Rekurencja/rekursja. Iluzja istnienia wielu kopii tego samego algorytmu (aktywacji) Tylko jedna aktywacja jest aktywna w danej chwili
|
|
- Daria Leszczyńska
- 8 lat temu
- Przeglądów:
Transkrypt
1 rekurencja 1
2 Rekurencja/rekursja Alternatywny dla pętli sposób powtarzania pewnych czynności; kolejny etap podzadanie poprzedniego Rekursja może być zamieniona na iteracje Cechy rekurencji Rozłożenie problemu na problemy elementarne i na problem mniej skomplikowany niż wejściowy Jasno określony warunek zakończenia (przypadek podstawowy, zdegenerowany) Iluzja istnienia wielu kopii tego samego algorytmu (aktywacji) Tylko jedna aktywacja jest aktywna w danej chwili 2
3 silnia function silnia(x) if (x=0) then (silnia:=1; return) ( silnia:=x*silnia(x-1)) silnia(4) 4*silnia(3) silnia(3) 3*silnia(2) silnia(2) 2*silnia(1) silnia(1) 1*silnia(0) silnia(0)=1 procedure silnia(x) wynik:=1; i:=1; repeat (wynik:=wynik *i; i:=i+1) until (i>x) procedure silnia(x) wynik:=1; i:=1; while (i<=x) do (wynik:=wynik *i; i:=i+1) 3
4 Wyszukiwanie binarne l i i=1,..n procedure szukaj(l,p,k,wartosc) if((k-p)<0) then (return porażka) j:=(p+k)/2; if (wartość=l j ) then (return sukces - j ) if (wartość >l j ) then szukaj(l,j+1,k,wartosc) szukaj(l,p,j-1, wartosc) 4
5 Krzywe Hilberta H 1-4 puste krzywe H 0 połączone liniami prostymi H 2-4 kopie H 1 zmniejszone i obrócone połączone liniami prostymi 4 warianty: A: D A A B A D B: C B B A C: B C C D A B D: A D D C 5
6 Krzywe Sierpińskiego A D B C S 2 S 1 S 3 A: A BD A S 1 S 2 S 3 S 4 B: B C A B S: A B C D C: C D <= B C D: D A C D 6
7 Wieże Hanoi X Y Z procedure move(n,x,y,z) if (n=1) then (X Y) (move(n-1,x,z,y); X Y; move(n-1,z,y,x)) X Y Z 3,X,Y,Z 2,X,Z,Y X Y 2,Z,Y,X 1,X,Y,Z X Z 1,Y,Z,X 1,Z,X,Y Z Y 1,X,Y,Z X Y Y Z Z X X Y 7
8 Wieże Hanoi X Y Z X Y Z procedure move(n,x,y,z) repeat (przenies najmniejszy krazek na nastepny kolek; przenies nienajmniejszy krazek (jedyny ruch)) until(ok) X Y X Z Y Z X Y Z X Z Y X Y 8
9 Wieże Hanoi Liczba pojedynczych przeniesień krążka= 2 N -1 N liczba krążków Złożoność wykładnicza Problem Tybetańczyków 64 krążki Przeniesienie 1 krążka 10 s 5 bilionów (10 12 ) lat 9
10 Algorytmy z powrotami Droga skoczka szachowego Problem ośmiu hetmanów (Gauss 1850; 12 różnych istotnie rozwiązań) Problem trwałego małżeństwa 10
11 Droga skoczka szachowego procedure proba repeat (wybierz ruch; if (dopuszczalny) then (zapisz go;) if (sa puste pola) then (proba; if(nieudany) then (wykresl ostatni zapis) udany)) until (ruch udany lub brak ruchu) 11
12 Niebezpieczeństwa rekurencji Powtarzanie części obliczeń (ciąg Fibonacciego) programowanie dynamiczne Przepełnienie stosu Błąd nieskończona liczba wywołań Różne kompilatory różne wyniki identycznych programów 12
13 Ciąg Fibonacciego fib(0)=0 fib(1)=1 fib(n)=fib(n-1) + fib(n-2) dla n>=2 fib(0) fib(2) function fib(x) if(x=0) then (fib:=0) if(x=1) then (fib:=1) fib:=fib(x-1)+fib(x-2) fib(4) fib(3) fib(1) fib(1) fib(2) fib(0) fib(1) 13
14 Przepełnienie stosu procedure MacCarthy(x) if (x>100) then (wynik:=x-10) (wynik:=maccarthy(maccarthy(x+11))) MC(96)---MC(MC(107))----MC(97)----MC(MC(108))----MC(98)----- MC(MC(109))----MC(99)----MC(MC(110))----MC(100)--- MC(MC(111))----MC(101)
15 nieskończona liczba wywołań Upraszczanie nie doprowadza do przypadku elementarnego function fun(n) if(n=1) then return 1 (if (n%2 =0) then ) (fun:=fun(n-2)*n; return fun) (fun:=fun(n-1)*n; return fun) 15
16 Nieskończony ciąg wywołań function fun(n,m) if (n=0) then return 1 return fun(n-1,fun(n-m,m) fun(1,0) fun(0,fun(1,0)) fun(0,fun(1,0)) fun(0,fun(1,0)). Parametry funkcji rekurencyjnej wartościowane jako pierwsze 16
