Ćwiczenie 13. Pomiary mocy w obwodach prądu trójfazowego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 13. Pomiary mocy w obwodach prądu trójfazowego"

Transkrypt

1 Ćwiczenie 13 Pomiary mocy w obwodach prądu trójfazowego Program ćwiczenia: 1. Wyznaczanie kolejności faz i sprawdzenie symetrii zasilania 2. Pomiar mocy odbiornika trójfazowego za pomocą jednego watomierza 3. Pomiar mocy w sieci trójfazowej trójprzewodowej dwoma watomierzami w układzie Arona 4. Pomiar mocy czynnej i biernej za pomocą trzech watomierzy oraz kompensacja mocy biernej 5. Obserwacja wpływu kompensacji mocy biernej na wartości prądów fazowych i współczynników mocy Wykaz przyrządów: Model sieci zasilającej trójfazowej 3 lub 4 przewodowej, wyposażony w dwa mierniki N14 służące do pomiaru parametrów obwodów trójfazowych; Bateria sześciu kondensatorów do kompensacji mocy biernej (w każdej fazie 2 równolegle połączone, niezależnie załączane kondensatory o pojemności 5 µf, układ połączony w gwiazdę); Odbiornik rezystancyjny składający się z sześciu żarówek 230V, 75W (w każdej fazie po 2 połączone szeregowo, układ połączony w gwiazdę); Silnik asynchroniczny klatkowy P = 0,37 kw, cos fi=0,8; 3 watomierze ferrodynamiczne klasy 0,5; Cęgowy miernik mocy czynnej i biernej BM150; Tester kolejności faz TKF 12. Literatura: [1] Zatorski A., Rozkrut A. Miernictwo elektryczne. Materiały do ćwiczeń laboratoryjnych. Wyd. AGH, Skrypty nr SU 1190, 1334, 1403, 1585, Kraków, 1990, 1992, 1994, 1999 [2] Bolkowski S., Elektrotechnika. WSiP, Warszawa 2005 [3] Tumański S., Technika pomiarowa, WNT, Warszawa 2007 [4] Czarnecki L., Moce w obwodach elektrycznych z niesinusoidalnymi przebiegami prądów i napięć, Dokumentacja techniczna przyrządów pomiarowych: [5] Dane techniczne: watomierz cyfrowy Brymen BM html/cata150/bm150s.htm Strony www: sieci 3 fazowej n14.html str. 1

2 Zakres wymaganych wiadomości do kolokwium wstępnego: Definicje: mocy chwilowej, czynnej, biernej i pozornej dla obwodów prądu sinusoidalnego, wartości skutecznej, współczynnika mocy, jednostki energii i sposób ich przeliczania budowa i zasada działania analogowych watomierzy ferrodynamicznych, struktura watomierza cyfrowego i sposób wyznaczania wyniku pomiaru, metody pomiaru mocy czynnej jednym, dwoma i trzema watomierzami, metody pomiaru mocy biernej jednym, dwoma i trzema watomierzami, ograniczenia stosowania różnych konfiguracji pomiaru w zależności od niesymetrii zasilania lub obciążenia, sposób obliczania błędów granicznych w pomiarach mocy czynnej. str. 2

3 Cel ćwiczenia Zapoznanie z metodami pomiaru mocy czynnej i biernej a także kompensacji mocy biernej w obwodach trójfazowych. Wstęp teoretyczny Jednym z parametrów określających szybkość przesyłu energii elektrycznej jest moc pozorna. W obwodach jednofazowych prądu przemiennego jest ona określona zależnością ( to wartość skuteczna napięcia, to wartość skuteczna prądu). Moc pozorną można rozłożyć zgodnie z zależnością na dwa składniki: moc czynną związaną z nieodwracalnym przepływem energii do odbiornika oraz moc bierną pobieraną przez odbiorniki, które oprócz rezystancji posiadają także niezerową reaktancję (indukcyjną lub pojemnościową). Przesunięcie fazowe prądu względem napięcia powoduje, że część prądu nie jest zamieniana na użyteczną pracę (np. pracę mechaniczną w silnikach). Na użyteczną pracę przekłada się jedynie składowa prądu zgodna w fazie z napięciem. Składowa ta określa moc czynną. Pokazano to na wykresie wskazowym (rys. 1). Składowa prądu prostopadła do wskazu napięcia, związana z mocą bierną, nie bierze udziału w wytwarzaniu użytecznej pracy, lecz zwiększa wartość skuteczną prądu przesyłanego do odbiornika (w odniesieniu do odbiornika pobierającego wyłącznie moc czynną o takiej samej wartości) i przyczynia się do powstawania strat w liniach przesyłowych. Rysunek 1 Wykresy wskazowe: (lewy) rozkład prądu na składowe zgodną w fazie ze wskazem napięcia i prostopadłą do wskazu napięcia; (prawy) rozkład mocy pozorne na składowe czynną oraz bierną. Linią kropkowaną pokazano wartość teoretycznie możliwej do przesłania mocy czynnej w przypadku ograniczenia wartości mocy biernej aż do zera. jest kątem przesunięcia fazowego prądu względem napięcia. Z konstrukcji systemu przesyłowego wynika obciążalność długotrwała, czyli maksymalna wartość skuteczna prądu, który przepływając przez system w sposób długotrwały nie wywołuje negatywnych skutków dla systemu (np. nie powoduje przegrzania linii). Przesyłanie mocy biernej ogranicza zatem wartość możliwej do przesłania mocy czynnej. Miarą zmniejszenia przesyłanej mocy względem teoretycznie możliwej do przesłania jest współczynnik mocy /, który w najlepszym wypadku może osiągnąć wartość 1 gdy. W miernikach i dokumentacji anglojęzycznej współczynnik mocy oznaczany jest jako PF (od ang. Power Factor). W obwodach jednofazowych prądu sinusoidalnego oraz trójfazowych obwodach prądu sinusoidalnego o symetrycznym zasilaniu i symetrycznym obciążeniu współczynnik mocy jest równy cos, gdyż jedyną przyczyną obniżenia go poniżej wartości 1 jest przesunięcie fazowe prądu względem napięcia. str. 3

