypadkach k=(n-1)/2 (wynik dzielenia jest liczbą całkowitą zaokrągloną w dół). Ponieważ f(1)=f(2)=1, otrzymujemy : f(n) > 2^(n-1)/2 (po prawej stronie nierówności jest funkcja wykładnicza). c.b.d.o.

26 Analiza złożoności rekursji w strukturach drzewiastych współczynniki dwumienne Drzewo binarne pokazuje wykonanie algorytmu rekursyjnego. Obliczając funkcję C(4,2) otrzymujemy drzewo wywołań rekurencyjnych w algorytmie trawersowane w porządku preorder. Krawędzie skierowane w dół odpowiadają argumentowi funkcji C, a skierowane w górę zwróconej wartości funkcji. Obserwujemy wielokrotne wywołania z tym samym argumentem. Liczba liści drzewa odpowiada sumie liczby wywołań C z wartościami 1, czyli C(n,k). Stąd mamy C(n,k)= Rekursja dekomponuje C(n,k) na funkcje zwracające 1 a następnie sumuje te jedynki wykonując C(n)-1 operacji +, z których każda jest wykonywana w odrębnym wywołaniu! Liczba wszystkich wywołań C jest równa 2C(n)-1.

27 Eliminacja rekursji schemat iteracyjny

28 Eliminacja rekursji wykorzystanie stosu 1. Jednym ze sposobów eliminacji rekursji jest jawne wykorzystanie w programie struktury stosu do przechowywania stanu obliczeń. 2. Stos musi mieć odpowiedni rozmiar odpowiadający rozmiarowi problemu. Tu również może nastąpić błąd przepełnienia stosu. 3. Niklaus Wirth w swoje klasycznej ksiażce Algorytmy + struktury danych = programy podał nierekurencyjną wersję sortowania szybkiego z jawnym stosem (program 2.11).

29 Złożoność obliczeniowa algorytmów rekurencyjnych rozwiązywanie rekurencji

30 Metoda podstawiania

31 Metoda iteracyjna

32 Kontrukcja drzewa rekursji dla równania rekurencyjnego T(n)=2T(n/2)+n^2

33 Kontrukcja drzewa rekursji dla równania rekurencyjnego T(n)=T(n/3)+T(2n/3)+n

34 Kontrukcja drzewa rekursji dla równania rekurencyjnego T(n)=aT(n/b)+f(n)

35 Metoda rekurencji uniwersalnej 1

36 Metoda rekurencji uniwersalnej 2

37 Źródła wzorów, przykładów i rysunków : 1. Cormen T.H., Leiserson C.E., Rievest R.L. : Wprowadzenie do algorytmów, WNT Kubale M. : Introduction to computational complexity and algorithmic graph coloring, GTN Sedgewick R. : Algorithms in C, Addison-Wesley Stojmenovič I. : Recursive algorithms in computer science courses: Fibonacci numbers and binomial coefficients, IEEE Trans. Education 43 (3), 2000, Wirth N. : Algotytmy + struktury danych = programy, WNT 1980

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie

Bardziej szczegółowo

Projektowanie i analiza algorytmów

Projektowanie i analiza algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

Projektowanie i Analiza Algorytmów

Projektowanie i Analiza Algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Projektowanie i Analiza Algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 01/013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział

Bardziej szczegółowo

Rekurencja (rekursja)

Rekurencja (rekursja) Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)

Bardziej szczegółowo

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne

Bardziej szczegółowo

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013 Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie

Bardziej szczegółowo

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)

Bardziej szczegółowo

Podstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD

Podstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Wykład: 13 Rekurencja 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Rekurencja - pojęcie 2 Rekurencja - pojęcie Rekurencja (rekursja) wywołanie

Bardziej szczegółowo

Rekurencja/rekursja. Iluzja istnienia wielu kopii tego samego algorytmu (aktywacji) Tylko jedna aktywacja jest aktywna w danej chwili

Rekurencja/rekursja. Iluzja istnienia wielu kopii tego samego algorytmu (aktywacji) Tylko jedna aktywacja jest aktywna w danej chwili rekurencja 1 Rekurencja/rekursja Alternatywny dla pętli sposób powtarzania pewnych czynności; kolejny etap podzadanie poprzedniego Rekursja może być zamieniona na iteracje Cechy rekurencji Rozłożenie problemu

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH KATEDRASYSTEMÓWOBLICZENIOWYCH ALGORYTMY I STRUKTURY DANYCH 1.Rekurencja Rekurencja inaczej rekursja (ang. recursion) to wywołanie z poziomu metody jej samej. Programowanie z wykorzytaniem rekurencji pozwala

Bardziej szczegółowo

Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch

Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch Wykład 8 Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. Smok podsuszony zmok (patrz: Zmok). Zmok zmoczony smok (patrz: Smok). L. Peter Deutsch Stanisław Lem Wizja lokalna J. Cichoń, P. Kobylański

Bardziej szczegółowo

3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.