17 Przykłady funkcji rekurencyjnych w języku C 17
18 silnia double silnia(int x) if(x<=0) return 1; return (x*silnia(x-1)); 18
19 Zamiana na liczbę binarną void zamiana(int liczba) if(liczba>1) zamiana(liczba/2); printf("%d",liczba%2); printf("%d\n",liczba); 19
20 Binarne wyszukiwanie int szukaj(int p, int k, int *tab, int x) int s; if(k==p) if(tab[p]==x) s=(p+k)/2; return p; return -1; if(tab[s]==x) return s; if(x>tab[s]) return szukaj(s+1,k,tab,x); return szukaj(p,s,tab,x); 20
21 Odwracanie posortowanej tablicy void odw(tab,p,k) int p,k; int *tab; int pom; if(p<k) pom=tab[p]; tab[p]=tab[k]; tab[k]=pom; odw(tab,p+1,k-1); 21
22 Zliczanie ostatnich 0 w reprezentacji binarnej liczby całkowitej int licz0(int k) if(k==0) return 1; if (k%2) return 0; return 1+licz0(k/2); 22
23 Zliczanie ostatnich 1 w reprezentacji binarnej liczby całkowitej int licz1(int k) if (k%2) return 1+licz1(k/2); return 0; 23
24 Algorytm Euklidesa int nwd_euklides(int m, int n) if(n==0 )return m; return nwd_euklides(n, m%n); 1. Przypisz zmiennym M i N odpowiednio większą i mniejszą wartość wejściową 2. Podziel M przez N, resztę z dzielenia nazwij R 3. Jeśli R nie jest zerem, to przypisz zmiennej M wartość N, zmiennej N wartość R i powróć do kroku 2, w przeciwnym razie NWD to wartość N 24
25 Szukanie wartości minimalnej w tablicy int mint( n, t, i) int n, t[n],i; int kk; if(i==n-1) return t[i]; kk = mint(n,t,i+1); if ( t[i] < kk ) return t[i]; return kk; 25
26 Wyszukiwanie binarne maksymalny element tablicy int max(a,p,k) int *a,p,k; int s,max1,max2; if(p==k) return a[p]; s=(p+k)/2; max1=max(a,p,s); max2=max(a,s+1,k); if (max1>max2) return max1; return max2; 26
27 Wyszukiwanie binarne - strategia dziel i rządź Dwa wywołania rekurencyjne Każde obsługuje połowę zbioru danych wejściowych 27
28 Metoda dziel i zwyciężaj Podział problemu na kilka mniejszych, podobnych do początkowego Rozwiązywanie rekurencyjne podproblemów Łączenie rozwiązań Etapy każdego poziomu rekursji Dziel Zwyciężaj rozwiązanie małych podproblemów rekurencyjnie, dla małych rozmiarów metody bezpośrednie Połącz Przykład sortowanie przez scalanie 28
29 Programowanie dynamiczne Poprawia metodę dziel i zwyciężaj w sytuacji wielokrotnego rozwiązywania tych samych problemów Czas wykładniczy liniowy Wstępujące Obliczenie wartości począwszy od najmniejszych wartości; Obliczenie bieżącej wartości korzystając z poprzednio obliczonych wartości Warunek istnieje możliwość gromadzenia obliczonych wartości Zstępujące (zapamiętywanie) Procedura rekurencyjna sprawdza zapisane wartości i zapisuje obliczoną przez siebie wartość 29
30 Liczby Fibonacciego int F(int i) if(i<1) return 0; if(i==1) return 1; return F(i-1)+F(i-2); int main() int k; cin>>k; cout<<"f("<<k<<")="<<f(k); const int maxn=100; int F(int i) static int Fib[maxN]; if(i<0) return 0; if(fib[i]!=0) return Fib[i]; int t=i; if(i>1) t=f(i-1)+f(i-2); return Fib[i]=t; int main() int k; cin>>k; cout<<"f("<<k<<")="<<f(k); 30
31 Liczby Fibonacciego Program1 czas wykładniczy T( n) a b n O( ), , złoty podział odcinka a b a a b Np. obliczenie F(n) 1 s obliczenie F(n+9) 1min obliczenie F(n+18) 1h Program2 - wykorzystuje tablicę statyczną (na początku wypełniona 0) T(n)=O(n) F(45)= największa 32-bitowa całkowita liczba Fibonacciego -potrzebna tablica 46-elementowa
32 Liczby Fibonacciego F Program1 25 wywołań Program2 6 wywołań wypełnienie tablicy 32
33 Symbol Newtona- rekurencja n m m m n n m m m n m n m n 0 1 0, dla dla int symbol_newtona(int n, int m) int sn; if(m==0 m==n) return 1; sn=symbol_newtona(n-1,m)+symbol_newtona(n-1,m-1); return sn; ) ( ) ( n O a n T sn(4,2)= sn(3,2) + sn(3,1) = sn(2,2)+sn(2,1)+sn(2,1)+sn(2,0)= 1+sn(1,1)+sn(1,0)+sn(1,1)+sn(1,0) +1=6 33
34 Symbol Newtona programowanie dynamiczne int sn(int n, int m) static int tab[maxn]; int i,j; if(m==0 m==n) return 1; for(j=0;j<=n;j++) tab[j]=1; for(i=2;i<=n;i++) for(j=i-1;j>0;j--)//j>m-1 tab[j]=tab[j-1]+tab[j]; return tab[m]; i w i-tym kroku tab[j] = j T( n) O( n 2 ) 34
35 Symbol Newtona programowanie dynamiczne w i-tym kroku tab[j] = tab[0] 1 i j n=6 i=1 i=2 i=3 i=4 i=5 i=6 tab[1] tab[2] tab[3] tab[4] tab[5] dla i=4 tab[3] = = dla i=6 tab[3] = = 20 3 n m n n>m n = 0, 1, m m = 0, 1,
Strategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 9 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład:
Wstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Sortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Rekurencja. Przygotowała: Agnieszka Reiter
Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być
Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch
Wykład 8 Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. Smok podsuszony zmok (patrz: Zmok). Zmok zmoczony smok (patrz: Smok). L. Peter Deutsch Stanisław Lem Wizja lokalna J. Cichoń, P. Kobylański
Opis zagadnieo 1-3. Iteracja, rekurencja i ich realizacja
Opis zagadnieo 1-3 Iteracja, rekurencja i ich realizacja Iteracja Iteracja to czynnośd powtarzania (najczęściej wielokrotnego) tej samej instrukcji (albo wielu instrukcji) w pętli. Mianem iteracji określa
FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end;
Rekurencja Wykład: rekursja, funkcje rekurencyjne, wywołanie samej siebie, wyznaczanie poszczególnych liczb Fibonacciego, potęgowanie, algorytm Euklidesa REKURENCJA Rekurencja (z łac. recurrere), zwana
Wykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.
Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego
12. Rekurencja. UWAGA Trzeba bardzo dokładnie ustalić <warunek>, żeby mieć pewność, że ciąg wywołań się zakończy.
12. Rekurencja. Funkcja rekurencyjna funkcja, która wywołuje samą siebie. Naturalne postępowanie: np. zbierając rozsypane pionki do gry podnosi się zwykle pierwszy, a potem zbiera się resztę w ten sam
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Technologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Podstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy
1 Podstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania.
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Podstawy Informatyki. Metalurgia, I rok. Rekurencja. skomplikowane zadanie. Rekurencja
Podstawy Informatyki Metalurgia, I rok Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Małe dziecko otrzymuje polecenie
Podstawy Informatyki. Metalurgia, I rok. Wykład 5 Rekurencja
Podstawy Informatyki Metalurgia, I rok Wykład 5 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład: Małe
ALGORYTMY I STRUKTURY DANYCH
KATEDRASYSTEMÓWOBLICZENIOWYCH ALGORYTMY I STRUKTURY DANYCH 1.Rekurencja Rekurencja inaczej rekursja (ang. recursion) to wywołanie z poziomu metody jej samej. Programowanie z wykorzytaniem rekurencji pozwala
Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)
Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Programowanie dynamiczne
Programowanie dynamiczne Programowanie rekurencyjne: ZALETY: - prostota - naturalność sformułowania WADY: - trudność w oszacowaniu zasobów (czasu i pamięci) potrzebnych do realizacji Czy jest możliwe wykorzystanie
Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.
Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Rekurencja (rekursja)
Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)
wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis
i cz. 2 Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 i cz. 2 2 i cz. 2 3 Funkcje i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje instrukcje } i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje
Wieczorowe Studia Licencjackie Wrocław, Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa
Wieczorowe Studia Licencjackie Wrocław, 7.11.2006 Wstęp do programowania Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa Zaprezentujemy teraz algorytm na wyznaczanie wszystkich
Informatyka wprowadzenie do algorytmów (II) dr hab. inż. Mikołaj Morzy
Informatyka wprowadze do algorytmów (II) dr hab. inż. Mikołaj Morzy plan wykładu cechy algorytmów sposoby zapisu algorytmów klasyfikacja algorytmów przykłady algorytmów sumowa przeszukiwa ciągu liczb sortowa
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Informatyka A. Algorytmy
Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................
1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja. 2. Schemat blokowy przedstawia algorytm obliczania
1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja nie ma parametru i zwraca wartość na zewnątrz. nie ma parametru i nie zwraca wartości na zewnątrz. ma parametr o nazwie void i zwraca
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Algorytmy. wer Wojciech Myszka 30 listopada 2008
Algorytmy Część IV wer. 1.2 Wojciech Myszka 30 listopada 2008 Spis treści I Spis treści Jak się tworzy algorytmy? Poszukiwania i wędrówki Dziel i zwyciężaj Rekurencja Definicje Przykład Schemat blokowy
Programowanie komputerowe. Zajęcia 3
Programowanie komputerowe Zajęcia 3 Instrukcje przypisania Poza zwykłą instrukcją przypisania, powodującą ustawienie wartości zmiennej na podane wyrażenie, istnieje wiele innych, np. += dodaj, a+=b jest
Technologie Informatyczne Wykład VII
Technologie Informatyczne Wykład VII A. Matuszak (1) 22 listopada 2007 A. Matuszak (1) Technologie Informatyczne Wykład VII A. Matuszak (2) Technologie Informatyczne Wykład VII (Rekursja) albo rekursja
Metody algortmiczne (Algorytmy Część IV)
Metody algortmiczne (Algorytmy Część IV) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-10-02 17:27:45 +0200 Jak się tworzy algorytmy? Moja odpowiedź jest krótka: Jak się tworzy algorytmy? Moja
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy
1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com
WYKŁAD 8. Funkcje i algorytmy rekurencyjne Proste przykłady. Programy: c3_1.c..., c3_6.c. Tomasz Zieliński
WYKŁAD 8 Funkcje i algorytmy rekurencyjne Proste przykłady Programy: c3_1.c..., c3_6.c Tomasz Zieliński METODY REKURENCYJNE (1) - program c3_1 ======================================================================================================
Wstęp do Programowania potok funkcyjny
i programowanie dynamiczne Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 i programowanie dynamiczne Outline 1 i programowanie dynamiczne i programowanie dynamiczne Rekurencyjny zapis rozwiązania
Klasa 2 INFORMATYKA. dla szkół ponadgimnazjalnych zakres rozszerzony. Założone osiągnięcia ucznia wymagania edukacyjne na. poszczególne oceny
Klasa 2 INFORMATYKA dla szkół ponadgimnazjalnych zakres rozszerzony Założone osiągnięcia ucznia wymagania edukacyjne na poszczególne oceny Algorytmy 2 3 4 5 6 Wie, co to jest algorytm. Wymienia przykłady
Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja
Anatomia definicji rekursywnej. Anatomia definicji rekursywnej. int silnia(intn){ if(n==0) return 1; else return n*silnia(n-1); }
Anatomia definicji rekursywnej int silnia(intn){ if(n==0) return 1; else return n*silnia(n-1); PRZYPADEK BAZOWY PRZYPADEK REKURSYWNY Definicja rekursywna musi zawierać przypadek bazowy, czyli kod bez wywołania
5. Podstawowe algorytmy i ich cechy.
23 5. Podstawowe algorytmy i ich cechy. 5.1. Wyszukiwanie liniowe i binarne 5.1.1. Wyszukiwanie liniowe Wyszukiwanie jest jedną z najczęściej wykonywanych operacji na strukturach danych i dotyczy wszystkich,
Techniki konstruowania algorytmów. Metoda dziel i zwyciężaj
Techniki konstruowania algorytmów Metoda dziel i zwyciężaj Technika dziel i zwyciężaj Aby rozwiązać problem techniką dziel i zwyciężaj musi on wykazywać własność podstruktury rozwiązanie problemu można
Programowanie dynamiczne (optymalizacja dynamiczna).
