SUCHE" GŁOWICE DO KONTAKTOWYCH BADAŃ ULTRAŹWIĘKOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "SUCHE" GŁOWICE DO KONTAKTOWYCH BADAŃ ULTRAŹWIĘKOWYCH"

Transkrypt

1 Jacek SZELĄŻEK IPPT PAN Warszawa SUCHE" GŁOWICE DO KONTAKTOWYCH BADAŃ ULTRAŹWIĘKOWYCH 1. WSTĘP Jednym z problemów, z jakim mają do czynienia operatorzy w czasie ręcznych i automatycznych badań ultradźwiękowych prowadzonych klasycznymi, piezoelektrycznymi głowicami, jest konieczność zapewnienia stałego sprzężenia akustycznego. W badaniach ręcznych operator musi nieustannie dbać o to, aby między głowicą a badanym elementem znajdowała się ciecz czy żel sprzęgający. W badaniach automatycznych konieczne jest ciągłe dostarczanie znacznych ilości odpowiednio przygotowanej wody a do monitorowania stanu sprzężenia wykorzystywane są często specjalne zestawy głowic. Ciekawym sposobem zmniejszenia ilości cieczowego ośrodka sprzęgającego w badaniach automatycznych były próby wykorzystania do tego cieczy magnetycznych [1]. Głowice zastosowane w opisywanym automacie obudowane były metalową ramką, w której umieszczone zostały stałe magnesy. W czasie ruchu głowicy ciecz magnetyczna utrzymywana była pod nią przez pole magnetyczne wytworzone tymi magnesami. Na przeszkodzie szerokiemu rozpowszechnieniu tego ciekawego i skutecznego sposobu sprzęgania stanęła zapewne cena i trudności w zakupie cieczy magnetycznych. Problemy z zachowaniem ciągłego i stałego sprzężenia akustycznego uwidaczniają się szczególnie przy badaniach elementów chropowatych czy gorących, na powierzchniach których ciecze parują. Dlatego od dawna poszukiwane były sposoby wzbudzania i odbioru fal ultradźwiękowych bez stosowania ośrodków sprzęgających. Celem pracy jest przedstawienie kilku przykładów głowic do badań na sucho". Zdecydowana większość badanych ultradźwiękowe elementów wykonana jest z metali. Konieczność stosowania cieczy sprzęgających w czasie badania ich klasycznymi głowicami wynika głównie z ogromnej różnicy oporności akustycznych między powietrzem i metalem. Oporność akustyczna stali wynosi 46*10 6 [kg m -2 s -1 ] a powietrza 0,0004*10 [kg m -2 s -1 ]. Stąd, przez granicę po wietrze-stal przechodzi jedynie 0,6% energii fal. Wypełnienie szczeliny wodą o oporności akustycznej około 1,5*10 [kg m -2 s -1 ] poprawia sytuację 50- krotnie (do stali wnika 35%)! Pokazuje to, dlaczego klasyczne głowice, przy badaniu metali, nie mogą skutecznie działać bez cieczowego sprzężenia akustycznego. 2. GŁOWICE TYPU EMAT (ELEKTROMAGNETO AKUSTYCZNE) Głowicami działającymi bez potrzeby stosowania cieczy sprzęgających są głowice typu EMAT (elektromagneto-akustyczne). Głowice te mogą generować i odbierać fale ultradźwiękowe w materiałach przewodzących, zarówno w ferromagnetykach i paramagnetykach. Schemat działania głowicy EMAT, na przykładzie głowicy o najprostszej konstrukcji, generującej fale poprzeczne o kołowej polaryzacji, pokazuje rysunek 1.

2 Głowica ta składa się jedynie ze stałego magnesu i spiralnej cewki. Magnes ustawiony jest tak, że linie pola magnetycznego są prostopadłe do powierzchni badanego elementu. Cewka, w której płynie prąd zmienny, znajduje się w szczelinie miedzy magnesem i powierzchnią materiału. Prąd płynący w cewce wzbudza w powierzchniowej warstwie materiału prądy wirowe. Przepływ prądu w materiale znajdującym się w stałym polu magnetycznym jest źródłem siły Lorenza powodującej cykliczne odkształcenia materiału. Odkształcenia te, w tym przypadku równoległe do powierzchni materiału, są źródłem poprzecznej fali rozchodzącej się normalnie do powierzchni i spolaryzowanej kołowo (w kierunku promieniowym, prostopadłym do przewodów cewki). W zależności od wzajemnych kierunków przepływu prądów wirowych, zależnych od ukształtowania cewki, i pola magnetycznego teoretycznie można wzbudzać wszystkie typy fal ultradźwiękowych. Działanie i budowa różnych głowic typu EMAT opisana jest w [2]. Rys. l. Schemat działania głowicy typu EMAT na kołowo spolaryzowane ale poprzczne. Natężenie generowanej fali jest proporcjonalne do natężenia pola magnetycznego i prądów wirowych a skuteczność głowicy gwałtownie spada wraz ze wzrostem szczeliny między głowicą a powierzchnią materiału. Odległość między cewką a powierzchnią zazwyczaj nie przekracza 1mm. Delikatna cewka musi być zabezpieczona przed uszkodzeniem warstwą z tworzywa sztucznego, co w praktyce oznacza, że głowica EMAT musi dotykać powierzchni badanego elementu (badania kontaktowe). Głowicami EMAT skutecznie generowane są fale powierzchniowe, fale poprzeczne rozchodzące się prostopadle do powierzchni i podpowierzchniowe fale poprzeczne typu SH. Ich skuteczność jako głowic normalnych na fale podłużne jest niestety znikoma. W literaturze często opisywane są jedynie zalety głowic typu EMAT takie jak bezkontaktowy" sposób badania, możliwość ich szybkiego przesuwania czy badania elementów gorących. Niestety głowice te mają również szereg wad ograniczających ich zastosowania. Podstawową wadą jest niska skuteczność. Dla porównania, napięcie, jakie powstaje na okładkach przetwornika piezoelektrycznego przy odbiorze echa dużej wady jest rzędu setek miliwoltów. W przypadku odbioru echa takiej wady głowicą EMAT, w jej cewce indukowane jest napięcie jedynie rzędu setek mikrowoltów, czyli tysiąc razy niższe. Drugą wadą jest wysoki pobór prądu przy generacji fal (w cewce nadawczej konieczne jest

3 wzbudzenie prądu o natężeniu 10-20A). Uniemożliwia to budowę miniaturowej i lekkiej, zasilanej bateryjnie aparatury z głowicami EMAT. Jeszcze inną, rzadko wspominaną a ważną z praktycznego punktu widzenia wadą jest to, że silne stałe magnesy przyciągają wszelkie metaliczne zanieczyszczenia (wiórki, opiłki itp.). Zbierają się one na powierzchni cewki i przy dociśnięciu głowicy do powierzchni materiału mogą być przyczyną uszkodzenia delikatnej cewki. Dlatego wykorzystanie głowic EMAT jest ciągle jeszcze ograniczone do przemysłowych, zautomatyzowanych układów. Przykładem udanego, od blisko ćwierć wieku [3], zastosowania głowic EMAT jest pomiar dwójłomności akustycznej wykorzystywany w badaniach naprężeń głowicami normalnymi na fale poprzeczne. Schemat badania pokazuje rysunek 2. W badaniu wykorzystywane są fale poprzeczne spolaryzowane liniowo i dlatego cewka takiej głowicy, w odróżnieniu od pokazanej na rysunku l, posiada kształt owalny a nie spiralny. Rys. 2. Schemat badania naprężeń w kole kolejowym głowicą EMAT na fale poprzeczne spolaryzowane liniowo. Do wytwarzania i odbioru dal wykorzystana jest jedynie ta część cewki, w której prąd płynie w jednym kierunku, w równoległych przewodach. Reszta powierzchni cewki jest pokryta warstwą miedzi ekranującą badany materiał przed indukowaniem w nim niepożądanych prądów wirowych. Głowica generuje falę poprzeczną o kierunku polaryzacji prostopadłym do kierunku przewodów w okienku ekranu. Do wyznaczenia wartości dwójłomności potrzebna jest znajomość prędkości fal o dwóch wzajemnie prostopadłych kierunkach polaryzacji. Zmiany kierunku polaryzacji w opisywanej głowicy dokonuje się przez obrót głowicy, ale zasada działania głowicy EMAT umożliwia umieszczenie dwóch, wzajemnie prostopadłych cewek, jedna na drugiej. Dolna cewka, aby nie ekranować górnej, powinna być nawinięta nieco luźniej. W ten sposób możliwa jest budowa głowicy generującej jednocześnie dwie fale o wzajemnie prostopadłych kierunkach polaryzacji. Innym przykładem zastosowania głowic EMAT są automatyczne układy do wykrywanie wad powierzchniowych w szynach czy rurach, falami powierzchniowymi, metodą przepuszczania. Układ składa się z dwóch głowic, nadawczej i odbiorczej, ustawionych we wspólnej obudowie. Rysunek 3 wyjaśnia budowę i sposób działania głowicy na fale powierzchniowe. Cewka ma kształt meandra. Odsłonięte są fragmenty przewodów biegnących równolegle, reszta cewki zasłonięta jest ekranem. Odsłonięte przewody wytwarzają w materiale siły

4 pokazane na rysunku białymi strzałkami. Są to siły równoległe do powierzchni powodujące naprzemienne ściskanie i rozciąganie materiału. Jeśli odległości między poszczególnymi grupami równoległych przewodów cewki odpowiadają połowie długości fali powierzchniowej w badanym ośrodku, to powstają w nim fale powierzchniowe rozchodzące się w dwie strony od głowicy (szare strzałki). Rys. 3. Schemat budowy i działania głowicy EMAT na fale powierzchniowe. Układ taki zbudowany do badania jakości stalowych rur opisany jest w [4]. 3. GŁOWICE PIEZOELEKTRYCZNE DZIAŁAJĄCE BEZ OŚRODKA SPRZĘGAJĄCEGO ( NA SUCHO") 3.1. GŁOWICE NA FALE POWIERZCHNIOWE Z SUCHYM" KONTAKTEM Falami najłatwiej wzbudzanymi i odbieranymi na sucho" są fale powierzchniowe. Jeden z układów suchych" głowic fal powierzchniowych, nadawczej i odbiorczej, opisany w [5], pokazuje schematycznie rysunek 4. Klasyczna głowica skośna na fale powierzchniowe osadzona jest na stalowym falowodzie stykającym się swą krawędzią z powierzchnią badanego elementu. Fale biegnące po powierzchni falowodu spływają" na powierzchnię elementu i w podobny sposób docierają do głowicy odbiorczej osadzonej na drugim, identycznym falowodzie.

5 Ciekawą cechą tych głowic jest możliwość wzbudzania i odbioru fal na praktycznie wszystkich materiałach, niezależnie od prędkości propagacji fal powierzchniowych, poczynając od stali a kończąc na drewnie czy nawet papierze TWORZYWA SZTUCZNE JAKO SUCHA" WARSTWA SPRZĘGAJĄCA Nowe tworzywa sztuczne, elastyczne i charakteryzujące się niskim tłumieniem, umożliwiają eliminację sprzężenia cieczowego i sprzęganie głowic na sucho". W pracy [6] opisane są właściwości akustyczne takiego nowego polimeru opracowanego jako materiał sprzęgający. Autorzy podają, że tworzywo to może być stosowane do transmisji podłużnych fal ultradźwiękowych o częstotliwościach do 25 MHz a fal poprzecznych do 2 MHz i może pracować w temperaturach do 200 C. Fizyczne własności polimeru są następujące: gęstość = 920 kg/m 3, prędkość fal L = 1590 m/s, fal T = 800 m/s, tłumienie fal L (5 MHz) -0,28 db/mm. Jak widać gęstość i prędkość w polimerze są bardzo bliskie wartościom dla wody. Głowica z warstwą tego tworzywa, przyłożona na sucho do stali, pracuje jak klasyczna głowica z linią opóźniającą wykonaną na przykład z Plexi. Na rysunku 5 pokazano zależności widma i amplitudy echa dna stalowej od siły docisku głowicy sprzęgniętej warstwą polimeru do próbki. Głowica sprzęgnięta została z polimerem małą ilością cieczy natomiast granica polimer - stal pozostawała sucha. W badaniach zastosowano głowicę normalną, na fale podłużne o częstotliwości 5 MHz. Fakt, że po zmniejszeniu nacisku amplituda pozostawała wysoka (niskie wzmocnienie), autorzy tłumaczą tym, że raz dociśnięty polimer pozostaje przyklejony" do powierzchni próbki. Rys. 5. Zmiany częstotliwości głównej oraz amplitudy (wzmocnienia) echa dna podczas cyklu dociskania i odciążania głowicy sprzęgniętej ze stalową próbką za pośrednictwem warstwy polimeru hydrofilicznego, na sucho.

6 3.3. GŁOWICA KULKOWA Opisane w poprzednim rozdziale klejenie" się polimeru do powierzchni próbki z jednej strony zmniejsza współczynnik odbicia fal na granicy tworzywo-stal, z drugiej jednak utrudnia lub uniemożliwia przesuwanie głowicy po powierzchni, szczególnie po powierzchni chropowatej. Ciekawym rozwiązaniem, wykorzystującym nowe tworzywa i umożliwiającym łatwe przesuwanie pracującej na sucho" głowicy jest głowica kulkowa [7]. Schemat działania i budowę głowicy kulkowej wyjaśnia rysunek 6. Głowica składa się z płaskiego przetwornika piezoelektrycznego na fale podłużne umieszczonego na górnej, płaskiej powierzchni elementu wykonanego z tworzywa sztucznego. W dolnej części element ten posiada sferyczne zagłębienie, dopasowane do stykającej się z nim kulki wykonanej z elastomeru. Między kulką a elementem z tworzywa nałożona jest mała ilość żelu sprzęgającego. Uszczelka otaczająca kulkę zabezpiecza przed wypływaniem żelu. Całość umieszczona jest w obudowie umożliwiającej łatwe operowanie głowicą. Impulsy fal generowanych przez przetwornik docieraj ą do powierzchni kulki. Wielkości kulki i przetwornika oraz prędkości propagacji fal w elementach głowicy dobrane są tak, że po załamaniu fal na powierzchni kulki fale tworzą ognisko na dolnej powierzchni kulki. Czyli w punkcie, w którym kulka styka się z powierzchnia badanego elementu. W czasie badania głowicę dociska się do powierzchni, co powoduje częściową deformację kulki i dopasowanie się jej powierzchni do nierówności powierzchni materiału. Głowicę można przesuwać w dowolnym kierunku a mechanizm jej ruchu jest taki sam jak mechanizm pisania długopisem kulkowym. Żel sprzęgający między kulką a elementem, na którym osadzony jest przetwornik, służy również jako smar dla obracającej się kulki. Rys. 6. Schemat budowy głowicy kulkowej. W opisanej w pracy [7] głowicy zastosowano kulkę o średnicy 25 mm i przetwornik ultradźwiękowy o średnicy 9 mm i częstotliwości 5 MHz. Badania opisanej głowicy wykazały, że może ona być z powodzeniem wykorzystana do pomiarów grubości elementów metalowych, o grubościach powyżej 2 mm, i do wykrywania wad. Siła, z jaka należy głowicę dociskać do powierzchni elementu wynosi mniej niż l kg.

7 3.3. GŁOWICE OPONOWE Z NOWYCH TWORZYW. Głowice tego typu (koło Sperry) znane są od wielu lat. Ich opony" wykonywane były z różnego rodzaju gum a ich wnętrza wypełniano wodą lub olejem. Nowe tworzywa, o własnościach zbliżonych do wody, pozwalają na budowę takich głowic pozbawionych ich podstawowych wad - odbić fal na granicy cieczy - wewnętrzna powierzchnia opony" oraz umożliwiają operowanie takimi głowicami na sucho". W pracy [8] opisana jest budowa i działanie takiej głowicy. Opona głowicy, pokazanej schematycznie na rysunku 7, ma 13 mm grubości i średnicę zewnętrzną równą 67 mm. Miniaturowa głowica normalna do badań zanurzeniowych (wodoszczelna, dopasowana akustycznie do wody, ogniskująca, o częstotliwości 5 MHz) została umocowana wewnątrz wypełnionej wodą opony. Intencją autorów nowej głowicy było uzyskanie wykrywalności wad i rozdzielczości badania zbliżonej do uzyskiwanych w badaniach zanurzeniowych. Dlatego testując ją porównali wyniki badania grubości skorodowanej blachy otrzymane nową głowicą pracującą na sucho" oraz z mała ilością wody między oponą a powierzchnia blachy, z wynikami uzyskanymi metodą zanurzeniową, z wykorzystaniem tej samej głowicy skupiającej. Rezultaty porównania pokazuje rysunek 8. Górna część to wyniki badania zanurzeniowego, środkowa - głowicą oponową zwilżoną dwiema kroplami wody, dolna - głowicą oponową kontaktującą się na sucho. Rys. 7. Schemat budowy głowicy oponowej. 4. PODSUMOWANIE W literaturze opisywane są różnego typu nowe głowice pracujące bez konieczności stosowania cieczowego sprzężenia akustycznego w tym głowice wykorzystujące nowe tworzywa sztuczne. Pomimo wielkich ułatwień, jakie nowe typy głowic oferują, głowice te mają jeszcze liczne ograniczenia i dlatego zapewne w badaniach spoin czy odlewów, prowadzonych zgodnie z obowiązującymi normami, nieprędko zastąpią klasyczne (i znacznie tańsze) głowice piezoelektryczne. 7

8 Rys. 8. Porównanie wyników skanowania grubości skorodowanej blachy stalowej. a - badanie zanurzeniowe, b - badania głowicą oponową zwilżoną, c - badania głowicą oponową na sucho. 7. LITERATURA [1]. Niepublikowane informacje o budowie rosyjskiego, automatycznego układu do ultradźwiękowych badań spoin. [2]. Alers G.A., Burns L.R., EMAT Designs for Special Applications, Materials Evaluation, Vol.45, October 1987, pp.l [3]. Schneider G., PitshH., Goebbels, Nondestructive Detection and Analysis of S tress States with Polarized Ultrasonic Shear Waves, Rev. of Progress in Quantitative NDE, D.O.Thompson and D.E. Chimenti, eds., Plenum Press, New York, 1984 [4]. EMAT do badania rur [5]. Pęski Z., Ranachowski J., Sposób i urządzenie do wytwarzania powierzchniowych fal akustycznych, Patent , 21 stycznia [6]. E.A. Ginzel, R.K. Ginzel, Ultrasonic properties of a new Iow attenuation dry couplant elastomer (NDTnet - February 1996, Yol.l, No.02, [7]. E.A. Ginzel, R.K. Ginzel, The Ballprobe, NDTnet - February 1996, Vol. l, No. 02, [8]. S. Bourne, M. Newborough, D. Highgate, Novel Solid Contact Ultrasonic Couplant based on hydrophilic Polymers, proc. 15yh WCNDT, Roma 2000, (

TWORZYWA SZTUCZNE JAKO OŚRODKI SPRZĘGAJĄCE W ULTRADŹWIĘKOWYCH BADANIACH MATERIAŁÓW

TWORZYWA SZTUCZNE JAKO OŚRODKI SPRZĘGAJĄCE W ULTRADŹWIĘKOWYCH BADANIACH MATERIAŁÓW TWORZYWA SZTUCZNE JAKO OŚRODKI SPRZĘGAJĄCE W ULTRADŹWIĘKOWYCH BADANIACH MATERIAŁÓW 1. WSTĘP Jacek Szelążek IPPT PAN Warszawa Jednym z problemów, z jakim mają do czynienia operatorzy w czasie ręcznych badań

Bardziej szczegółowo

PL B1. INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI POLSKIEJ AKADEMII NAUK, Warszawa, PL BUP 11/

PL B1. INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI POLSKIEJ AKADEMII NAUK, Warszawa, PL BUP 11/ PL 218778 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218778 (13) B1 (21) Numer zgłoszenia: 389634 (51) Int.Cl. G01N 29/24 (2006.01) G01N 29/07 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym

Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym 1. Badania nieniszczące wprowadzenie Badania nieniszczące polegają na wykorzystaniu nieinwazyjnych metod badań (bez zniszczenia

Bardziej szczegółowo

Defektoskop ultradźwiękowy

Defektoskop ultradźwiękowy Ćwiczenie nr 1 emat: Badanie rozszczepiania fali ultradźwiękowej. 1. Zapoznać się z instrukcją obsługi defektoskopu ultradźwiękowego na stanowisku pomiarowym.. Wyskalować defektoskop. 3. Obliczyć kąty

Bardziej szczegółowo

Impulsy magnetostrykcyjne informacje podstawowe

Impulsy magnetostrykcyjne informacje podstawowe Impulsy magnetostrykcyjne informacje podstawowe 1. Zasada działania metody generacji i detekcji impulsów magnetostrykcyjnych W ćwiczeniu wykorzystuje się właściwości magnetosprężyste ferromagnetyków a

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

PL B1. Sposób badania przyczepności materiałów do podłoża i układ do badania przyczepności materiałów do podłoża

PL B1. Sposób badania przyczepności materiałów do podłoża i układ do badania przyczepności materiałów do podłoża RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203822 (13) B1 (21) Numer zgłoszenia: 358564 (51) Int.Cl. G01N 19/04 (2006.01) G01N 29/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

4. Ultradźwięki Instrukcja

4. Ultradźwięki Instrukcja 4. Ultradźwięki Instrukcja 1. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości fal ultradźwiękowych i ich wykorzystania w badaniach defektoskopowych. 2. Układ pomiarowy Układ pomiarowy składa się

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL

(12) OPIS PATENTOWY (19) PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 165426 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 291751 (22) Data zgłoszenia: 18.09.1991 (51) IntCl5: G01H5/00 G01N

Bardziej szczegółowo

1. Bieguny magnesów utrzymują gwoździe, jak na rysunku. Co się stanie z gwoździami po zetknięciu magnesów bliższymi biegunami?

1. Bieguny magnesów utrzymują gwoździe, jak na rysunku. Co się stanie z gwoździami po zetknięciu magnesów bliższymi biegunami? 1. Bieguny magnesów utrzymują gwoździe, jak na rysunku. Co się stanie z gwoździami po zetknięciu magnesów bliższymi biegunami? A. wszystkie odpadną B. odpadną tylko środkowe C. odpadną tylko skrajne D.

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) 1 MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) 7. Przetworniki stosowane w medycynie: tupu sandwich, kompozytowe,

Bardziej szczegółowo

Polaryzacja anteny. Polaryzacja pionowa V - linie sił pola. pionowe czyli prostopadłe do powierzchni ziemi.

Polaryzacja anteny. Polaryzacja pionowa V - linie sił pola. pionowe czyli prostopadłe do powierzchni ziemi. Parametry anten Polaryzacja anteny W polu dalekim jest przyjęte, że fala ma charakter fali płaskiej. Podstawową właściwością tego rodzaju fali jest to, że wektory natężenia pola elektrycznego i magnetycznego

Bardziej szczegółowo

Systemy czujnikowe P 2.855/2.856/2.857

Systemy czujnikowe P 2.855/2.856/2.857 Systemy czujnikowe P 2.855/2.856/2.857 System czujnikowy P 12 System czujnikowy P 40 Systemy czujnikowe ze stałymi jarzmami magnetyzacji Testowanie cewkami przelotowymi bez fizycznego kontaktu, przy użyciu

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

XVII Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW Zakopane, 8-11 marca 2011

XVII Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW Zakopane, 8-11 marca 2011 XVII Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW Zakopane, 8-11 marca 2011 ULTRADŹWIĘKOWA METODA POMIARU ZMIAN ŚREDNICY RURY GRUBOŚCIENNEJ Paweł Grzywna, Piotr Gutkiewicz, Sławomir Mackiewicz, Jacek Szelążek

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

O różnych urządzeniach elektrycznych

O różnych urządzeniach elektrycznych O różnych urządzeniach elektrycznych Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Nie tylko prądnica Choć prądnice

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

XX Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW Zakopane marca 2014 WYKRYWANIE PĘKNIĘĆ OSI KOLEJOWYCH METODĄ ULTRADŹWIĘKOWĄ

XX Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW Zakopane marca 2014 WYKRYWANIE PĘKNIĘĆ OSI KOLEJOWYCH METODĄ ULTRADŹWIĘKOWĄ XX Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW Zakopane 12-14 marca 2014 WYKRYWANIE PĘKNIĘĆ OSI KOLEJOWYCH METODĄ ULTRADŹWIĘKOWĄ Jacek SZELĄŻEK IPPT PAN, Warszawa jszela@ippt.gov.pl 1. Wstęp Osie kolejowe

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

BADANIA NIENISZCZĄCE I ICH ODPOWIEDZIALNOŚĆ A BEZPIECZEŃSTWO TRANSPORTU SZYNOWEGO Badanie ultradźwiękowe elementów kolejowych

BADANIA NIENISZCZĄCE I ICH ODPOWIEDZIALNOŚĆ A BEZPIECZEŃSTWO TRANSPORTU SZYNOWEGO Badanie ultradźwiękowe elementów kolejowych BADANIA NIENISZCZĄCE I ICH ODPOWIEDZIALNOŚĆ A BEZPIECZEŃSTWO TRANSPORTU SZYNOWEGO Badanie ultradźwiękowe elementów kolejowych Ireneusz Mikłaszewicz 1. Badania ultradźwiękowe 2. Badania magnetyczno-proszkowe

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

PL B1. Sposób wykrywania delaminacji w płytach włókno-cementowych i urządzenie do wykrywania delaminacji w płytach włókno-cementowych

PL B1. Sposób wykrywania delaminacji w płytach włókno-cementowych i urządzenie do wykrywania delaminacji w płytach włókno-cementowych PL 227043 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 227043 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 417777 (22) Data zgłoszenia: 30.06.2016 (51) Int.Cl.

Bardziej szczegółowo

Prądy wirowe (ang. eddy currents)

Prądy wirowe (ang. eddy currents) Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko

Bardziej szczegółowo

Rok akademicki: 2015/2016 Kod: MIM-2-205-IS-n Punkty ECTS: 5. Kierunek: Inżynieria Materiałowa Specjalność: Inżynieria spajania

Rok akademicki: 2015/2016 Kod: MIM-2-205-IS-n Punkty ECTS: 5. Kierunek: Inżynieria Materiałowa Specjalność: Inżynieria spajania Nazwa modułu: Nieniszczące metody badań połączeń spajanych Rok akademicki: 2015/2016 Kod: MIM-2-205-IS-n Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku

Wyznaczanie prędkości dźwięku Wyznaczanie prędkości dźwięku OPRACOWANIE Jak można wyznaczyć prędkość dźwięku? Wyznaczanie prędkości dźwięku metody doświadczalne. Prędkość dźwięku w powietrzu wynosi około 330 m/s. Dokładniejsze jej

Bardziej szczegółowo

PL 203378 B1 15.10.2007 BUP 21/07. Marek Kopeć,Kraków,PL Jarosław Krzysztofiński,Warszawa,PL Antoni Szkatuła,Rząska,PL Jan Tomaszewski,Warszawa,PL

PL 203378 B1 15.10.2007 BUP 21/07. Marek Kopeć,Kraków,PL Jarosław Krzysztofiński,Warszawa,PL Antoni Szkatuła,Rząska,PL Jan Tomaszewski,Warszawa,PL RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 203378 (21) Numer zgłoszenia: 379409 (22) Data zgłoszenia: 07.04.2006 (13) B1 (51) Int.Cl. E21B 43/02 (2006.01)

Bardziej szczegółowo

4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9)

4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9) 198 Fale 4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w wybranych metalach na podstawie pomiarów metodą echa ultradźwiękowego.

Bardziej szczegółowo

Instrukcja użytkownika FAKOPP TIMER DO POMIARU PRĘDKOŚCI FAL ULTRADŹWIĘKOWYCH.

Instrukcja użytkownika FAKOPP TIMER DO POMIARU PRĘDKOŚCI FAL ULTRADŹWIĘKOWYCH. Instrukcja użytkownika FAKOPP TIMER DO POMIARU PRĘDKOŚCI FAL ULTRADŹWIĘKOWYCH www.fakopp.com 1 Wstęp Prędkość ultradźwięków jest podstawowym parametrem nieniszczącego badania drzew, sadzonek, lasów, oklein,

Bardziej szczegółowo

Demodulator FM. o~ ~ I I I I I~ V

Demodulator FM. o~ ~ I I I I I~ V Zadaniem demodulatora FM jest wytworzenie sygnału wyjściowego, który będzie proporcjonalny do chwilowej wartości częstotliwości sygnału zmodulowanego częstotliwościowo. Na rysunku 12.13b przedstawiono

Bardziej szczegółowo

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego. MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa

Bardziej szczegółowo

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

BADANIA CECH KONSTRUKCYJNYCH WYTWORÓW Z TWORZYW POLIMEROWYCH METODĄ ULTRADŹWIĘKÓW. Tomasz Klepka

BADANIA CECH KONSTRUKCYJNYCH WYTWORÓW Z TWORZYW POLIMEROWYCH METODĄ ULTRADŹWIĘKÓW. Tomasz Klepka Teka Kom. Bud. Ekspl. Masz. Elektrotech. Bud. OL PAN, 2008, 69 74 BADANIA CECH KONSTRUKCYJNYCH WYTWORÓW Z TWORZYW POLIMEROWYCH METODĄ ULTRADŹWIĘKÓW Tomasz Klepka Katedra Procesów Polimerowych, Politechnika

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

HTHA - POMIARY ULTRADŹWIĘKOWE. HTHA wysokotemperaturowy atak wodorowy 2018 DEKRA

HTHA - POMIARY ULTRADŹWIĘKOWE. HTHA wysokotemperaturowy atak wodorowy 2018 DEKRA HTHA - POMIARY ULTRADŹWIĘKOWE HTHA wysokotemperaturowy atak wodorowy Spis treści 1. Mechanizmy degradacji w przemyśle petrochemicznym 2. Degradacja wodorowa i jej przykłady 3. Powstawanie zjawiska HTHA

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

Metoda prądów wirowych

Metoda prądów wirowych Metoda prądów wirowych Idea Umieszczeniu obiektów, wykonanych z materiałów przewodzących prąd elektryczny, w obszarze oddziaływania zmiennego w czasie pola magnetycznego, wytwarzane przez przetworniki

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

d) Czy bezpiecznik 10A wyłączy prąd gdy pralka i ekspres są włączone? a) Jakie jest natężenie prądu płynące przez ten opornik?

d) Czy bezpiecznik 10A wyłączy prąd gdy pralka i ekspres są włączone? a) Jakie jest natężenie prądu płynące przez ten opornik? FIZYKA Egzamin po 8 klasie 1. Na czym polega elektryzowanie ciał przez pocieranie, przez indukcję i przez dotyk. Opowiedz o swoich doświadczeniach. 2. Na czym polega przepływ prądu elektrycznego w metalach,

Bardziej szczegółowo

PL B1. Sposób i układ do wykrywania zwarć blach w stojanach maszyn elektrycznych prądu zmiennego

PL B1. Sposób i układ do wykrywania zwarć blach w stojanach maszyn elektrycznych prądu zmiennego PL 223315 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223315 (13) B1 (21) Numer zgłoszenia: 399459 (51) Int.Cl. G01R 31/34 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Temat XXIV. Prawo Faradaya

Temat XXIV. Prawo Faradaya Temat XXIV Prawo Faradaya To co do tej pory Prawo Faradaya Wiemy już, że prąd powoduje pojawienie się pola magnetycznego a ramka z prądem w polu magnetycznym może obracać się. Czy z drugiej strony można

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory gdzie: vi prędkość fali w ośrodku i, n1- współczynnik załamania światła ośrodka 1, n2- współczynnik załamania światła ośrodka 2. Załamanie (połączone z częściowym odbiciem) promienia światła na płaskiej

Bardziej szczegółowo

Hamulce szynowe magnetyczne

Hamulce szynowe magnetyczne HAMULCE SZYNOWE Podział hamulców szynowych Hamulce szynowe magnetyczne Cierne Wiroprądowe Wiroprądowe tarczowe Na prądy wirowe Foucalta Podział hamulców szynowych Hamulec szynowy (cierny) nazywany jest

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Podstawy defektoskopii ultradźwiękowej i magnetycznej

Podstawy defektoskopii ultradźwiękowej i magnetycznej POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA TRANSPORTU SZYNOWEGO LABORATORIUM DIAGNOSTYKI POJAZDÓW SZYNOWYCH ĆWICZENIE 13 Podstawy defektoskopii ultradźwiękowej i magnetycznej Katowice, 2009.10.01 1.

Bardziej szczegółowo

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1)

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1) Temat nr 22: Badanie kuchenki mikrofalowej 1.Wiadomości podstawowe Metoda elektrotermiczna mikrofalowa polega na wytworzeniu ciepła we wsadzie głównie na skutek przepływu prądu przesunięcia (polaryzacji)

Bardziej szczegółowo

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku

Bardziej szczegółowo

GALWANOMETR UNIWERSALNY V 5-99

GALWANOMETR UNIWERSALNY V 5-99 GALWANOMETR UNWERSALNY V 5-99 Przyrząd jest miernikiem elektrycznym systemu magnetoelektrycznego przystosowanym do pomiarów prądów i napięć stałych oraz zmiennych. Pomiar prądów i napięć zmiennych odbywa

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU Elektryczny silnik liniowy

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU Elektryczny silnik liniowy SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU Elektryczny silnik liniowy SPIS TREŚCI: I. Wprowadzenie II. Części lekcji 1. Część wstępna 2. Część realizacji 3. Część podsumowująca III. Karty pracy 1.

Bardziej szczegółowo

Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak

Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak Nasdaq: IPG Photonics(IPGP) Zasada działania laserów włóknowych Modułowość laserów włóknowych IPG

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,

Bardziej szczegółowo

STYCZNIK PRÓŻNIOWY CXP 630A kV INSTRUKCJA OBSŁUGI

STYCZNIK PRÓŻNIOWY CXP 630A kV INSTRUKCJA OBSŁUGI STYCZNIK PRÓŻNIOWY CXP 630A 630-12kV INSTRUKCJA OBSŁUGI Olsztyn, 2011 1. SPRAWDZENIE, KWALIFIKACJA Przed zainstalowaniem urządzenia należy sprawdzić, czy jest on zgodny z zamówieniem, w szczególności w

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Politechnika Poznańska Wydział Inżynierii Zarządzania. Wprowadzenie do techniki tarcie ćwiczenia

Politechnika Poznańska Wydział Inżynierii Zarządzania. Wprowadzenie do techniki tarcie ćwiczenia Politechnika Poznańska Wydział Inżynierii Zarządzania Wprowadzenie do techniki tarcie ćwiczenia Model Charlesa Coulomb a (1785) Charles Coulomb (1736 1806) pierwszy pełny matematyczny opis, (tzw. elastyczne

Bardziej szczegółowo

Wytwarzanie i przetwórstwo polimerów!

Wytwarzanie i przetwórstwo polimerów! Wytwarzanie i przetwórstwo polimerów! Łączenie elementów z tworzyw sztucznych, cz.2 - spawanie dr in. Michał Strankowski Katedra Technologii Polimerów Wydział Chemiczny Publikacja współfinansowana ze środków

Bardziej szczegółowo

LABORATORIUM METOD I TECHNIK BADAŃ MATERIAŁÓW

LABORATORIUM METOD I TECHNIK BADAŃ MATERIAŁÓW LABORATORIUM METOD I TECHNIK BADAŃ MATERIAŁÓW ĆWICZENIE NR 5 BADANIA DEFEKTOSKOPOWE Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z zasadami badań defektoskopowych - radiologicznych, ultradźwiękowych,

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

Podstawowe funkcje uniwersalnego defektoskopu UT GEKKO

Podstawowe funkcje uniwersalnego defektoskopu UT GEKKO Opis produktu GEKKO Przenośny defektoskop ultradźwiękowy Phased Array, TOFD oraz techniki konwencjonalnej Podstawowe funkcje uniwersalnego defektoskopu UT GEKKO Techniki- Phased Array Głowice od badań

Bardziej szczegółowo

Metody eliminacji zakłóceń w układach. Wykład Podstawy projektowania A.Korcala

Metody eliminacji zakłóceń w układach. Wykład Podstawy projektowania A.Korcala Metody eliminacji zakłóceń w układach Wykład Podstawy projektowania A.Korcala Ogólne zasady zwalczania zakłóceń Wszystkie metody eliminacji zakłóceń polegają w zasadzie na maksymalnym zwiększaniu stosunku

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3 DO ZDOBYCIA 44 PUNKTY POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3 Jest to powtórka przed etapem szkolnym, na którym określono wymagania: ETAP SZKOLNY 1) Ruch prostoliniowy i siły. 2) Energia. 3) Właściwości materii.

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

PL B1. Uniwersytet Śląski,Katowice,PL BUP 25/02. Andrzej Dyszkiewicz,Cieszyn,PL Zygmunt Wróbel,Katowice,PL

PL B1. Uniwersytet Śląski,Katowice,PL BUP 25/02. Andrzej Dyszkiewicz,Cieszyn,PL Zygmunt Wróbel,Katowice,PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)194256 (13) B1 (21) Numer zgłoszenia: 347750 (51) Int.Cl. A61B 6/03 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 25.05.2001

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.

Bardziej szczegółowo

(11) PL B1 (12) OPIS PATENTOWY (19)PL (13)B1. Fig.3 B60R 11/02 H01Q 1/32. (54) Zespół sprzęgający anteny samochodowej

(11) PL B1 (12) OPIS PATENTOWY (19)PL (13)B1. Fig.3 B60R 11/02 H01Q 1/32. (54) Zespół sprzęgający anteny samochodowej RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)166714 (13)B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 290469 (22) Data zgłoszenia: 29.05.1991 (51) IntCl6: B60R 11/02 H01Q

Bardziej szczegółowo

Zestaw doświadczalny - siły elektromagnetyczne [ BAP_ doc ]

Zestaw doświadczalny - siły elektromagnetyczne [ BAP_ doc ] Zestaw doświadczalny - siły elektromagnetyczne [ BAP_1152077.doc ] Informacje ogólne Zestaw doświadczalny umożliwia uczniom przeprowadzenie szeregu doświadczeń związanych z tematem sił elektromagnetycznych,

Bardziej szczegółowo

Zmęczenie Materiałów pod Kontrolą

Zmęczenie Materiałów pod Kontrolą 1 Zmęczenie Materiałów pod Kontrolą Wykład Nr 9 Wzrost pęknięć przy obciążeniach zmęczeniowych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 9

Dobór materiałów konstrukcyjnych cz. 9 Dobór materiałów konstrukcyjnych cz. 9 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Materiały na uszczelki Ashby M.F.:

Bardziej szczegółowo

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów

Bardziej szczegółowo

1 k. AFM: tryb bezkontaktowy

1 k. AFM: tryb bezkontaktowy AFM: tryb bezkontaktowy Ramię igły wprowadzane w drgania o małej amplitudzie (rzędu 10 nm) Pomiar zmian amplitudy drgań pod wpływem sił (na ogół przyciągających) Zbliżanie igły do próbki aż do osiągnięcia

Bardziej szczegółowo

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe

Bardziej szczegółowo

PL B1. SOSNA EDWARD, Bielsko-Biała, PL SOSNA BARTŁOMIEJ, Bielsko-Biała, PL BUP 26/ WUP 09/18

PL B1. SOSNA EDWARD, Bielsko-Biała, PL SOSNA BARTŁOMIEJ, Bielsko-Biała, PL BUP 26/ WUP 09/18 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230092 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 420632 (22) Data zgłoszenia: 23.02.2017 (51) Int.Cl. B08B 9/053 (2006.01)

Bardziej szczegółowo

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe), Fale mechaniczne Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Ruch falowy jest bardzo rozpowszechniony w przyrodzie. Na co dzień doświadczamy obecności fal dźwiękowych i fal świetlnych. Powszechnie też wykorzystujemy

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

PODSUMOWANIE SPRAWDZIANU

PODSUMOWANIE SPRAWDZIANU PODSUMOWANIE SPRAWDZIANU AGNIESZKA JASTRZĘBSKA NAZWA TESTU SPRAWDZIAN NR 1 GRUPY A, B, C LICZBA ZADAŃ 26 CZAS NA ROZWIĄZANIE A-62, B-62, C-59 MIN POZIOM TRUDNOŚCI MIESZANY CAŁKOWITA LICZBA PUNKTÓW 39 SEGMENT

Bardziej szczegółowo