3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę

Bardziej szczegółowo

Rekurencja. Przygotowała: Agnieszka Reiter

Rekurencja. Przygotowała: Agnieszka Reiter Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał

REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.

Bardziej szczegółowo

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy

Bardziej szczegółowo

12. Rekurencja. UWAGA Trzeba bardzo dokładnie ustalić <warunek>, żeby mieć pewność, że ciąg wywołań się zakończy.

12. Rekurencja. UWAGA Trzeba bardzo dokładnie ustalić <warunek>, żeby mieć pewność, że ciąg wywołań się zakończy. 12. Rekurencja. Funkcja rekurencyjna funkcja, która wywołuje samą siebie. Naturalne postępowanie: np. zbierając rozsypane pionki do gry podnosi się zwykle pierwszy, a potem zbiera się resztę w ten sam

Bardziej szczegółowo

Technologie informacyjne Wykład VII-IX

Technologie informacyjne Wykład VII-IX Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Rekurencja. Przykład. Rozważmy ciąg

Rekurencja. Przykład. Rozważmy ciąg Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu

Bardziej szczegółowo

Sortowanie przez scalanie

Sortowanie przez scalanie Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie

Bardziej szczegółowo

Poprawność semantyczna

Poprawność semantyczna Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Złożoność algorytmów. Wstęp do Informatyki

Złożoność algorytmów. Wstęp do Informatyki Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność

Bardziej szczegółowo

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147 Spis treści Przedmowa 9 Rozdział 1. Zanim wystartujemy 17 Jak to wcześniej bywało, czyli wyjątki z historii maszyn algorytmicznych 18 Jak to się niedawno odbyło, czyli o tym, kto wymyślił" metodologię

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Funkcje Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. V Jesień 2013 1 / 32 Funkcje Funkcje w matematyce f : D W D dziedzina W zbiór wartości Funkcja może

Bardziej szczegółowo

Podstawy programowania. Podstawy C# Przykłady algorytmów

Podstawy programowania. Podstawy C# Przykłady algorytmów Podstawy programowania Podstawy C# Przykłady algorytmów Proces tworzenia programu Sformułowanie problemu funkcje programu zakres i postać danych postać i dokładność wyników Wybór / opracowanie metody rozwiązania

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 5 część I 2 Iteracja Rekurencja Indukcja Iteracja Rekurencja Indukcja Algorytmy sortujące Rozwiazywanie

Bardziej szczegółowo

Klasa 2 INFORMATYKA. dla szkół ponadgimnazjalnych zakres rozszerzony. Założone osiągnięcia ucznia wymagania edukacyjne na. poszczególne oceny

Klasa 2 INFORMATYKA. dla szkół ponadgimnazjalnych zakres rozszerzony. Założone osiągnięcia ucznia wymagania edukacyjne na. poszczególne oceny Klasa 2 INFORMATYKA dla szkół ponadgimnazjalnych zakres rozszerzony Założone osiągnięcia ucznia wymagania edukacyjne na poszczególne oceny Algorytmy 2 3 4 5 6 Wie, co to jest algorytm. Wymienia przykłady

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algorytmy i Struktury Danych Nazwa w języku angielskim : Algorithms adn Data Structures Kierunek studiów

Bardziej szczegółowo

Programowanie komputerowe. Zajęcia 3

Programowanie komputerowe. Zajęcia 3 Programowanie komputerowe Zajęcia 3 Instrukcje przypisania Poza zwykłą instrukcją przypisania, powodującą ustawienie wartości zmiennej na podane wyrażenie, istnieje wiele innych, np. += dodaj, a+=b jest

Bardziej szczegółowo

O rekurencji i nie tylko

O rekurencji i nie tylko O rekurencji i nie tylko dr Krzysztof Bryś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 10 grudnia 2011 Intuicyjnie: rekurencja sprowadzenie rozwiązania danego problemu do rozwiązania

Bardziej szczegółowo

Wieczorowe Studia Licencjackie Wrocław, Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa

Wieczorowe Studia Licencjackie Wrocław, Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa Wieczorowe Studia Licencjackie Wrocław, 7.11.2006 Wstęp do programowania Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa Zaprezentujemy teraz algorytm na wyznaczanie wszystkich

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich

Bardziej szczegółowo

Algorytmika i pseudoprogramowanie

Algorytmika i pseudoprogramowanie Przedmiotowy system oceniania Zawód: Technik Informatyk Nr programu: 312[ 01] /T,SP/MENiS/ 2004.06.14 Przedmiot: Programowanie Strukturalne i Obiektowe Klasa: druga Dział Dopuszczający Dostateczny Dobry

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Wstęp do programowania. Dziel i rządź. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Dziel i rządź. Piotr Chrząstowski-Wachtel Wstęp do programowania Dziel i rządź Piotr Chrząstowski-Wachtel Divide et impera Starożytni Rzymianie znali tę zasadę Łatwiej się rządzi, jeśli poddani są podzieleni Nie chodziło im jednak bynajmniej o

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Podstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy

Podstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy 1 Podstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania.