Programowanie dynamiczne (optymalizacja dynamiczna). W wielu przypadkach zadania, których złożoność wynikająca z pełnego przeglądu jest duża (zwykle wyk ładnicza) można rozwiązać w czasie wielomianowym
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj
Programowanie komputerowe. Zajęcia 2
Programowanie komputerowe Zajęcia 2 Funkcje Funkcje są podstawowym składnikiem programów w C++. Każda funkcja jest fragmentem programu, który można używać wielokrotnie i niezależnie od pozostałych funkcji.
Podstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
Podstawy programowania Wykład: 13 Rekurencja 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Rekurencja - pojęcie 2 Rekurencja - pojęcie Rekurencja (rekursja) wywołanie
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja
Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń
Obrazy rekurencyjne Zastosowanie rekurencji w algorytmice AUTOR: Martin Śniegoń Zdolność procedury/funkcji do wywoływania samej siebie Podstawowa i jedna z najważniejszych technik programistycznych Umożliwia
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Algorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Algorytmika i programowanie. Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie
Algorytmika i programowanie Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Tablice Tablica jest zbiorem elementów tego samego typu. Każdy element jest identyfikowany (numer
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 9. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 9 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Zasada dziel i zwyciężaj Przykłady znajdowanie
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Algorytmy komputerowe. dr inż. Jarosław Forenc
Rok akademicki 2010/2011, Wykład nr 9/10 2/38 Plan wykładu nr 9/10 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki
Wstęp do programowania. Dziel i rządź. Piotr Chrząstowski-Wachtel
Wstęp do programowania Dziel i rządź Piotr Chrząstowski-Wachtel Divide et impera Starożytni Rzymianie znali tę zasadę Łatwiej się rządzi, jeśli poddani są podzieleni Nie chodziło im jednak bynajmniej o
Funkcje i tablice. Elwira Wachowicz. 23 maja 2013
Funkcje i tablice Elwira Wachowicz elwira@ifd.uni.wroc.pl 23 maja 2013 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Funkcje i tablice 23 maja 2013 1 / 22 Największy wspólny dzielnik: algorytm Euklidesa Problem:
Algorytmy i struktury danych IS/IO, WIMiIP
Algorytmy i struktury danych IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Algorytmy i struktury danych 2 Spis treści 3 Organizacja zajęć 4 Literatura 5 Pojęcia podstawowe Rozwiązywanie problemu
Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.
Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego
Wskaźniki. Programowanie Proceduralne 1
Wskaźniki Programowanie Proceduralne 1 Adresy zmiennych Sterta 1 #include 2 3 int a = 2 ; 4 5 int main ( ) 6 { 7 int b = 3 ; 8 9 printf ( " adres zmiennej a %p\n", &a ) ; 10 printf ( " adres
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Informacje wstępne #include <nazwa> - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char
Programowanie C++ Informacje wstępne #include - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char = -128 do 127, unsigned char = od
REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
Wykład 1_2 Algorytmy sortowania tablic Sortowanie bąbelkowe
I. Struktury sterujące.bezpośrednie następstwo (A,B-czynności) Wykład _2 Algorytmy sortowania tablic Sortowanie bąbelkowe Elementy języka stosowanego do opisu algorytmu Elementy Poziom koncepcji Poziom
Wykład 5: Iteracja, indukcja i rekurencja Sortowanie
Teoretyczne podstawy informatyki Wykład 5: Iteracja, indukcja i rekurencja Sortowanie Prof. dr hab. Elżbieta Richter-Wąs 1 30.10.2012 Słowem wstępu Iteracja, indukcja i rekurencja to podstawowe zagadnienia
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Efektywna metoda sortowania sortowanie przez scalanie
Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy
Algorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Poprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
Rekurencja. Przykład. Rozważmy ciąg
Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu
Sortowanie. LABORKA Piotr Ciskowski
Sortowanie LABORKA Piotr Ciskowski main Zaimplementuj metody sortowania przedstawione w następnych zadaniach Dla każdej metody osobna funkcja Nagłówek funkcji wg uznania ale wszystkie razem powinny być
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
Ćwiczenie 3 z Podstaw programowania. Język C++, programy pisane w nieobiektowym stylu programowania. Zofia Kruczkiewicz
Ćwiczenie 3 z Podstaw programowania. Język C++, programy pisane w nieobiektowym stylu programowania Zofia Kruczkiewicz Zakres Podstawowe algorytmy przetwarzania tablic (wypełnianie, porównywanie elementów,
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
2:8,7 3:9,4 / \ / \ / \ / \ 4:7,3 5:8 6:9,2 7:4
Wykład: Sortowanie III Drzewa Turniejowe 1:9,8 2:8,7 3:9,4 4:7,3 5:8 6:9,2 7:4 8: 3 9:7 12:9 13:2 Insert(x,S) 1) tworzymy dwa nowe liście na ostatnim poziomie, 2) do jednego wstawiamy x a do drugiego wartość
Projektowanie i analiza algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
5. Rekurencja. Przykłady
5. Rekurencja Uwaga! W tym rozdziale nie są omówione żadne nowe konstrukcje języka C++. Omówiona jest za to technika wykorzystująca funkcje, która pozwala na rozwiązanie pewnych nowych rodzajów zadań.
Podstawy programowania. Wykład: 4. Instrukcje sterujące, operatory. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
programowania Wykład: 4 Instrukcje sterujące, operatory 1 programowania w C++ Instrukcje sterujące 2 Pętla for for ( instrukcja_ini ; wyrazenie_warunkowe ; instrukcja_krok ) tresc_petli ; instrukcja_ini
[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne).
[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne). Tworzenie projektów informatycznych opiera się w dużej mierze na formułowaniu i implementacji algorytmów,
Szczegółowy program kursów szkoły programowania Halpress
Szczegółowy program kursów szkoły programowania Halpress Lekcja A - Bezpłatna lekcja pokazowa w LCB Leszno "Godzina kodowania - Hour of Code (11-16 lat) Kurs (B) - Indywidualne przygotowanie do matury
Instrukcja wyboru, pętle. 2 wykład. Podstawy programowania - Paskal
Instrukcja wyboru, pętle 2 wykład. Podstawy programowania - Paskal Tematy Instrukcja wyboru jeden z wielu wariantów: case Pętle while repeat for Instrukcje sterowania pętli break continue goto Instrukcja
Złożoność algorytmów. Wstęp do Informatyki
Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 5 część I 2 Iteracja Rekurencja Indukcja Iteracja Rekurencja Indukcja Algorytmy sortujące Rozwiazywanie
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Wstęp do programowania. Procedury i funkcje. Piotr Chrząstowski-Wachtel
Wstęp do programowania Procedury i funkcje Piotr Chrząstowski-Wachtel Po co procedury i funkcje? Gdyby jakis tyran zabronił korzystać z procedur lub funkcji, to informatyka by upadła! Procedury i funkcje
Wykład 4: Iteracja, indukcja i rekurencja
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja i rekurencja to podstawowe zagadnienia pojawiające się przy
Techniki projektowania algorytmów
Techniki projektowania algorytmów Dziel i zwyciężaj (divide and conquer) rekursja Redukcja (reduction, transform and conquer) Programowanie liniowe (linear programming) Programowanie zachłanne (greedy
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2015-10-09 Spis treści 1 Szybkie potęgowanie 1 2 Liczby Fibonacciego 2 3 Dowód, że n 1 porównań jest potrzebne do znajdowania minimum 2 4 Optymalny algorytm do
Algorytmy i struktury danych
Algorytmy i struktury danych Funkcje i procedury Zasięg zmiennych Rekurencja Witold Marańda maranda@dmcs.p.lodz.pl 1 Modularyzacja programu Algorytmy strukturalne moŝna redukować, zastępując złoŝone fragmenty
Rozwiązanie. #include <cstdlib> #include <iostream> using namespace std;
Programowanie C++ Zadanie 1 Napisz program do obliczenia sumy i iloczynu ciągu liczb zakooczonego liczbą zero. Zakładamy, że ciąg zawiera co najmniej jedną liczbę (założenie to jest konieczne przy obliczeniu
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Znajdowanie największego i najmniejszego elementu w zbiorze n liczb całkowitych
1/12 Opracowała Kozłowska Ewa ekozbelferek@poczta.onet.pl nauczyciel przedmiotów informatycznych Zespół Szkół Technicznych Mielec, ul. Jagiellończyka 3 Znajdowanie największego i najmniejszego elementu
Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują