Modelowanie jako metoda badań wzrostu
|
|
- Antonina Wolska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Modelowanie jako metoda badań wzrostu dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Uniwersytet Śląski, Katowice
2 merystem wierzchołkowy pędu wierzchołek pędu merystem boczny merystem wierzchołkowy korzenia U roślin wzrost zapoczątkowany jest w merystemach wierzchołek korzenia
3 wierzchołek pędu siewki świerka (fot. I. Potockiej) wierzchołek korzenia rzodkiewnika
4 blaszka blaszka środkowa plasmodesmy W odróżnieniu od komórek zwierzęcych komórka roślinna ma ścianę komórkową. Ściany komórek sąsiednich połączone są blaszkami środkowymi, a w poprzek ścian komórkowych przechodzą plazmodesmy. To sprawia, że komórki roślinne rosną i przemieszczają się w sposób skoordynowany
5 Skoordynowany wzrost komórek organu nazywamy symplastycznym. W trakcie takiego wzrostu utrzymywane są kontakty pomiędzy sąsiednimi komórkami. W symplastyczności zawiera się także współzależność wzrostu organu jako całości i komórek wchodzących w skład organu We wzroście symplastycznym prędkość przesunięć elementów organu (V) zmienia się w sposób ciągły co oznacza, że pole V na poziomie organu jest ciągłe.
6 wierzchołek korzenia rzodkiewki (fot. I. Potockiej) antykliny periykliny wierzchołek pędu siewki świerka Ciągłość pola V przejawia się w układzie komórek. Chodzi o to, że układ komórek w merystemie wierzchołkowym (w przekroju osiowym) daje się opisać dwoma rodzinami wzajemnie ortogonalnych linii nazywanych peryklinami i antyklinami, a wzajemna ortogonalność tych linii, pomimo nieustannego wypływu tkanki z dystalnych rejonów merystemu, jest utrzymywana w trakcie wzrostu
7 Relacja pomiędzy przesunięciami elementów organu, prędkościami przesunięć a szybkościami wzrostu 1 różniczkowanie przesunięcia punktów pole prędkości szybkości wzrostu całkowanie 2 Obszary modelowania: 1 2 Badania rozmieszczenia i zmienności szybkości wzrostu Symulacje wzrostu wirtualnego organu z uwzględnieniem podziałów komórek
8 Miarą wzrostu w punkcie w określonym kierunku jest względna szybkości wzrostu liniowego RERG l (przyrost długości elementu liniowego na jednostkę długości na jednostkę ) RERG dv ds V s s prędkość przesunięć l ( s ) RERG l(s) względna szybkość wzrostu liniowego w kierunku s Inne miary wzrostu w punkcie: RERG a - względna szybkość wzrostu powierzchniowego (przyrost pola elementu powierzchniowego na jednostkę powierzchni, na jednostkę czasu) RERG vol - względna szybkość wzrostu objętościowego (przyrost długości elementu objętościowego na jednostkę objętości, na jednostkę czasu) Jednostka we wszystkich przypadkach- czas -1, np. doba -1
9 Szybkość wzrostu liniowego w punkcie może przyjmować różne wartości w różnych kierunkach. Zmienność tą ilustruje 3-wymiarowa powierzchnia wokół punktu nazywana indykatrysą RERG l. Kształt indykatrysy wskazuje na to jaki jest wzrost w danym punkcie A- wzrost izotropowy, tj. jednakowy we wszystkich kierunkach B- izotropia w płaszczyźnie (xz), brak wzrostu w kierunku osi y C- elongacja w kierunku osi z, brak wzrostu w płaszczyźnie (xy) D- elongacja w kierunku osi z, brak wzrostu w kierunku osi y, a ujemny wzrost (ściskanie zaznaczone kolorem zielonym) w kierunku osi x
10 Metody uzyskiwania danych potrzebnych do określenia wzrostu Wierzchołek pędu - ocena zróżnicowania i wielkości kompleksów komórek na powierzchni wierzchołka Nakielski (1987) Acta Soc. Bot Pol Wzrost na powierzchni wierzchołka pędu świerka jest izotropowy odległość od szczytu
11 pole prędkości Modelowanie wzrostu powierzchniowego wierzchołka pędu świerka mapa RERG l siatka wielokątów reprezentująca układ komórek
12 Wierzchołek pędu jęczmienia w części szczytowej izotropowo, a poza nią- anizotropowo Hejnowicz et al. (1989) Acta Soc. Bot Pol
13 Modelowanie profilu prędkości i szybkości wzrostu meridionalnego w wierzchołku pędu jęczmienia
14 Korzeń - technika fotografii smugowej