Bardziej szczegółowo

Opis zagadnieo 1-3. Iteracja, rekurencja i ich realizacja

Opis zagadnieo 1-3. Iteracja, rekurencja i ich realizacja Opis zagadnieo 1-3 Iteracja, rekurencja i ich realizacja Iteracja Iteracja to czynnośd powtarzania (najczęściej wielokrotnego) tej samej instrukcji (albo wielu instrukcji) w pętli. Mianem iteracji określa

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Rekurencja, schemat rekursji i funkcje pierwotnie rekurencyjne

Rekurencja, schemat rekursji i funkcje pierwotnie rekurencyjne Rekurencja, schemat rekursji i funkcje pierwotnie rekurencyjne Elementy Logiki i Teorii Mnogości 2015/2016 Zadanie 1. Oblicz iteracyjnie i rekurencyjnie f(4), gdzie f jest funkcją określoną na zbiorze

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

Wykład 1 Wprowadzenie do algorytmów. Zawartość wykładu 1. Wstęp do algorytmów i struktur danych 2. Algorytmy z rozgałęzieniami.

Wykład 1 Wprowadzenie do algorytmów. Zawartość wykładu 1. Wstęp do algorytmów i struktur danych 2. Algorytmy z rozgałęzieniami. Wykład 1 Wprowadzenie do algorytmów Zawartość wykładu 1. Wstęp do algorytmów i struktur danych 2. Algorytmy z rozgałęzieniami Wykaz literatury 1. N. Wirth - Algorytmy+Struktury Danych = Programy, WNT Warszawa

Bardziej szczegółowo

Sortowanie - wybrane algorytmy

Sortowanie - wybrane algorytmy Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe

Bardziej szczegółowo

Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1

Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1 Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4

Algorytmy i struktury danych. Wykład 4 Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych

Bardziej szczegółowo

Wykład 4: Iteracja, indukcja i rekurencja

Wykład 4: Iteracja, indukcja i rekurencja Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja i rekurencja to podstawowe zagadnienia pojawiające się przy

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

5. Podstawowe algorytmy i ich cechy.

5. Podstawowe algorytmy i ich cechy. 23 5. Podstawowe algorytmy i ich cechy. 5.1. Wyszukiwanie liniowe i binarne 5.1.1. Wyszukiwanie liniowe Wyszukiwanie jest jedną z najczęściej wykonywanych operacji na strukturach danych i dotyczy wszystkich,

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego

Bardziej szczegółowo

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń Obrazy rekurencyjne Zastosowanie rekurencji w algorytmice AUTOR: Martin Śniegoń Zdolność procedury/funkcji do wywoływania samej siebie Podstawowa i jedna z najważniejszych technik programistycznych Umożliwia

Bardziej szczegółowo

Podstawy Programowania 2 Rekurencja, metoda dziel i zwyciężaj. Plan. Rekurencja Wstęp. Rekurencja Wstęp. Notatki. Notatki. Notatki.

Podstawy Programowania 2 Rekurencja, metoda dziel i zwyciężaj. Plan. Rekurencja Wstęp. Rekurencja Wstęp. Notatki. Notatki. Notatki. Podstawy Programowania 2, metoda dziel i zwyciężaj Arkadiusz Chrobot Zakład Informatyki 2 marca 209 / 55 Plan Częste błędy Podsumowanie 2 / 55 Wstęp Na poprzednim wykładzie podaliśmy definicję stosu i

Bardziej szczegółowo

5. Rekurencja. Przykłady

5. Rekurencja. Przykłady 5. Rekurencja Uwaga! W tym rozdziale nie są omówione żadne nowe konstrukcje języka C++. Omówiona jest za to technika wykorzystująca funkcje, która pozwala na rozwiązanie pewnych nowych rodzajów zadań.

Bardziej szczegółowo

FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end;

FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end; Rekurencja Wykład: rekursja, funkcje rekurencyjne, wywołanie samej siebie, wyznaczanie poszczególnych liczb Fibonacciego, potęgowanie, algorytm Euklidesa REKURENCJA Rekurencja (z łac. recurrere), zwana

Bardziej szczegółowo

Wykład 3. Metoda dziel i zwyciężaj

Wykład 3. Metoda dziel i zwyciężaj Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie

Bardziej szczegółowo

Programowanie dynamiczne cz. 2

Programowanie dynamiczne cz. 2 Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy

Bardziej szczegółowo

6. Pętle while. Przykłady

6. Pętle while. Przykłady 6. Pętle while Przykłady 6.1. Napisz program, który, bez użycia rekurencji, wypisze na ekran liczby naturalne od pewnego danego n do 0 włącznie, w kolejności malejącej, po jednej liczbie na linię. Uwaga!