4 Z opisanym zjawiskiem wiąże się pojęcie kompensacji mocy biernej w celu poprawy współczynnika mocy czyli zmniejszenia strat przesyłowych. W najprostszym omawianym wypadku kompensacja mocy biernej polega na korygowaniu kąta przesunięcia fazowego za pomocą elementów reaktancyjnych przyłączonych najczęściej równolegle do odbiornika. Tak samo kompensujemy moc bierną w obwodach trójfazowych zrównoważonych (o symetrycznych napięciach zasilających i symetrycznym odbiorniku) prądu sinusoidalnego (o sinusoidalnych prądach i napięciach) 1. W niniejszym ćwiczeniu dysponujemy odbiornikami liniowymi czyli nie wprowadzającymi odkształceń prądu względem napięcia. Ponadto zakładamy symetrię napięć zasilających (ich faktyczna niesymetria jest pomijalnie mała). Gdy ponadto odbiornik jest symetryczny to wartość współczynnika mocy wynika jedynie z przesunięcia fazowego prądu względem napięcia. W tym prostym przypadku wartość mocy biernych obliczanych według różnych teorii jest jednakowa i równa sumie mocy biernych poszczególnych faz: sin sin sin 3 sin 3 (1) Podobnie moc czynna jest sumą mocy czynnych poszczególnych faz: cos cos cos 3 cos 3 (2) 1 W rzeczywistości występują również inne zjawiska powodujące dalsze zmniejszenie współczynnika mocy. Jednym z nich, występującym tylko w systemach wielofazowych, jest niezrównoważenie obwodu czyli niesymetria zasilania bądź obciążenia. Poprawa współczynnika mocy związana z tym zjawiskiem jest możliwa przez symetryzację odbiorników (na niesymetrię napięcia zasilającego zazwyczaj nie mamy wpływu). Odkształcenie napięć i prądów od sinusoidy, obserwowane w postaci obecności wyższych harmonicznych, jest kolejną przyczyną obniżenia współczynnika mocy. W celu poprawy współczynnika mocy wynikającego z odkształconych przebiegów stosuje się aktywne filtry harmonicznych. Opis matematyczny wymienionych zjawisk nazywamy teorią mocy. Istnieje kilka konkurencyjnych teorii mocy, których autorzy próbują różny sposób wyjaśnić zachodzące zjawiska. W różnych teoriach odmiennie definiowane są poszczególne składniki mocy wpływające na obniżenie współczynnika mocy. Nie wszystkie teorie uwzględniają wszystkie wymienione zjawiska. Najbardziej zaawansowana obecnie teoria mocy, wyjaśniająca fizyczne zjawiska występujące w obwodach, to teoria składowych fizycznych prądu SFP autorstwa profesora Leszka Czarneckiego. Według tej teorii prąd odbiornika można rozłożyć na prąd czynny (związany z przesyłem energii), bierny (związany z przesunięciem fazowym), rozrzutu (związany z odkształceniem) i niezrównoważenia (związany z niesymetrią). Analogicznie do tego podziału wyróżnić można odpowiednie moce będące składnikami mocy pozornej. Najbardziej rozpowszechnioną teorią mocy dla przebiegów odkształconych jest zarazem najstarsza teoria mocy Budeanu, wg. której moc pozorną można rozłożyć na moc czynną P, bierną Q i moc odkształcenia D związane ze sobą poprzez zależność. Niestety teoria ta zawiera niedoskonałości, które skutkują brakiem proporcjonalności pomiędzy mocą odkształcenia D, a rzeczywistym odkształceniem prądu względem napięcia. Wiele obecnych cyfrowych przyrządów pomiarowych do pomiaru mocy w systemach trójfazowych mierzy moce według definicji Budeanu. Z punktu widzenia odbiorcy najbardziej istotnym parametrem odbiornika jest moc i energia czynna, gdyż stanowi ona podstawę rozliczeń finansowych. Z punktu widzenia dystrybutora energii równie ważne są pozostałe składniki mocy wpływające na obniżenie współczynnika mocy oraz zwiększające straty przesyłowe. Pomiar składników mocy pozwala na projektowanie oraz sterowanie urządzeń do kompensacji mocy biernej oraz pozostałych niepożądanych składników mocy. Pomiar energii czynnej (czyli całki z mocy czynnej) odbywa się u wszystkich odbiorców. Pomiar energii biernej ma miejsce zazwyczaj u odbiorców większej mocy takich jak np. zakłady przemysłowe posiadające wiele odbiorników o charakterze indukcyjnym (napędy). Odbiorcy przemysłowi ponoszą dodatkowe opłaty za energię bierną, co motywuje ich do instalacji urządzeń kompensujących. Możliwość rozkładu mocy na składowe fizyczne została tu jedynie zasygnalizowana w celu uświadomienia czytelnika o potrzebie pomiarowego wyznaczania tych parametrów. Szczegóły wspomnianych teorii mocy ze względu na znaczny stopień złożoności stanowią materiał na wyższe lata studiów. Przykładowo do wyznaczenia składników mocy zgodnie z teorią składowych fizycznych prądu konieczne jest złożone cyfrowe przetwarzanie sygnałów mierzonych napięć i prądów. Zainteresowanych odsyłam do pozycji [4]. str. 4

5 W dalszej części instrukcji pokazano schematy obwodów pomiarowych do pomiaru mocy czynnej (i biernej) za pomocą watomierzy analogowych. Analogowe (indukcyjne) liczniki energii czynnej przyłączane są w identyczny sposób, t.j. w miejsca watomierzy na schematach. Natomiast cyfrowe mierniki mocy i cyfrowe liczniki energii często podłączamy do obwodu inaczej. Najczęściej jest to układ analogiczny do układu 3 watomierzy do pomiaru mocy czynnej. W układzie tym mierzone są trzy prądy fazowe oraz trzy napięcia przewodowe (czyli napięcia pomiędzy fazami) w sieciach trójprzewodowych lub napięcia fazowe (czyli napięcia między fazą a ziemią) w sieciach czteroprzewodowych. Cyfrowe mierniki mocy nie wymagają zmiany połączeń w celu pomiaru mocy czynnej i biernej. Operacje takie jak wprowadzenie dodatkowego przesunięcia fazowego między napięcie i prąd, w celu obliczenia mocy biernej, a także sumowanie i skalowanie wyników wykonywane są na sygnałach cyfrowych przez procesor lub specjalizowany układ scalony 2. Schematy podłączenia mierników cyfrowych do sieci trójfazowej mogą być także inne, powinny być dostępne w dokumentacjach przyrządów. Opis stanowiska laboratoryjnego i przyrządów pomiarowych Głównym elementem stanowiska jest panel laboratoryjny (rys. 2). Jest to model trójfazowej sieci zasilającej. Może on pracować jako sieć czteroprzewodowa bądź trójprzewodowa po usunięciu zworki z przewodu neutralnego N. Model składa się z następujących elementów (od lewej): wyłącznik z możliwością zmiany kolejności faz, lampki kontrolne sygnalizujące obecność napięć fazowych, dwa mierniki parametrów sieci trójfazowych N14, cztery szyny zasilające odbiorniki wraz z zaciskami dla przyrządów pomiarowych i zworek, wyłączniki odbiorników rezystancyjnych (żarówek), wyłączniki baterii kondensatorów kompensujących, rozłącznik odbiornika zewnętrznego (tu silnika). Rysunek 2 Panel laboratoryjny model trójfazowej sieci zasilającej (3 lub 4 przewodowej). Rodzaje odbiorników wykorzystywanych w ćwiczeniu: odbiornik rezystancyjny składający się z sześciu żarówek (po dwie połączone szeregowo na fazę) połączonych w gwiazdę, każda sekcja żarówek posiada niezależny wyłącznik, a przewód neutralny posiada zworkę do pomiaru prądu, której usunięcie odpowiada przerwie w przewodzie neutralnym odbiornika, odbiornik pojemnościowy czyli bateria kondensatorów do kompensacji mocy biernej składająca się z sześciu kondensatorów o pojemności 5 µf po dwa równolegle na fazę 2 Sposób działania typowych cyfrowych mierników mocy pokazano w instrukcji do ćwiczenia 7. str. 5

6 połączone w gwiazdę, każdy kondensator ma własny wyłącznik, a przewód neutralny posiada zworkę do pomiaru prądu, której usunięcie odpowiada przerwie w przewodzie neutralnym odbiornika, odbiornik o charakterze rezystancyjno indukcyjnym czyli silnik indukcyjny (klatkowy) o mocy znamionowej 0,37 kw, cos = 0,81 o uzwojeniach stojana połączonych w gwiazdę, zasilany trójprzewodowo czyli bez przewodu neutralnego (typowa cecha silników trójfazowych), ale z przewodem ochronnym łączącym obudowę silnika z zaciskiem ochronnym PE. Silnik nie obciążony zachowuje się jak odbiornik o dominującej indukcyjności, natomiast pod obciążeniem rośnie pobierana przez niego moc czynna przy stałej mocy biernej, więc jego charakter jest wtedy rezystancyjno indukcyjny. Laboratoryjny watomierz elektrodynamiczny typu EL 20 Watomierz EL 20 jest laboratoryjnym watomierzem klasy 0,2 z ustrojem elektrodynamicznym. Posiada pięć zacisków napięciowych (rys. 3): jeden zacisk po lewej stronie będący początkiem uzwojenia napięciowego oznaczony, oraz cztery zaciski będące końcami różnych zakresów uzwojenia napięciowego tj. 75, 150, 300 i 450 V. Oprócz tego po prawej stronie przyrządu znajdują się dwa zaciski uzwojenia prądowego: początek oznaczony i koniec oznaczony A. Do wyboru zakresu prądu służą metalowe kołki (zworki) wtykane w odpowiednie otwory na obudowie. Na ćwiczeniu wykorzystywany jest jedynie zakres 450 V i 1 A, dlatego do odpowiednich zacisków przylutowano na stałe przewody zakończone bezpiecznymi wtykami bananowymi. Zaletą tego watomierza jest duża dokładność. Rysunek 3 Widok watomierza laboratoryjnego EL 20. str. 6