15 Ralph Erickson
16 Korzeń Arabidopsis przyżyciowa kinematyczna metoda określania profilu prędkości i szybkości wzrostu Van der Weele et al. (2003) Plant Physiol
17 Wuyts et al. (2011) Planta
18 Określanie szybkości wzrostu dla organów płaskich ( w 2D) przykład liścia Xantium Erickson J Exp Bot (1966)
19 Erickson J Exp Bot (1966) Mapy szybkości wzrostu (RERG a i RERG l )
20 Sekwencja rozwoju siatki sektorów otrzymana dla liścia Arabidopsis z zastosowaniem metody markerów 100 μm Pietrakowski J (2012) praca doktorska
21 składowa V x składowa V z V x V z m Prędkość przesunięć Pietrakowski J (2012) praca doktorska
22 Czasowa zmienność szybkości wzrostu powierzchniowego w blaszce liściowej A. t 0 doba -1 t 24 t 48 Szybkość wzrostu powierzchniowego zmniejsza się z czasem i odległością od ogonka. W części proksymalnej występują dwa maksima szybkości wzrostu t 0+24h t 72 Pietrakowski J (2012) praca doktorska
23 Inne wyniki dotyczące zmienności szybkości wzrostu w liściu A. Kuchen et al. (2012) Science Wiese i et al. (2007), New Phytol
24 Przyżyciowe znakowanie klonów komórek Kurup et al. (2005) Plant J Korzeń Arabidopsis
25 Kurup et al. (2005) Plant J
26 Płatki kwiatowe Antirrhinum majus (Wyżlin większy) płatek grzbietowy płatek brzuszny płatek boczny - temowrażliwe mutanty A. linii pal rec -2 - insercja transpozonu w rejon promotorowy genu czerwonej pigmentacji (powoduje utratę zabarwienia płatków na czerwono) -ze względu na niestabilność mutacji lokalnie powstają zabarwione sektory komórek
27 P44 Zmienność szybkości wzrostu w rozwoju łatki płatka grzbietowego Antirrhinum (w przedziale czasu od 32 do 44 plastochronu) P38 P32
28 Klony komórek w płatku brzusznym (N-ilość komórek) N=46 N=97
29 Metoda replik w zastosowaniu do merystemu wierzchołkowego pędu wegetatywnego Anagallis arvensis. Zdjęcia z mikroskopu skaningowego rekonstrukcja w 3D Dumais and Kwiatkowska (2002), Plant J
30 Ilościowe dane o wzroście otrzymane w oparciu o analizę replik Jacques and Kwiatkowska (2002), Plant J
31 Wielokątowe obrazowanie w czasie rzeczywistym z zastosowaniem mikroskopu konfokalnego- Ścieżka segmentacyjnej rekonstrukcji w 3D (markery GFP specyficzne dla kwiatu Arabidopsis) kwiat wielokątowa rejestracja zbieranie rekonstrukcja automatyczna segmentacja
32 Wielokątowa rejestracja i rekonstrukcja zarejestrowanego obrazu Automatyczna segmentacja wierzchołka korzenia ryżu
33 etap 1 etap 2 etap 3 A Łączenie danych pochodzących z obserwacji dwóch kwiatów B Automatyczne określanie wielkości klonów komórek
34 Przemysław Prusinkiewicz Auksyna w regulacji procesów rozwojowych w wierzchołkach korzenia i pędu. Pokazano szlaki transportu (niebieskie strzałki) i miejsca akumulacji (niebieskie kółka) tego hormonu Prusinkiewicz i Runions (2012) New Phytol. 193
35 Schemat wieloaspektowego modelowania w oparciu o szeroki zakres danych empirycznych
Auksyna,,oczami roślin transgenicznych
Auksyna,,oczami roślin transgenicznych dr Justyna Wiśniewska, UNIWERSYTET MIKOŁAJA KOPERNIKA w TORUNIU ZAKŁAD BIOTECHNOLOGII Auksyny naturalne i sztuczne Naturalne auksyny: IAA - kwas indolilo-3-octowy
Embriologia roślin nasiennych SYLABUS A. Informacje ogólne
Embriologia roślin nasiennych A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów
WYKŁAD XIII ROŚLINY WZROST I ROZWÓJ
WYKŁAD XIII ROŚLINY WZROST I ROZWÓJ Podstawowe objawy życia: Przemiana materii (metabolizm) WZROST I ROZWÓJ Wzrost - nieodwracalny przyrost rozmiarów rośliny Rozwój - zmiany jakościowe zachodzące w ciągu
Hormony roślinne ( i f t i o t h o or o m r on o y n )
Hormony roślinne (fitohormony) Hormony roślinne: To związki chemiczne syntetyzowane w pewnych częściach rośliny służące do "komunikacji" pomiędzy poszczególnymi jej częściami. Działają w bardzo małych
Skrypt 26. Stereometria: Opracowanie Jerzy Mil
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Stereometria: 1. Przypomnienie
Temat: Tkanki roślinne. 1. Tkanki miękiszowe.
Temat: Tkanki roślinne. 1. Tkanki miękiszowe. Są obecne we wszystkich organach rośliny i stanowią główną ich część. Należą do tkanek stałych, jednak nieraz dają początek wtórnym tkankom twórczym. Zbudowane
Zagadnienia: Wzrost i rozwój
Zagadnienia: Wzrost i rozwój 1. Definicja wzrostu i rozwoju. 2. Fazy wzrostu i rozwoju (embrionalna, juwenilna, wegetatywna, generatywna). 3. Wpływ czynników środowiska na wzrost i rozwój roślin. 4. Kiełkowanie
METODYKA STOSOWANA W ZAKŁADZIE BIOLOGII ROZWOJU ROŚLIN
METODYKA STOSOWANA W ZAKŁADZIE BIOLOGII ROZWOJU ROŚLIN Immunolokalizacja wybranych białek i polisacharydów Ksyloglukan u Arabidopsis Kaloza w gametofiach mszaków Immunocytochemia białek cytoszkieletu kortykalnego
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Kierunek i poziom studiów: Biologia, poziom pierwszy
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Biologia, poziom pierwszy Sylabus modułu: Techniki mikroskopowe modułu: 1BL_49 1. Informacje ogólne koordynator modułu Prof. dr hab. Ewa
Sprawdź swoją wiedzę i umiejętności TKANKI ROŚLINNE. 1. Uzupełnij schemat ilustrujący hierarchiczną budowę organizmu roślin. komórka...
Sprawdź swoją wiedzę i umiejętności TKANKI ROŚLINNE. 1. Uzupełnij schemat ilustrujący hierarchiczną budowę organizmu roślin. komórka...... organizm 2. Na rysunku komórki roślinnej wskaż i podpisz następujące
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
STEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =
Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
WYMAGANIA NA OCENĘ 12. Równania kwadratowe Uczeń demonstruje opanowanie umiejętności ogólnych rozwiązując zadania, w których:
str. 1 / 1. Równania kwadratowe sprawdza, czy liczba jest pierwiastkiem równania, po uporządkowaniu równania określa jego rodzaj (zupełne, niezupełne), rozwiązuje proste uporządkowane równania zupełne
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni
Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
( F ) I. Zagadnienia. II. Zadania
( F ) I. Zagadnienia 1. Rozchodzenie się fal akustycznych w układach biologicznych. 2. Wytwarzanie i detekcja fal akustycznych w ultrasonografii. 3. Budowa aparatu ultrasonograficznego metody obrazowania.
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
Wzrost i rozwój roślin
Wykład 11 i 12 Wzrost i rozwój - definicje Wzrost roślin - powiększanie się rozmiarów rośliny, co można określić ilościowo (wzrost świeżej masy, wysokości, itp.). Zachodzi on poprzez podziały (wzrost embrionalny)
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność
Budowa anatomiczna liścia roślin okrytonasiennych.
Organy wegetatywne roślin nasiennych: liście, pędy, korzenie. Budowa anatomiczna liścia roślin okrytonasiennych. Budowa morfologiczna liścia. Przekrój przez blaszkę liściową. Budowa anatomiczna liścia.
Parcie na powierzchnie płaską
Parcie na powierzchnie płaską Jednostką parcia jest [N]. Wynika z tego, że parcie jest to siła. Powtórzmy, parcie jest to siła. Siła z jaką oddziaływuje ciecz na ścianki naczynia, w którym się znajduje.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
Anatomia i histogeneza roślin: wczoraj, dziś i jutro
Anatomia i histogeneza roślin: wczoraj, dziś i jutro Miejsce i termin konferencji: 16-17 maja 2017 roku, Centrum Edukacji Przyrodniczo- Leśnej w Rogowie Nadrzędny cel konferencji to poszerzenie wiedzy
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
IRONCAD. TriBall IRONCAD Narzędzie pozycjonujące
IRONCAD IRONCAD 2016 TriBall o Narzędzie pozycjonujące Spis treści 1. Narzędzie TriBall... 2 2. Aktywacja narzędzia TriBall... 2 3. Specyfika narzędzia TriBall... 4 3.1 Kula centralna... 4 3.2 Kule wewnętrzne...
Budowa i rodzaje tkanek zwierzęcych
Budowa i rodzaje tkanek zwierzęcych 1.WskaŜ prawidłową kolejność ukazującą stopniowe komplikowanie się budowy organizmów. A. komórka tkanka organizm narząd B. organizm narząd komórka tkanka C. komórka
Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.
1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy CZERWIEC 2014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
Pobudliwość i koordynacja funkcji życiowych u roślin.
Pobudliwość i koordynacja funkcji życiowych u roślin. Zadanie 1 A B C W doświadczeniu wykorzystano: syntetyczną auksynę i wodę. Jak zachowała się siewka A, B i C? Zadanie 2 I - Wyjaśnij jakiego czynnika
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Styczeń Takie zadanie będzie sygnalizowane komunikatem:
Styczeń 2011 26. W modelach typu Płyta przy obrocie całego modelu względem wybranego punktu (menu Węzły, opcja Obróć węzły) zostaje zachowana konfiguracja słupów i ścian względem siatki. 27. W modelach
Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
BOTANIKA LEŚNA PĘDY ZDREWNIAŁE. Czesław Hołdyński. Typy budowy łodyg. wąskie promienie rdzeniowe TYP TILIA
BOTANIKA LEŚNA PĘDY ZDREWNIAŁE Czesław Hołdyński Typy budowy łodyg TYP TILIA wąskie promienie rdzeniowe 1 Kolejne etapy rozwoju łodygi zdrewniałej typu TILIA w pierwszym roku SEZONOWOŚĆ DZIAŁANIA KAMBIUM
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.
Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt
Temat: Liść wytwórnia pokarmu.
Temat: Liść wytwórnia pokarmu. Liście są organami wegetatywnymi rośliny. Są bocznymi organami pędu. Powstają w merystemie wierzchołkowym (stożku wzrostu) pędu, a ich wzrost po osiągnięciu ostatecznej wielkości
PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI
Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga
10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.
Waldemar Izdebski - Wykłady z przedmiotu SIT 91 10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. 10.3.1. Wyznaczanie
Instrukcja korzystania z aplikacji mobilnej Petio. Instrukcja zawiera opis funkcjonalności poszczególnych ekranów aplikacji.
Instrukcja korzystania z aplikacji mobilnej Petio. Instrukcja zawiera opis funkcjonalności poszczególnych ekranów aplikacji. Rozpoczęcie pracy z aplikacją wymaga zalogowania przy użyciu adresu e-mail lub
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Roślinne kultury tkankowe in vitro hodowla roślin, części roślin, tkanek lub pojedynczych komórek na sztucznych pożywkach w sterylnych warunkach.
Roślinne kultury tkankowe in vitro hodowla roślin, części roślin, tkanek lub pojedynczych komórek na sztucznych pożywkach w sterylnych warunkach. TOTIPOTENCJA Zdolności do odtworzenia poszczególnych organów,
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Wymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych
Wymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych Dzielenie ułamków zwykłych Liczby całkowite na osi liczbowej Dodawanie liczb całkowitych
KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka
KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
mirna i zmiany faz wzrostu wegetatywnego
mirna i zmiany faz wzrostu wegetatywnego mir156 reguluje ekspresję genów SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) Defekty morfologiczne wywołane nadekspresją mirna w Arabidopsis" mirna156 mirna166
Joanna Maria Szymanowska-Puøka
AUTOREFERAT Joanna Maria Szymanowska-Pułka Uniwersytet Śląski Wydział Biologii i Ochrony Środowiska Katedra Biofizyki i Morfogenezy Roślin ul. Jagiellońska 28 40-032 Katowice Katowice, 12 listopada 2014
Pomiar siły parcie na powierzchnie płaską
Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
Zadanie 3. (0 2) Rysunek przedstawia głowę ryby. Wskazany strzałką narząd to... Narząd ten odpowiada za proces...
Egzamin część I Zadanie 1. (0 1) Krokodyla przedstawionego można opisać następująco: A. wąż, zmiennocieplny, drapieżca, jajorodny B. gad, stałocieplny, wody ciepłe C. drapieżca, gad, zmiennocieplny, jajorodny
Podział komórkowy u bakterii
Mitoza Podział komórkowy u bakterii Najprostszy i najszybszy podział komórkowy występuje u bakterii, które nie mają jądra komórkowego, lecz jedynie pojedynczy chromosom tzw. chromosom bakteryjny. Podczas
DEFEKTY STRUKTURY KRYSTALICZNEJ
DEFEKTY STRUKTURY KRYSTALICZNEJ Rodzaje defektów (wad) budowy krystalicznej Punktowe Liniowe Powierzchniowe Defekty punktowe Wakanse: wolne węzły Atomy międzywęzłowe Liczba wad punktowych jest funkcją
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO (19) PL (11 ) 9751 (21) Nume r zgłoszenia: 804 1 (51) Klasyfikacja : 21-01 (22) Dat a zgłoszenia: 17.06.200 5 (54) Kloce k (73) Uprawnion y z rejestracj i wzoru
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
TEST. str. 1. Punktacja testu: odpowiedź poprawna 2 punkty, odpowiedź błędna 0 punktów. Na rozwiązanie testu i krzyżówki masz 70 minut. POWODZENIA!
Przed Tobą test zadań zamkniętych i krzyżówka. W każdym zadaniu zamkniętym tylko jedna odpowiedź jest poprawna. Swoje odpowiedzi do testu zaznacz w karcie odpowiedzi. Krzyżówkę rozwiąż na kartce, na której
Botanika. T. 1 Morfologia - A. Szweykowska, J. Szweykowski
Botanika. T. 1 Morfologia - A. Szweykowska, J. Szweykowski Spis treści 1.Wstęp Przedmiot i zadania botaniki Historia botaniki Główne dyscypliny botaniczne Metody badania budowy i rozwoju roślin 2.Komórka
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)
Modelowanie matematyczne a eksperyment
Modelowanie matematyczne a eksperyment Budowanie modeli w środowisku Hildegard Urban-Woldron Ogólnopolska konferencja, 28.10. 2011, Warszawa Plan Budowanie modelu w środowisku Równania i wartości Uruchomienie
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO (19) PL (11 ) Rp.2159 (21) Nume r zgłoszenia: 1912 0 (51) Klasyfikacja : 07-01 (22) Dat a zgłoszenia: 06.12.199 9 (54) Wazo n i salaterka (30) Pierwszeństwo : 14.09.1999
Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA
Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: INŻYNIERIA WARSTWY WIERZCHNIEJ Temat ćwiczenia: Badanie prędkości zużycia materiałów
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne
KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6
KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 DOPUSZCZAJĄC Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje,
Drewno i łyko wtórne drzew iglastych na przykładzie sosny pospolitej
Drewno i łyko wtórne drzew iglastych na przykładzie sosny pospolitej Elementy i struktura drewna wtórnego sosny pospolitej Przekrój poprzeczny przez drewno wtórne (wtórna tkanka waskularna=przewodzącą)
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria
1 TEST WSTĘPNY 1. (1p) Graniastosłup ma 12 wierzchołków. Liczba krawędzi tego graniastosłupa to: A. 12 B. 18 C. 24 D. 36 2. (1p) Pole powierzchni jednej ściany sześcianu jest równe 9. Objętość tego sześcianu
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Kąty przyległe, wierzchołkowe i zewnętrzne
Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Etap szkolny. Numer Oczekiwana odpowiedź i sposób jej oceny
Model odpowiedzi i schemat punktowania do zadań Wojewódzkiego Konkursu Przedmiotowego z Biologii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 05/06 Etap szkolny Za rozwiązanie zadań z arkusza
Ruch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
J. Szantyr Wykład 10 Stan naprężenia w płynie
J. Szantyr Wykład 10 Stan naprężenia w płynie Można udowodnić, że tensor stanu naprężenia w płynie jest tensorem symetrycznym, czyli: itd. xy = yx Redukuje to liczbę niewiadomych naprężeń lepkościowych
Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 (G-PG). Prowadzący dr Andrzej Rychlewicz
Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 G-PG). Prowadzący dr Andrzej Rychlewicz Przeanalizujmy następujące zadanie. Zadanie. próbna matura