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Sortowanie danych. Jolanta Bachan. Podstawy programowania

Sortowanie danych. Jolanta Bachan. Podstawy programowania Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000

Bardziej szczegółowo

Anatomia definicji rekursywnej. Anatomia definicji rekursywnej. int silnia(intn){ if(n==0) return 1; else return n*silnia(n-1); }

Anatomia definicji rekursywnej. Anatomia definicji rekursywnej. int silnia(intn){ if(n==0) return 1; else return n*silnia(n-1); } Anatomia definicji rekursywnej int silnia(intn){ if(n==0) return 1; else return n*silnia(n-1); PRZYPADEK BAZOWY PRZYPADEK REKURSYWNY Definicja rekursywna musi zawierać przypadek bazowy, czyli kod bez wywołania

Bardziej szczegółowo

WYKŁAD 8. Funkcje i algorytmy rekurencyjne Proste przykłady. Programy: c3_1.c..., c3_6.c. Tomasz Zieliński

WYKŁAD 8. Funkcje i algorytmy rekurencyjne Proste przykłady. Programy: c3_1.c..., c3_6.c. Tomasz Zieliński WYKŁAD 8 Funkcje i algorytmy rekurencyjne Proste przykłady Programy: c3_1.c..., c3_6.c Tomasz Zieliński METODY REKURENCYJNE (1) - program c3_1 ======================================================================================================

Bardziej szczegółowo

Algorytm i złożoność obliczeniowa algorytmu

Algorytm i złożoność obliczeniowa algorytmu Algorytm i złożoność obliczeniowa algorytmu Algorytm - przepis postępowania, którego wykonanie prowadzi do rozwiązania określonego problemu określa czynności, jakie należy wykonać wyszczególnia wszystkie

Bardziej szczegółowo

1. Liczby i w zapisie zmiennoprzecinkowym przedstawia się następująco

1. Liczby i w zapisie zmiennoprzecinkowym przedstawia się następująco 1. Liczby 3456.0012 i 0.000076235 w zapisie zmiennoprzecinkowym przedstawia się następująco a) 0.34560012 10 4 i 0.76235 10 4 b) 3.4560012 10 3 i 7.6235 10 5 c) 3.4560012 10 3 i 7.6235 10 5 d) po prostu

Bardziej szczegółowo

Testy jednostkowe Wybrane problemy testowania metod rekurencyjnych

Testy jednostkowe Wybrane problemy testowania metod rekurencyjnych Testy jednostkowe Wybrane problemy testowania metod rekurencyjnych Artykuł przeznaczony jest dla osób związanych z testowaniem, programowaniem, jakością oraz wytwarzaniem oprogramowania, wymaga jednak

Bardziej szczegółowo

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Rekurencja 11 Wieże Hanoi Rekurencja jest to zdolność podprogramu (procedury lub funkcji) do wywoływania samego siebie Zacznijmy

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Informatyka A. Algorytmy

Informatyka A. Algorytmy Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14

Logika i teoria mnogości Wykład 14 Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,

Bardziej szczegółowo

Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę

Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę Zaliczenie Egzamin Ocena lub Zerówka Wykład z Zaliczenie Ocena Ćwiczenie Projekty 3 zadania Na ocenę Sylabus O http://wmii.uwm.edu.pl/~jakula/sylabus_23 17N1-ALISTD_PL.pdf JAK? CO? ILE? Polecane Cormen

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Struktury danych i algorytmy Analiza algorytmów Typy danych i struktury danych Sposoby zapisu algorytmów

Bardziej szczegółowo

Projektowanie algorytmów rekurencyjnych

Projektowanie algorytmów rekurencyjnych C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis

wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis i cz. 2 Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 i cz. 2 2 i cz. 2 3 Funkcje i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje instrukcje } i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Laboratorium nr 1. i 2.

Laboratorium nr 1. i 2. Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych

Bardziej szczegółowo

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne

Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne 1 Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion,

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Zaprojektować i zaimplementować algorytm realizujący następujące zadanie.

Zaprojektować i zaimplementować algorytm realizujący następujące zadanie. Lista 1 Utworzenie tablicy jest równoznaczne z alokacją pamięci na elementy tablicy (utworzeniem dynamicznej tablicy). W zadaniach należy pamiętać o zwolnieniu zasobów przydzielonych na stercie. Zabronione

Bardziej szczegółowo

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p.

Metody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p. Metody numeryczne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/2002 23:02 p.1/63 Plan wykładu 1. Dokładność w obliczeniach numerycznych 2. Złożoność

Bardziej szczegółowo