7 Schemat przyłączenia watomierza do obwodu pokazano na rysunku 4. Zamiana polaryzacji jednego z obwodów pomiarowych powoduje odwrócenie kierunku przepływu mocy czynnej przez miernik, a więc także zmianę znaku wyniku. W przypadku watomierza analogowego, powoduje to wychylenie wskazówki w lewą stronę, co może prowadzić do uszkodzenia ustroju pomiarowego. Na schematach elektrycznych początki uzwojeń watomierzy oznaczane są czarnymi kropkami (patrz np. rys. 11). Rysunek 4 Schemat przyłączania watomierza EL 20 pomiędzy przewód fazowy i przewód neutralny. Uniwersalny cęgowy miernik mocy BM 155 Cyfrowy miernik mocy BM 155 pozwala na zgrubne pomiary napięcia, prądu, rezystancji, mocy czynnej, biernej i pozornej odbiorników jednofazowych oraz trójfazowych. Zaletą miernika jest duży zakres prądowy (do 1000 A) oraz automatyczny wybór zakresów napięciowych i prądowych. Wadą jest niska rozdzielczość mierzonej mocy (10 W) oraz zależność błędów granicznych od położenia przewodu z prądem względem cęg pomiarowych (patrz przypisy do tabeli 1). W przypadku pomiaru prądu lub wielkości od prądu zależnych ważne jest położenie przewodu z prądem dokładnie pośrodku cęgów pomiarowych. Punkt ten zaznaczony jest strzałkami na cęgach (rys 5 i 6). Pomiar mocy odbiorników trójfazowych tym miernikiem polega na kilkukrotnych pomiarach w różnych fazach, dlatego odbiornik musi pracować w warunkach ustalonych (parametry sygnałów mierzonych muszą być stałe w czasie pomiarów). Dla odbiorników symetrycznych możliwy jest pomiar mocy czynnej, biernej i pozornej. W przypadku odbiorników niesymetrycznych możliwy jest tylko pomiar mocy czynnej. W dokumentacji przyrządu podano wzory i schematy połączeń do pomiarów mocy w sieciach trój i czteroprzewodowej oraz jednofazowej. Obwód prądowy miernika stanowią cęgi (otwierany magnetowód) zakładane na przewód doprowadzający prąd do odbiornika czyli zazwyczaj przewód fazowy. Obwód napięciowy posiada dwa gniazda bananowe (rys. 5) oznaczone + (początek) i COM (koniec). Przyciskiem SELECT wybiera się wielkość mierzoną: moc czynna symbol W na wyświetlaczu, moc bierna symbol VAR, moc pozorna symbol VA. str. 7

8 Rysunek 5 Widok cęgowego miernika mocy BM 155 Schemat przyłączania miernika od obwodu pokazano na rysunku 6. Odwrotny kierunek przepływu prądu przez cęgi jest wskazywany przez wyświetlanie znaku (minus) przy wskazaniu mocy czynnej. Nie jest konieczna zamiana połączeń. Miernik ten posiada duży zakres prądowy, dlatego niepewność pomiarów mocy przy małej wartości prądu jest znaczna. W celu poprawienia dokładności pomiaru prądu oraz wielkości zależnych (mocy) należy zwielokrotnić wartość prądu przepływającego wewnątrz cęgów. Osiąga się to poprzez wielokrotne przełożenie (w tą samą stronę!) przewodu przez cęgi jak na rysunku 6b. Dla przykładu 10 zwojów da 10 cio krotnie większy prąd. Należy pamiętać o podzieleniu wyniku pomiaru przez liczbę zwojów! Rysunek 6 Schemat podłączania miernika mocy BM 155 między przewód fazowy a neutralny: a) poprawna lokalizacja przewodu z prądem, b) zwielokrotnienie strumienia pola magnetycznego wokół przewodu z prądem poprzez zwielokrotnienie ilości zwojów przewodu przechodzącego przez cęgi stosowane w przypadku małych wartości mierzonego prądu. str. 8

9 Tabela 1 Wybrane dane z dokumentacji cęgowego miernika mocy BM 155 Mierzony parametr Napięcie AC Prąd AC Moc czynna i bierna Moc pozorna Zakres pomiarowy, sinusoidalne napięcia i prądy 600V, 50/60 Hz 40A, 400A, 1000A, 50/ /60 Hz 0 do 600 kva, PF = 0,99 do 0,7 0 do 600 kva, PF = 0,7 do 0,5 0 do 600 kva, PF = 0,5 do 0,3 0 do 600 kva, PF = 0,99 do 0,1 Współczynnik mocy (PF) 0,1 do 0, 99 Częstotliwość 5 Hz do 500 Hz Błąd graniczny ± (0,5% odczytu + 5 cyfr) ± (1% odczytu + 5 cyfr) 3 ± (2% odczytu + 6 cyfr) 4 ± (3% odczytu + 6 cyfr) ± (4,5% odczytu + 6 cyfr) ± (2% odczytu + 6 cyfr) ± (10% odczytu + 2 cyfry) ± (0,5% odczytu + 4 cyfry) Tablicowy miernik parametrów sieci trójfazowej N14 Miernik N14 służy do pomiaru parametrów sieci trójfazowej 3 lub 4 przewodowej z jednoczesnym wyświetlaniem mierzonych wartości i ich cyfrową transmisją poprzez interfejs RS 485. Mierzone są następujące wielkości: wartości skuteczne napięć i prądów, moce czynna, bierna i pozorna, energie czynna i bierna, współczynniki mocy, częstotliwość, moc czynna uśredniana za okres 15 minut. Przy pomiarach pośrednich, czyli z wykorzystaniem przekładników, miernik oblicza wyjściowe parametry z uwzględnieniem zaprogramowanych przekładni. Rysunek 7 Widok miernika parametrów sieci trójfazowej N14 3 Błąd graniczny pomiaru prądu lub mocy rośnie o 1% gdy przewód z prądem przesunięty jest ze środka cęg w kierunku przyrządu. Gdy przewód z prądem jest w pobliżu punktu rozwarcia cęg błąd graniczny pomiaru prądu rośnie o 4%. Pomiar mocy przy przewodzie z prądem w pobliżu punktu rozwarcia cęg nie posiada określonego błędu granicznego, błąd może wtedy przyjąć dowolnie duże wartości. Płynie z tego wniosek, że zawieszanie cęg na przewodzie z prądem może prowadzić do bezsensownych wyników. 4 Jeżeli mierzony prąd jest mniejszy niżż 5 A lub napięcie jest mniejsze niż 90 V to błąd graniczny podany w tabeli należy powiększyć o 1%. Jeżeli mierzony prąd jest mniejszy niż 1 A lub napięcie jest mniejsze niż 30 V to błąd graniczny nie jest określony (może przyjmować dowolnie duże wartości). str. 9

10 W trybie pomiarowym zestaw aktualnie wyświetlanych wielkości zmienia się wciskając przycisk w lewo lub w górę. O tym jaki zestaw wielkości jest aktualnie wyświetlany informuje zapalenie się odpowiedniej diody po prawej stronie wyświetlacza. Kolejne zestawy wielkości oraz ich oznaczenia to: V LN napięcia fazowe, V LL napięcia przewodowe (międzyfazowe), A prądy fazowe, W moce czynne, Var moce bierne, VA moce pozorne, PF współczynniki mocy, tg tangens przesunięcia fazowego, Wh energia czynna (znak oznacza energię oddaną, brak znaku energię pobraną), Varh energia bierna (symbol kondensatora oznacza energię bierną pojemnościową, brak symbolu oznacza energię bierną indukcyjną), Hz częstotliwość. Miernik N14 wykrywa niepoprawną kolejność faz, wyświetlając kod błędu ERR L2 L3. W przypadku gdy prądy mierzone są mniejsze niż 10% I N (tutaj I N = 5 A) miernik nie wyznacza niektórych parametrów takich jak współczynnik mocy czy tg. Wtedy w miejsce wyniku wyświetlany jest kod ERR. Tabela 2 Wybrane dane z dokumentacji miernika parametrów sieci N14 Mierzony parametr Zakres pomiarowy (pomiar bezpośredni) Błąd graniczny Napięcie fazowe LN 2,9 do 480 V ± 0,5% odczytu Napięcie przewodowe LL 10 do 830 V ± 1% odczytu Prąd 0,02 do 6 A ± 0,5% odczytu Moc czynna 2,64 kw do 2,64 kw ze skokiem 1,4 W ± 1% odczytu Moc bierna 2,64 kvar do 2,64 kvar ze skokiem 1,4 VAr ± 1% odczytu Moc pozorna 1,4 VA do 2,64 kva ± 1% odczytu Współczynnik mocy (PF) 1 do 1 ± 2% odczytu Częstotliwość 45 Hz do 100 Hz ± 0,2% Rysunek 8 Schemat przyłączania miernika N14 do sieci (pomiar bezpośredni czyli bez użycia przekładników) oraz idea wewnętrznych połączeń pomiarowych: a) w sieci czteroprzewodowej, b) w sieci trójprzewodowej. str. 10

11 Tester kolejności faz TKF 12 Jest to prosty przyrząd określający kolejność faz na podstawie pomiaru napięć przewodowych. Po przyłączeniu do obwodu zapala się zielona dioda oznaczona R (rys. 9) jeśli kolejność faz jest zgodna (L1 >L2 >L3), lub czerwona dioda oznaczona L jeśli kolejność faz jest przeciwna (L1 >L3 >L2). Ponadto przyrząd posiada trzy neonówki wskazujące obecność napięć przewodowych. Rysunek 9 Widok testera kolejności faz TKF Wyznaczanie kolejności faz oraz sprawdzenie symetrii napięcia zasilania Upewnij się, że stanowisko jest należycie przygotowane do wykonania ćwiczenia. W razie potrzeby ustaw wyłącznik zasilania panelu na pozycję 0. Odłącz od panelu urządzenia pomiarowe. W szyny fazowe i neutralną włącz zworki (3 zworki czerwone i 1 zworka czarna). Włącz dwie niebieskie zworki pomiędzy punkty gwiazdowe odbiorników a przewód neutralny. Ustaw wyłączniki wszystkich ww. odbiorników pozycji OFF (wyłączony) i wyłącznik na kablu silnika w pozycji 0. Silnik ma być podłączony do trzech zacisków po prawej stronie panelu (faza L1 przewód czarny, faza L2 przewód brązowy, faza L3 przewód niebieski) oraz do zacisku ochronnego u dołu po prawej stronie panelu (PE przewód żółto zielony). Silnik nie posiada przewodu neutralnego, dlatego zacisk N na panelu pozostaje wolny. Mierniki powinny leżeć na nadstawce. 1. Wyznaczanie kolejności faz oraz sprawdzenie symetrii napięcia zasilania W tym punkcie zapoznasz się z metodą sprawdzenia kolejności faz oraz oceny symetrii zasilania. Do zmiany kolejności faz wykorzystasz trzypozycyjny wyłącznik zasilania, zamontowany po lewej stronie panelu. Możliwe pozycje wyłącznika to 0 wyłączony, P kolejność faz L1 > L2 > L3, L kolejność faz L1 > L3 > L2. Przełączniki takie są stosowane np. do wyboru kierunku obrotów wału silnika. Zasilanie symetryczne to takie, gdzie wskazy napięć fazowych tworzą symetryczną gwiazdę pokazaną na rysunku 10, t.j. wskazy napięć mają jednakowe moduły, kąty pomiędzy fazami równe 120 stopni. str. 11

12 Rysunek 10 Wykres wskazowy napięć fazowych i przewodowy ych układu symetrycznego. Zazwyczaj symetrię oceniamy jedynie na podstawie pomiaru wartości skutecznych napięcia. W sieci trójprzewodowej (rys 11b) warunkiem symetrii jest równość napięć przewodowych: W sieci czteroprzewodowej (rys 11a) musi być spełniony dodatkowo warunek równości napięć fazowych: (3),, to wartości skutecznee napięć fazowych, a,, to wartości skuteczne napięć przewodowych (międzyfazowych). Do oceny symetrii zasilania wykorzystasz wskazania mierników N14 przyłączonych do czteroprzewodowej sieci jak na rysunku 8a. Jeden z nich będzie wskazywał napięcia fazowe, a drugi przewodowe. (4) Rysunek 11 Badanie symetrii zasilania: a) w sieci czteroprzewodowej, b) w sieci trójprzewodowej (rezystancje wewnętrzne woltomierzy do pomiaru napięć fazowych muszą być jednakowe). 1. Wyłącz zasilanie panelu ustawiając wyłącznik zasilania w pozycji Przyłącz tester kolejności faz TKF 12 do zacisków L1 L2 L3 na zgodnie z opisem na kablach testera. panelu najbliżej mierników N14 3. Włącz zasilanie panelu ustawiając wyłącznik zasilaniaa w pozycji L. 4. Zanotuj w konspekcie wskazanie testera dla wyłącznika w pozycji L (zapaleniee diody L lub R) 5. Sprawdź czy mierniki N14 wyświetlają kod błędu związany z niewłaściwą kolejnością faz. str. 12

13 6. Przestaw wyłącznik zasilania na pozycję P. Ta operacja zamienia miejscami fazy L2 i L3. 7. Zanotuj w konspekcie wskazanie testera dla wyłącznika w pozycji L (zapalenie diody L lub R) 8. Sprawdź czy mierniki N14 wyświetlają kod błędu związany z niewłaściwą kolejnością faz. 9. Ustaw lewy miernik N14 w tryb pomiaru napięć fazowych (na mierniku powinna się świecić dioda oznaczona V LN ). Prawy miernik N14 ustaw w tryb pomiaru napięć przewodowych (na mierniku powinna świecić się dioda oznaczona V LL ). Zmianę zestawu aktualnie wyświetlanych parametrów uzyskuje się wciskając przycisk (w lewo). 10. Zanotuj wskazania mierników w tabeli 1 konspektu. 11. Wyłącz zasilanie panelu ustawiając wyłącznik zasilania w pozycji 0. Odłącz tester kolejności faz od panelu i odłóż go na nadstawkę. 12. Wyznacz dla dowolnie wybranej fazy (założenie symetrii zasilania) niepewność rozszerzoną typu B pomiaru napięć fazowych i przewodowych dla przyjętego poziomu ufności 0,95 na podstawie tabeli 2, z której obliczysz wartości błędów granicznych pomiaru napięcia miernikiem N14. Uwaga! Błędy graniczne pomiaru napięcia fazowego i przewodowego są różne! Niepewności, obliczone według zależności (5), zanotuj w tabeli 1 konspektu: 3 (5) 13. Oceń symetrię zasilania poprzez porównanie wartości trzech napięć fazowych i porównanie wartości trzech napięć przewodowych. Oblicz i zanotuj w tabeli 1 największe bezwzględne różnice osobno: dla napięć fazowych max LN i napięć przewodowych max LL. Sprawdź czy maksymalne zanotowane różnice pomiędzy napięciami odpowiednio fazowymi lub międzyfazowymi są mniejsze od obliczonych niepewności pomiaru tych napięć. Podaj wnioski. 2. Pomiar mocy w sieci trójfazowej za pomocą pojedynczego miernika mocy W trójfazowym układzie zrównoważonym (symetryczne zasilanie, symetryczny odbiornik) moc czynną symetrycznego odbiornika można zmierzyć mnożąc wynik pomiaru mocy jednej fazy przez 3: gdzie jest wskazaniem miernika. 3 (6) W tym celu obwód prądowy watomierza wpinamy w wybrany przewód fazowy, np. L1, co wymaga chwilowego odłączenia odbiornika. W układzie trójfazowym, czteroprzewodowym (L1, L2, L3, N) obwód napięciowy watomierza włączamy pomiędzy badaną fazę np. L1 a przewód neutralny N (rys. 12a). W układzie trójfazowym, trójprzewodowym (L1, L2, L3), ze względu na brak przewodu neutralnego, koniec uzwojenia napięciowego należy podłączyć do układu tzw. sztucznego zera (rys. 12b), o dodatkowych rezystancjach równych rezystancji wewnętrznej obwodu napięciowego watomierza. str. 13

14 Rysunek 12 Schematy pomiaru mocy czynnej symetrycznego odbiornika trójfazowego jednym watomierzem: a) dla sieci czteroprzewodowej, b) dla sieci trójprzewodowej z układem tzw. sztucznego zera. Kropkami przy symbolu watomierza oznaczono początki obwodów napięciowych i prądowych watomierza. Watomierz analogowy realizuje pomiar mocy czynnej z definicji tj. cos. Moc bierna wyrażona jest zależnością sin. Zatem wykorzystując tożsamość trygonometryczną sin cos /2 da się watomierzem analogowym zmierzyć także moc bierną. Wymaga to wprowadzenia dodatkowego przesunięcia fazowego o /2 pomiędzy mierzone prąd i napięcie. W trójfazowym układzie zrównoważonym można do tego wykorzystać naturalne przesunięcie fazowe o obecne pomiędzy napięciem danej fazy (np. ), a napięciem przewodowym dwóch pozostałych faz (np. ) pokazane na rysunku 10. W obwodzie zrównoważonym moc bierną mierzymy watomierzem włączonym do obwodu zgodnie z rysunkiem 13a. Napięcie przewodowe jest 3 krotnie wyższe od napięcia fazowego, dlatego wynikowa moc bierna jest dana zależnością: 3 (7) gdzie jest wskazaniem watomierza mierzącego moc w fazie L1. Rysunek 13 Schematy: a) pomiaru mocy biernej odbiornika symetrycznego jednym watomierzem, poprawny dla sieci trójprzewodowej i czteroprzewodowej, b) pomiar mocy czynnej i biernej odbiornika symetrycznego cęgowym miernikiem mocy BM 155 w sieci czteroprzewodowej. Wadą pomiaru mocy za pomocą watomierza jest konieczność chwilowego rozłączenia obwodu zasilającego odbiornik na czas przyłączania watomierza. Wady tej pozbawione są mierniki mocy wyposażone w cęgi do pomiaru prądu jak np. używany w ćwiczeniu BM 155. Cęgi pomiarowe, stanowiące obwód pomiaru prądu, zamykane są wokół istniejącego przewodu fazowego, bez jego przerywania (rys. 13b). Oferowana przez mierniki cęgowe dokładność pomiarów jest jednak niższa niż w przypadku watomierzy laboratoryjnych. Dotyczy to zwłaszcza sytuacji gdy mierzony prąd ma małą str. 14

15 wartość. Wówczas można zwielokrotnić ilość zwojów przewodu przechodzącego przez cęgi na następnie podzielić wynik pomiaru prądu lub mocy przez tą ilość zwojów. Pomiar mocy biernej za pomocą miernika cyfrowego nie wymaga dodatkowego przesunięcia fazowego mierzonego napięcia o /2. Mierniki cyfrowe dokonują analizy mierzonych przebiegów napięcia i prądu, wyznaczają ich wartości skuteczne oraz kąt przesunięcia fazowego, a następnie obliczają moce czynne i bierne zgodnie z definicjami (funkcje trygonometryczne są realizowane programowo). Układ połączeń do pomiaru mocy biernej cyfrowym miernikiem BM 155 w sieci czteroprzewodowej pozostaje zatem taki sam jak układ do pomiaru mocy czynnej, odpowiada on układowi z jednym watomierzem z rysunku 11 a. Wynik pomiaru mocy biernej jednej fazy odbiornika jest wyświetlany już w docelowych jednostkach VAr. Zależności (6) i (7) są prawdziwe przy pomiarach watomierzem analogowym. Mogą one nie być prawdziwe w przypadku pomiarów watomierzami cyfrowymi jak BM 155 ze względu na cyfrowe obliczanie wyników oraz inne konfiguracje połączeń podczas pomiaru (np. brak konieczności tworzenia sztucznego zera w sieciach trójprzewodowych). Wzory niezbędne do określenia całkowitej mocy czynnej i biernej odbiornika oraz konfiguracje połączeń dla pomiaru jednym watomierzem cyfrowym podawane są w dokumentacji konkretnego miernika. I tak moce całkowite czynna i bierna symetrycznego odbiornika zasilanego symetrycznie przyłączonego do sieci czteroprzewodowej mierzone miernikiem cyfrowym BM 155 przyłączonym zgodnie z rysunkiem 13b są określone następującymi zależnościami: 3 (8) 3 (9) gdzie, są wskazaniami miernika odpowiednich mocy zmierzonych w fazie L1. Miernik cęgowy BM 155, dzięki brakowi konieczności rozłączania obwodu prądowego, umożliwia także pomiar mocy czynnej niesymetrycznego odbiornika pracującego w warunkach ustalonych (np. silnika pracującego ze stałą prędkością przy stałym obciążeniu). Realizuje się to poprzez kolejne pomiary mocy czynnej w kolejnych fazach, a następnie zsumowanie wyników: (10) gdzie,, są wskazaniami miernika w fazach L1, L2, L3. W tym punkcie nauczysz się mierzyć moc czynną i bierną symetrycznych odbiorników przyłączonych do sieci czteroprzewodowej za pomocą cyfrowego miernika mocy BM ) Wyłącz zasilanie panelu ustawiając wyłącznik zasilania w pozycji 0. 2) Włącz zworki w szyny prądowe faz L2, L3 i przewodu neutralnego (patrz rys. 2). W szynę fazy L1 włącz zworkę złożoną z pięciu zwojów przewodu. Zworka w przewodzie neutralnym N oznacza, że mamy model sieci czteroprzewodowej. 3) Podłącz miernik cęgowy BM155 do fazy L1 panelu zgodnie z rysunkiem 13b. Cęgami należy objąć pętlę zworki włączonej w szynę L1, a przewody obwodu napięciowego miernika włącz pomiędzy L1 i N. Włącz miernik BM155 w trybie pomiaru mocy ustawiając przełącznik w pozycji Power. str. 15

16 Punkty od 4 do 10 należy powtórzyć kolejno dla następujących rodzajów odbiorników: Ż żarówki (odbiornik rezystancyjny), S silnik pracujący na biegu jałowym (odbiornik o dominującej indukcyjności), Ż+S (równoległe połączenie obydwu w.w. odbiorników). 4) Za pomocą odpowiednich przełączników na panelu oraz przewodzie zasilającym silnik włącz właściwy rodzaj odbiornika (będą to w kolejno: Ż, Ż+S, S). 5) Włącz zasilanie panelu ustawiając wyłącznik zasilania w pozycji P. 6) Lewy miernik N14 ustaw w tryb wyświetlania mocy czynnych (ma świecić się dioda przy symbolu W), a prawy miernik N14 ustaw w tryb wyświetlania mocy biernych (ma świecić się dioda przy symbolu VAR). 7) Zmień tryb pracy miernika BM 155 na pomiar mocy czynnej wciskając cyklicznie przycisk Select. Tryb pomiaru mocy czynnej jest oznaczony symbolem W na wyświetlaczu. Jeśli wskazanie mocy czynnej ma znak ujemny to zmień kierunek cewki w cęgach. 8) Ustal stabilne położenie przewodu przechodzącego przez cęgi w środku cęgów zgodnie ze wskazówkami podanymi w opisie przyrządu. Zmierz i zanotuj w tabeli 2 konspektu moc czynną (oznaczenie W na wyświetlaczu), moc bierną (oznaczenie VAR na wyświetlaczu) oraz współczynnik mocy (przy oznaczeniu PF na wyświetlaczu). Przed wpisaniem do tabeli wskazania przelicz na wartość mocy w fazie L1 uwzględniając ilość 5 zwojów przechodzących przez cęgi! 9) W odpowiednie miejsca tabeli 2 konspektu wpisz sumę wskazań mocy czynnych i sumę wskazań mocy biernej wyświetlanych przez mierniki N14. 10) Wyłącz zasilanie panelu ustawiając wyłącznik zasilania w pozycji 0. 11) Odłącz od panelu miernik i odłóż na nadstawkę. 12) Oblicz zgodnie z wzorami (8) i (9) moc czynną i bierną odbiorników i zanotuj wyniki w tabeli 2 konspektu. 13) Na podstawie tabeli 1 i 2 instrukcji oblicz i zapisz w tabeli 2 konspektu wartości błędów granicznych pomiaru mocy czynnej i biernej miernikami BM 155 i N14 dla zaznaczonych w tabeli rodzajów odbiorników. Uwaga! W przypadku miernika BM 155 należy uwzględnić zwiększenie niepewności, podane w przypisie do tabeli, wynikające z małej wartość mierzonego prądu. Dla odbiorników używanych w ćwiczeniu łączny prąd płynący przez cęgi (w zworce o 5 ciu zwojach) przyjmuje wartości z zakresu od 1 do 5 A. Ponadto należy uwzględnić zmiany niepewności wynikające z mierzonego współczynnika mocy podane w przypisach do tabeli. Ostatecznie bezwzględny błąd graniczny pomiaru mocy odbiornika 3 fazowego symetrycznego miernikiem BM 155, obliczanej zgodnie z wzorami (8) i (9), będzie trzykrotnością błędu pomiaru mocy mierzonej w tylko jednej fazie. W przypadku mierników N14 błąd graniczny, o ile był wyznaczony jako procent sumy wskazań, już uwzględnia mnożenie przez 3. 14) We wnioskach wymień trzy czynniki, od których zależy niepewność pomiaru mocy miernikiem cęgowym. str. 16

17 2. Pomiar mocy w sieci trójfazowej trójprzewodowej dwoma watomierzami w układzie Arona Układy trójfazowe, czteroprzewodowe występują powszechnie w sieciach niskiego napięcia zasilających odbiorców komunalnych, np. bloki mieszkalne. Wyróżnia je obecność przewodu neutralnego łączącego punkt gwiazdowy źródła i odbiorników. Układy takie często pracują z niesymetrycznym obciążeniem złożonym z wielu odbiorników jednofazowych zasilanych napięciem fazowym 230V (włączanymi między fazę i przewód neutralny). Układy trójfazowe, trójprzewodowe występują powszechnie w sieciach średnich i wysokich napięć. Cechą charakterystyczną, odróżniającą układy trójprzewodowe od czteroprzewodowych jest brak połączenia punktów gwiazdowych źródła i odbiornika. Odbiorniki i/lub źródła mogą nie posiadać w ogóle punktu gwiazdowego, gdy są połączone w trójkąt, a jeżeli mają punkt gwiazdowy, to jest on izolowany od ziemi. W trójfazowym układzie trójprzewodowym spełniona jest zależność: 0 (11) gdzie,, są zespolonymi wartościami skutecznymi prądów fazowych. Dzięki temu, przy symetrycznym źródle i niesymetrycznym obciążeniu, możliwy jest pomiar mocy czynnej i biernej za pomocą tylko dwóch watomierzy (prąd w trzeciej fazie można obliczyć znając pozostałe dwa prądy). Do pomiaru mocy czynnej dwoma watomierzami służy układ Arona, którego jeden z trzech możliwych wariantów pokazano na rysunku 14a. Moc czynna wyraża się wzorem: (12) W układzie Arona, obciążonym symetrycznym odbiornikiem, można także mierzyć moc bierną: 3 (13) Układ Arona, mimo iż jest mniej uniwersalny od układu trzech watomierzy, jest powszechnie używany w energetyce zawodowej, gdyż wymaga użycia mniejszej ilości drogich przekładników napięciowych i/lub prądowych. Układ Arona jest stosowany także do pomiaru energii czynnej (w miejsce watomierzy podłączone są liczniki energii). Wada tego układu ujawnia się gdy pojemności doziemne przewodów są duże a odbiornik niesymetryczny. Wtedy poprzez ziemię między źródłem i odbiornikiem może przepływać prąd, więc równanie (11) nie będzie spełnione i pomiar będzie obarczony błędem. Pomiar mocy biernej w sieci trójprzewodowej z niesymetrycznym odbiornikiem za pomocą dwóch watomierzy wymaga podłączenia końca uzwojeń napięciowych watomierzy do tzw. sztucznego zera (układ połączeń na rys. 14b) w celu przesunięcia napięcia o /2. Moc bierna wyraża się wtedy wzorem: 3 (14) W układzie tym, dla symetrycznego odbiornika, można wyznaczyć moc czynną zgodnie z zależnością: 3 (15) str. 17

18 Rysunek 14 Schemat pomiaru mocy dwoma watomierzami w układzie trójprzewodowym: a) układ Arona do pomiaru mocy czynnej dowolnego odbiornika lub do pomiaru mocy biernej odbiornika symetrycznego, b) układ dwóch watomierzy do pomiaru mocy biernej dowolnego odbiornika lub do pomiaru mocy czynnej odbiornika symetrycznego. Uwaga! W obydwu przedstawionych układach pomiarowych, wskazania watomierzy zależą od kąta przesunięcia fazowego prądów względem napięć. Wskazania obu watomierzy będą jednakowe tylko przy zerowym przesunięciu fazowym czyli dla odbiornika rezystancyjnego. W ogólnym przypadku wskazania watomierzy mogą być różne. Może się zdarzyć, że wskazanie jednego z watomierzy będzie ujemne (wskazówka wychyla się w lewo). Należy wtedy zamienić końce obwodu napięciowego tego watomierza i koniecznie uwzględnić przeciwny znak w powyższych wzorach (12) do (15)! W tym punkcie ćwiczenia sprawdzisz jak charakter odbiornika, powodujący określone przesunięcie fazowe prądów względem napięć, wpływa na wskazania watomierzy w układzie Arona. Ponadto sprawdzisz skuteczność kompensacji mocy biernej pobieranej przez odbiornik symetryczny o charakterze indukcyjnym (silnik). Zobaczysz też efekt przekompensowania odbiornika indukcyjnego uzyskany przez przyłączenie baterii kondensatorów kompensujących o zbyt dużej pojemności. 1) Wyłącz zasilanie panelu przez ustawienie wyłącznika w pozycji 0. 2) Odłącz od panelu zworkę z szyny neutralnej N oraz dwie zworki łączące odbiorniki R i C z przewodem neutralnym. W efekcie otrzymujemy model sieci trójprzewodowej, z trzema odbiornikami połączonymi w gwiazdę lecz o izolowanych punktach neutralnych. 3) Przyłącz do panelu dwa watomierze analogowe EL 20 w układzie Arona zgodnie z rysunkiem 14a. Obwody prądowe watomierzy włącz w miejsce zworek w fazach L1 i L3. W fazie L2 pozostaw zworkę. Punkty od 4 do 9 należy powtórzyć kolejno dla następujących rodzajów odbiorników: S (sam silnik), S+C (silnik i jedna sekcja baterii kondensatorów kompensujących), S+2C (silnik i dwie sekcje baterii kondensatorów kompensujących), Ż (same żarówki). 4) Za pomocą odpowiednich przełączników na panelu i na przewodzie zasilającym silnik wybierz właściwy odbiornik, w podanej wyżej kolejności (S, S+C, S+2C, Ż). 5) Włącz zasilanie panelu ustawiając wyłącznik zasilania w pozycji P. Jeżeli wskazówka któregokolwiek watomierza wychyla się w lewo, należy wyłączyć zasilanie, zamienić kolejność przewodów obwodu napięciowego tego watomierza, a następnie włączyć ponownie zasilanie. Po zamianie kierunku obwodu napięciowego należy uwzględnić zmianę znaku wskazania tego watomierza! str. 18

19 6) Lewy miernik N14 ustaw w tryb wyświetlania mocy czynnych (ma świecić się dioda przy symbolu W), a prawy miernik N14 ustaw w tryb wyświetlania mocy biernych (ma świecić się dioda przy symbolu VAR). 7) Zanotuj w tabeli 3 konspektu wskazania watomierzy z uwzględnieniem znaku wynikającego z możliwej zmiany kierunku obwodu napięciowego! 8) Zanotuj w tabeli 3 konspektu sumy wskazań mocy czynnych i sumy wskazań mocy biernych mierników N14 z uwzględnieniem ich znaku. 9) Wyłącz zasilanie panelu przez ustawienie wyłącznika w pozycji 0. 10) Odłącz od panelu watomierze. 11) Oblicz według zależności (12) i (13) wartości mocy czynnej i biernej mierzonych w układzie Arona dla wszystkich zbadanych rodzajów odbiorników, a następnie wpisz wyniki do tabeli 3 konspektu. 12) Na podstawie tabeli 2 instrukcji oblicz, dla zaznaczonych w tabeli 3 konspektu odbiorników, wartości bezwzględnych błędów granicznych pomiaru mocy czynnej i biernej miernikami N14. Wyniki zapisz do tabeli 3 konspektu. 13) Oblicz wartości bezwzględnych błędów granicznych pomiaru mocy czynnej i biernej układem Arona dla odbiorników zaznaczonych w tabeli 3 konspektu. Wykorzystaj do tego prawo przenoszenia błędów oraz klasy watomierzy. Poniżej znajduje się przykład obliczania błędu granicznego pomiaru mocy biernej w układzie Arona. Na podstawie klas watomierzy określić należy względne błędy graniczne pomiaru pojedynczym watomierzem: [%], [%]. Następnie obliczyć pochodne cząstkowe zależności (13) określającą moc bierną w układzie Arona: 3, 3. Wyznaczone składniki podstawiamy do wzoru na różniczkę zupełną w celu obliczenie względnego błędu granicznego pomiaru: [%] (16) Ostatecznie przeliczamy błąd względny na bezwzględny [VAr]. 14) Napisz we wnioskach co oznacza ujemny znak mocy biernej uzyskany dla odbiornika S+2C. 3. Pomiar mocy odbiorników symetrycznych i niesymetrycznych trzema watomierzami Najbardziej uniwersalnym, a zarazem najdroższym, układem do pomiaru mocy odbiorników symetrycznych i niesymetrycznych jest układ wykorzystujący trzy watomierze. Układy pokazane na rysunku 15 służą do pomiaru mocy czynnej dowolnego odbiornika (symetrycznego lub niesymetrycznego) przy symetrycznym lub niesymetrycznym zasilaniu. Układ z rysunku 16 służy do pomiaru mocy biernej dowolnego odbiornika zasilanego symetrycznie. Moc czynna odbiornika mierzona w układach z rysunku 12 jest dana zależnością: (17) str. 19

20 a moc bierna mierzona układem z rysunku 15 jest określona wzorem: (18) gdzie,, są wskazaniami watomierzy. Rysunek 15 Schemat pomiaru mocy czynnej dowolnego odbiornika (symetrycznego lub niesymetrycznego) trzema watomierzami przy zasilaniu symetrycznym lub niesymetrycznym: a) w układzie czteroprzewodowym, b) w układzie trójprzewodowym. Rysunek 16 Schemat pomiaru mocy biernej dowolnego odbiornika (symetrycznego lub niesymetrycznego) trzema watomierzami przy zasilaniu symetrycznym w układzie trójprzewodowym. W tym punkcie przeprowadzisz pomiary mocy czynnej i biernej odbiorników symetrycznych oraz niesymetrycznych pracujących w sieci czteroprzewodowej. Moc czynna będzie mierzona za pomocą trzech watomierzy EL 20 oraz miernika N14, a moc bierna tylko za pomocą miernika N14. Ocenisz wpływ niesymetrii odbiornika na wskazania mierników i porównasz dokładność pomiaru mocy czynnej różnymi przyrządami. 1) Wyłącz zasilanie panelu przez ustawienie wyłącznika w pozycji 0. 2) Włącz zworkę w szynę neutralną N. Połącz zworkami punkty gwiazdowe odbiorników z szyną N. 3) Przyłącz watomierze EL 20 do panelu w układzie trzech watomierzy zgodnie z rysunkiem 15a. Obwody prądowe watomierzy włącz w miejsce zworek w szynach L1, L2 i L3. Punkty od 4 do 9 należy powtórzyć kolejno dla następujących rodzajów odbiorników: Ż123 (wszystkie żarówki), Ż12 (żarówki włączone tylko w fazach L1 i L2), Ż1+C3 (żarówka w fazie str. 20

21 L1, pojedynczy kondensator w fazie L3), S+Ż1+2C3 (silnik, żarówka w fazie L1 i dwa kondensatory w fazie L3). 4) Za pomocą odpowiednich przełączników na panelu i na przewodzie zasilającym silnik włącz właściwy odbiornik, w następującej kolejności: Ż123, Ż12, Ż1+C3, S+Ż1+2C3. 5) Włącz zasilanie panelu ustawiając wyłącznik zasilania w pozycji P. 6) Lewy miernik N14 ma wyświetlać moce czynne wszystkich faz, a prawy miernik N14 moce bierne. 7) Zanotuj w tabeli 4a konspektu wskazania mocy czynnych watomierzy EL 20 oraz miernika N14. 8) W tabeli 4b konspektu zanotuj wskazania mocy biernej drugiego miernika N14. Ujemny znak mocy biernej oznacza moc bierną pojemnościową. 9) Wyłącz zasilanie panelu przez ustawienie wyłącznika w pozycji 0. 10) Odłącz watomierze od panelu i odłóż je na nadstawkę. 11) Oblicz według zależności (17) wartości mocy czynnej zmierzonej watomierzami oraz miernikiem N14. Oblicz moc bierną odbiornika jako sumę wskazywanych przez drugi miernik N14 mocy biernych. Uwzględnij ujemny znak mocy biernej pojemnościowej! Wpisz wyniki w odpowiednie miejsca w tabelach 4a i 4b konspektu. 12) Dla zaznaczonych w konspekcie rodzajów odbiorników oblicz i porównaj wartości bezwzględnych błędów granicznych pomiaru mocy czynnej układem trzech watomierzy oraz miernikiem N14. Wykorzystaj do tego prawo przenoszenia błędów (dla obu układów pomiarowych wzór jest ten sam, gdyż moc odbiornika jest sumą trzech wskazań). Błędy względne graniczne watomierzy oblicz na podstawie ich klasy, a błędy graniczne wskazań miernika N14 oblicz na podstawie tabeli podanej na stronie 9 instrukcji. Poniżej znajduje się przykład obliczania błędu granicznego pomiaru mocy biernej za pomocą układu Arona. Na podstawie klas watomierzy określić należy względne błędy graniczne pomiaru pojedynczym watomierzem: [%], [%], [%]. Następnie należy obliczyć pochodne cząstkowe zależności (17) określającą moc czynną:,,. Wyznaczone składniki podstawiamy do wzoru na różniczkę zupełną w celu obliczenie względnego błędu granicznego pomiaru: [%] (19) Ostatecznie przeliczamy błąd względny na bezwzględny [W]. 4. Obserwacja wpływu kompensacji mocy biernej na wartości prądów fazowych i współczynników mocy 1) Wyłącz zasilanie panelu przez ustawienie wyłącznika w pozycji 0. 2) Włącz wszystkie zworki (w szyny fazowe, szynę neutralną oraz pomiędzy punkty gwiazdowe odbiorników R i C a szynę N) w celu uzyskania sieci czteroprzewodowej. 3) Włącz wszystkie żarówki. Wyłącz wszystkie kondensatory. Przełącznik silnika ustaw na 1. 4) Włącz zasilanie panelu ustawiając wyłącznik zasilania w pozycji P. str. 21

22 5) Lewy miernik N14 ustaw w tryb wyświetlania współczynnika mocy (dioda przy symbolu PF), a prawy w tryb wyświetlania wartości skutecznych prądów fazowych (dioda przy symbolu A). 6) Zanotuj w tabeli 5 konspektu wskazania mierników N14. 7) W fazie L2 włącz jeden kondensator, a w fazie L3 włącz dwa kondensatory. 8) Zanotuj w tabeli 5 konspektu obecne wskazania mierników N14. 9) Wyłącz zasilanie panelu, a następnie wszystkie odbiorniki. Mierniki połóż na nadstawce. 10) Wiedząc, że przed włączeniem kondensatorów odbiornik był symetryczny, a więc każda faza pobierała taką samą moc i taki sam prąd skuteczny, podaj wnioski odnośnie wpływu kompensacji na wartości prądów fazowych i współczynników mocy. str. 22

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo

Pomiary mocy i energii dla jednofazowego prądu zmiennego

Pomiary mocy i energii dla jednofazowego prądu zmiennego Ćwiczenie 7 Pomiary mocy i energii dla jednofazowego prądu zmiennego Program ćwiczenia: 1. Wybór układu do pomiaru mocy czynnej 2. Pomiar mocy czynnej pobieranej przez żarówkę 3. Bezpośredni pomiar mocy

Bardziej szczegółowo

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego 1 Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego A. Zasada pomiaru mocy za pomocą jednego i trzech watomierzy Moc czynna układu trójfazowego jest sumą mocy czynnej wszystkich jego faz. W zależności

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH 15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAOWYCH Celem ćwiczenia jest poznanie własności odbiorników trójfazowych symetrycznych i niesymetrycznych połączonych w trójkąt i gwiazdę w układach z przewodem neutralnym

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Wiadomości do tej pory Podstawowe pojęcia Elementy bierne Podstawowe prawa obwodów elektrycznych Moc w układach 1-fazowych Pomiary

Bardziej szczegółowo

I. WIADOMOŚCI TEORETYCZNE

I. WIADOMOŚCI TEORETYCZNE omiary mocy w obwodach trójazowych. Cel ćwiczenia oznanie metod pomiaru mocy czynnej i biernej w układach trójazowych symetrycznych i niesymetrycznych za pomocą watomierzy. I. WIADOMOŚCI TEORETYCZNE omiary

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA. Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu ES1C 200 012 Ćwiczenie pt. POMIAR

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE

Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE 1. Wiadomości ogólne Wytwarzanie i przesyłanie energii elektrycznej odbywa się niemal wyłącznie za pośrednictwem prądu przemiennego trójazowego. Głównymi zaletami

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej

LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej Ćwiczenie 6 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Co to jest kompensacja

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Pracownia elektryczna MontaŜ Maszyn Instrukcja laboratoryjna Pomiar mocy w układach prądu przemiennego (dwa ćwiczenia) Opracował: mgr inŝ.

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

Ćwiczenie 15. Sprawdzanie watomierza i licznika energii

Ćwiczenie 15. Sprawdzanie watomierza i licznika energii Ćwiczenie 15 Sprawdzanie watomierza i licznika energii Program ćwiczenia: 1. Sprawdzenie błędów podstawowych watomierza analogowego 2. Sprawdzanie jednofazowego licznika indukcyjnego 2.1. Sprawdzenie prądu

Bardziej szczegółowo

Ćwiczenia tablicowe nr 1

Ćwiczenia tablicowe nr 1 Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną

Bardziej szczegółowo

ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt

ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt 1. Cel ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem napięć i poborem mocy w obwodach trójfazowych połączonych w trójkąt:

Bardziej szczegółowo

Pomiary mocy i energii dla jednofazowego prądu zmiennego

Pomiary mocy i energii dla jednofazowego prądu zmiennego Ćwiczenie 7 Pomiary mocy i energii dla jednofazowego prądu zmiennego Program ćwiczenia: 1. Omówienie stanowiska laboratoryjnego i przyrządów pomiarowych 2. Podłączanie watomierza do obwodu, skutki zmiany

Bardziej szczegółowo

Miernik cęgowy AX-3550. Teoria i praktyka

Miernik cęgowy AX-3550. Teoria i praktyka 1 Miernik cęgowy AX-3550. Teoria i praktyka, Janusz Janicki Miernik cęgowy AX-3550. Teoria i praktyka Wszelkiego rodzaju mierniki są podstawowymi narzędziami pracy elektroników, konstruktorów, serwisantów,

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 3 Pomiar mocy czynnej w układzie jednofazowym Rzeszów 2016/2017 Imię i nazwisko Grupa Rok studiów Data wykonania Podpis

Bardziej szczegółowo

43. Badanie układów 3-fazowych

43. Badanie układów 3-fazowych 43. elem ćwiczenia jest zapoznanie się z podstawowymi właściwościami symetrycznych i niesymetrycznych układów trójfazowych gwiazdowych i trójkątowych. 43.1. Wiadomości ogólne 43.1.1 Określenie układów

Bardziej szczegółowo

Pomiary mocy i energii dla jednofazowego prądu zmiennego

Pomiary mocy i energii dla jednofazowego prądu zmiennego AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i INŻYNIERII BIOMEDYCZNEJ KATEDRA METROLOGII i ELEKTRONIKI LABORATORIUM METROLOGII Pomiary

Bardziej szczegółowo

Pomiary mocy i energii elektrycznej

Pomiary mocy i energii elektrycznej olitechnika Rzeszowska Zakład Metrologii i ystemów omiarowych omiary mocy i energii elektrycznej Grupa Nr ćwicz. 1 1... kierownik... 3... 4... Data Ocena I. Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar mocy

Ćwiczenie M-2 Pomiar mocy POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH INSTRUKCJA do ćwiczeń laboratoryjnych z Metrologii wielkości energetycznych Ćwiczenie

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem

Bardziej szczegółowo

Data oddania sprawozdania BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

Data oddania sprawozdania BADANIA ODBIORNIKÓW TRÓJFAZOWYCH LORTORIUM ELEKTROTEHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Lp. Nazwisko i imię Ocena Data wykonania 1. ćwiczenia. Podpis prowadzącego 3. zajęcia 4. 5. Temat Data oddania sprawozdania DNI ODIORNIKÓ

Bardziej szczegółowo

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10 Politechnika iałostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ENS1200 013 DNE OWOD TRÓJFOWEGO ODORNKEM POŁĄONYM W TRÓJKĄT Numer ćwiczenia

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE Klasa: 1 i 2 ZSZ Program: elektryk 741103 Wymiar: kl. 1-3 godz. tygodniowo, kl. 2-4 godz. tygodniowo Klasa

Bardziej szczegółowo

Cyfrowy miernik cęgowy AX-3550

Cyfrowy miernik cęgowy AX-3550 Cyfrowy miernik cęgowy AX-3550 Instrukcja obsługi 1. Informacje dotyczące bezpieczeństwa Aby uniknąć porażenia prądem elektrycznym lub obrażeń ciała, a także uniknąć uszkodzenia miernika lub testowanego

Bardziej szczegółowo

LAMPY WYŁADOWCZE JAKO NIELINIOWE ODBIORNIKI W SIECI OŚWIETLENIOWEJ

LAMPY WYŁADOWCZE JAKO NIELINIOWE ODBIORNIKI W SIECI OŚWIETLENIOWEJ Przedmiot: SEC NSTALACJE OŚWETLENOWE LAMPY WYŁADOWCZE JAKO NELNOWE ODBORNK W SEC OŚWETLENOWEJ Przemysław Tabaka Wprowadzenie Lampy wyładowcze, do których zaliczane są lampy fluorescencyjne, rtęciowe, sodowe

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża:

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: Teoria obwodów 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę superpozycji

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości )

Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości ) Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości ) Katowice 2004 Computers & Control Sp. J Al Korfantego 191E 40-153 Katowice www.candc.pl Computers & Control

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

urządzenia BLIX POWER do sieci. Urządzenie podłączane jest równolegle do

urządzenia BLIX POWER do sieci. Urządzenie podłączane jest równolegle do Urządzenie BLIX POWER służy do oszczędzania energii elektrycznej w obwodach jedno i trójfazowych. W urządzeniu zastosowano szereg rozwiązań technologicznych, aby zapewnić jak najlepszą efektywność działania

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia: Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.

Bardziej szczegółowo

Problematyka mocy biernej w instalacjach oświetlenia drogowego. Roman Sikora, Przemysław Markiewicz

Problematyka mocy biernej w instalacjach oświetlenia drogowego. Roman Sikora, Przemysław Markiewicz Problematyka mocy biernej w instalacjach oświetlenia drogowego Roman Sikora, Przemysław Markiewicz WPROWADZENIE Moc bierna a efektywność energetyczna. USTAWA z dnia 20 maja 2016 r. o efektywności energetycznej.

Bardziej szczegółowo

Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości )

Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości ) Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości ) Katowice 2004 Computers & Control Sp. J Al Korfantego 191E 40-153 Katowice www.candc.pl Computers & Control

Bardziej szczegółowo

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH -CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie

Bardziej szczegółowo

REGULATORY MOCY BIERNEJ DLA SYMETRYCZNYCH I ASYMETRYCZNYCH OBCIĄŻEŃ

REGULATORY MOCY BIERNEJ DLA SYMETRYCZNYCH I ASYMETRYCZNYCH OBCIĄŻEŃ ELMA energia ul. Wioślarska 18 10-192 Olsztyn Tel: 89 523 84 90 Fax: 89 675 20 85 www.elma-energia.pl elma@elma-energia.pl REGULATORY MOCY BIERNEJ DLA SYMETRYCZNYCH I ASYMETRYCZNYCH OBCIĄŻEŃ UNIVAR TRIVAR

Bardziej szczegółowo

Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych

Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych 1. Przedmiot opracowania Celem ćwiczenia jest zilustrowanie sposobu sterowania, rozruchu i pracy silników indukcyjnych niskiego napięcia.

Bardziej szczegółowo

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Wykład 2 Silniki indukcyjne asynchroniczne

Wykład 2 Silniki indukcyjne asynchroniczne Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

Układy przekładników napięciowych

Układy przekładników napięciowych Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja

Bardziej szczegółowo

Podstawy Elektroenergetyki 2

Podstawy Elektroenergetyki 2 POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Laboratorium z przedmiotu: Podstawy Elektroenergetyki 2 Kod: ES1A500 037 Temat ćwiczenia: BADANIE SPADKÓW

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ENERGOELEKTRONIKA Laboratorium Ćwiczenie nr 2 Łączniki prądu przemiennego Warszawa 2015r. Łączniki prądu przemiennego na przemienny Celem ćwiczenia

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia: Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar wartości skutecznej, średniej wyprostowanej i maksymalnej sygnałów napięciowych o kształcie sinusoidalnym, prostokątnym

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68

Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68 Spis treêci Wstęp................................................................. 9 1. Informacje ogólne.................................................... 9 2. Zasady postępowania w pracowni elektrycznej

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY! 1. WSTĘP Instrukcja obsługi dostarcza informacji dotyczących bezpieczeństwa i sposobu użytkowania, parametrów technicznych oraz konserwacji

Bardziej szczegółowo

Laboratorium Urządzeń Elektrycznych

Laboratorium Urządzeń Elektrycznych Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl Laboratorium Urządzeń Elektrycznych Ćwiczenie

Bardziej szczegółowo

Kompensacja prądów ziemnozwarciowych

Kompensacja prądów ziemnozwarciowych Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

Interfejs analogowy LDN-...-AN

Interfejs analogowy LDN-...-AN Batorego 18 sem@sem.pl 22 825 88 52 02-591 Warszawa www.sem.pl 22 825 84 51 Interfejs analogowy do wyświetlaczy cyfrowych LDN-...-AN zakresy pomiarowe: 0-10V; 0-20mA (4-20mA) Załącznik do instrukcji obsługi

Bardziej szczegółowo

Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC.

Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Ćwiczenie nr 74 Pomiary mostkami RLC Cel ćwiczenia Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Dane znamionowe Przed przystąpieniem do wykonywania ćwiczenia

Bardziej szczegółowo

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych PL 216925 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216925 (13) B1 (21) Numer zgłoszenia: 389198 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Nr programu : nauczyciel : Jan Żarów

Nr programu : nauczyciel : Jan Żarów Wymagania edukacyjne dla uczniów Technikum Elektrycznego ZS Nr 1 w Olkuszu przedmiotu : Pracownia montażu i konserwacji maszyn i urządzeń elektrycznych na podstawie programu nauczania : TECHNIK ELEKTRYK

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo