Pytania z HM1. Jakub Sygnowski. 23 stycznia a) Kepler b) Ptolemeusz c) Kopernik. a) Kepler b) Kartezjusz c) Fermat
|
|
- Roman Malinowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Pytania z HM1 Jakub Sygnowski 23 stycznia Najstarsze świadectwo uprawiania geometrii to a) piramidy egipskie b) labirynt na Krecie c) rytm ornamentów wstęgowych 2. Świadectwa o najdawniejszej działalności arytmetycznej czerpiemy z badania a) dokumentów pisanych b) wykopalisk c) współczesnych języków 3. Pierwsze zanotowane dokonania matematyczne pochodzą z terenów a) Azji Mniejszej b) Półwyspu Apenińskiego c) Półwyspu Bałkańskiego 4. Pierwsze wzory na pierwiastki stopnia 3 uzyskano przez a) przekształcenia algebraiczne b) podział sześcianu c) badanie przecięć stożkowych 5. Sumerownie rozwiązywali równania stopnia a) 1 b) 3 c) 2 6. Sposób zajmowania się liczbami i figurami przez Babilończyków to a) magia b) preinformatyka c) początki dedukcji 7. Najstarszy pozycyjny sytem zapisu liczb wprowadzili a) Sumerowie b) Hindusi 8. Najstarsze zachowane matematyczne teksty egipskie pochodzą z okresu a) Średniego Państwa b) Starego Państwa c) Nowego Państwa 9. Używanie, poza liczbami naturalnymi jedynie ułamków prostych jest charakterystyczne dla a) Majów b) Chaldejczyków c) Egipcjan 10. Ostateczny kształt systemowi dziesiętnemu w Europie nadała praca a) Omara Chajjama b) Simona Stevina c) Regiomontanusa 11. Obecnie obowiązujący model Układu Słonecznego to pomysł a) Kepler b) Ptolemeusz c) Kopernik 12. Rozprawa o metodzie dotyczy a) algorytmów teorioliczbowych b) obliczania pól figur płaskich c) znajdowania środka ciężkosci 13. Pierwszy układ współrzędnych wprowadził a) Kepler b) Kartezjusz c) Fermat 14. Rachunek symboliczny wylansował a) Bombelli b) Viete c) Descartes 15. Suwak logarytmiczny skonstruował a) Napier b) Gunter c) Burgi 16. Eliptyczne tory planet to pomysł a) Kopernika b) Omara Chajjama c) Keplera 17. Satelity Jowisza odkrył a) Brahe b) Galileusz c) Kepler 18. Pojęcie wektora wprowadził a) Newton b) Archimedes c) Galileusz 19. Jako przybliżenia równi pochyłej Galileusz używał 1
2 a) spadku w gęstej cieczy b) wahadła c) deski 20. Akademie Nauk powstały w celu a) przeciwstawienia się uniwersytetom b) zapewnienia miejsc pracy rosnącej liczbie uczonych c) przypodobania się monarchom 21. Lilavati to hinduskie dzieło matematyczne a) z IX wieku b) z XII wieku c) z VI wieku 22. Zadanie o wilku, kozie i kapuście pochodzi z dzieła a) Alkuina b) Boecjusza c) Arystotelesa 23. Pierwszym papieżem, który wykształcenie zdobył na uczelni arabskiej był a) Francuz Gerbert b) Niemiec Regiomontanus c) Brytyjczyk Alkuin 24. Zadanie o rozmnażaniu królików stało się powodem wprowadzenia a) liczb Fibonacciego b) potencjalnej nieskonczoności c) ciągu geometrycznego 25. Najdawniej zdarzyło się a) odkrycie Ameryki b) odkrycie prasy drukarskiej c) rozwiązanie równań stopnia Równanie stopnia czwartego jako pierwszy rozwiązał a) Ferrari b) Cardano c) Tartaglia 27. Wiersz Norwida Plato i Archita opisuje spór dotyczący a) istnienia prostych równoległych b) istnienia liczb niewymiernych c) konstrukcji geometrycznych 28. Niewymierność odkryto badając? a) trójkąt równoboczny b) kwadrat c) złotą proporcję 29. Pitagoras był współczesny a) Buddzie b) Lao-tsie c) Konfucjuszowi 30. Założone przez Pitagorasa z Samos miasto znajdowało się na terenie a) dzisiejszych Włoch b) dzisiejszej Grecji c) dzisiejszej Syrii 31. Obecnie stosowaną w Europie skalę muzyczną wprowadzili a) Pitagorejczycy b) uczniowie Platona c) muzycy Odrodzenia 32. Pierwszą liczbą, której niewymierność udowodniono jest a) 2 1/3 b) 2 c) π 33. W starożytności umiano wykonać a) trysekcję kąta b) kwadraturę koła c) podwojenie sześcianu 34. Rozwiązywanie równań kwadratowych najdawniej można spotkać u a) Babilończyków b) Greków c) Arabów 35. Metodę wyczerpywania wprowadził a) Eudokos b) Arystoteles c) Teajletos 36. Ułamek łańcuchowy nieskończony złożony z samych jedynek opisuje a) złotą proporcję b) π c) Uczelnia prowadzona przez Arystotelesa nazywała się a) Liceum b) Gimnazjum c) Akademia 38. Jako ostatni z wielościanów foremnych odkryty został a) dwudziestościan b) ośmiościan c) dwunastościan 39. Kwadraturę koła i rektyfikacje okręgu można wykonać za pomocą? a) konchoidy Nikomedesa b) spirali Archimedesa c) okręgu Apoloniusza 40. Funkcji trygonometrycznych pierwsi używali a) Grecy b) Hindusi 41. Almagest powstał w czasach dominacji? a) greckiej b) rzymskiej c) arabskiej 42. Ahmes był autorem a) papirusu moskiewskiego b) Księgi piastunki Kai 2
3 c) papirusu Rhinda 43. Liczb zespolonych jako pierwszy używał a) Tartaglia b) Cardano c) Bombelli 44. Spór Platona z Archytasem dotyczył a) reguł konstrukcji geometrycznych b) istnienia liczb niewymiernych c) istnienia prostych równoległych 45. Najdawniej z wymienionych żył a) Platon b) Euklides c) Pitagoras 46. Elementy Euklidesa powstały w a) Egipcie b) Grecji c) Rzymie 47. Ognisko i kierownicę stożkowej wprowadził a) Euklides b) Archimedes c) Apoloniusz (właściwie to jego uczeń Pappus) 48. Pierwsze twierdzenie mówiące, że pewien zbiór jest nieskończony pochodzi z pracy a) Herona b) Euklidesa 49. Arystoteles zabraniał matematykom używania nieskończoności a) i potencjalnej, i aktualnej b) potencjalnej c) aktualnej 50. Pierwsze obliczenie pola odcinka paraboli to rezultat a) Herona b) Apoloniusza 51. W pracy Archimedesa O kuli i walcu jest obliczenie a) objętości walca b) pola powierzchni kuli c) objętości kuli 52. Archimedes udowodnił, że pokrywają się środki ciężkości a) brzegu i obszaru trójkąta b) wierzchołków i brzegu trójkąta c) obszaru i wierzchołków trójkąta 53. Najdawniej z wymienionych żył a) Archimedes b) Aleksander Wielki c) Juliusz Cezar 54. Pierwszy znany dowód tego, że liczb pierwszych jest nieskończenie wiele pochodzi od a) Diofantosa b) Archimedesa c) Euklidesa 55. W -IV wieku definicję liczb rzeczywistych podał a) Arystoteles b) Teajtetos c) Eudokos 56. Ostatnie twierdzenie Elementów mówi o a) prostych równoległych b) wielościanach foremnych c) konstrukcji piętnastokąta foremnego 57. Uniwersytet Jagielloński dysponuje, z pierwszego wydania Elementów Euklidesa drukiem, egzemplarzem numer a) 3 b) 13 c) Pierwszy używał funkcji trygonometrycznych a) Aryabhata b) Nikomachos c) al Chwarizmi 59. Ptolemeusz użył do opisu ruchów ciał niebieskich a) 77 okręgów b) 55 okręgów c) 33 okręgów 60. Biblioteka Aleksandryjska spłonęła a) w -IV wieku b) w V wieku c) w -I wieku 61. Równania algebraiczne rozpatrywane dla liczb całkowitych noszą dziś nazwę od imienia a) Platona b) Pitagorasa c) Diofantosa 62. O istnieniu wielościanów archimedesowych dowiedziano się od a) Pappusa b) Platona 63. Hypatia została ukamienowana a) w -II wieku b) w V wieku c) w II wieku 64. Słowo algorytm to zniekształcenie a) babilońskiej nazwy liczydeł b) nazwiska arabskiego uczonego c) hinduskiej nazwy sakiewki 65. Symbolika matematyczna przypomina pismo? a) ideograficzne b) alfabetyczne 3
4 c) klinowe 66. Problem postulatu o równoległości postawił a) Euklides b) Proklos c) Arystoteles 67. Liczby niewymierne zostały odkryte w Grecji? a) przed podbiciem Grecji przez Rzym b) przed pierwszą olimpiadą c) przed panowaniem Aleksandra Wielkiego 68. Liczby niewymierne zostały odkryte w Grecji a) przed wojnami punickimi b) przed wojnami perskimi c) przed wojną peloponeską 69. Liczby rzeczywiste jako przekroje zbioru liczb wymiernych wprowadził pierwszy a) Eudokos b) Teajtelos c) Dedekind 70. Informacje o najstarszych działaniach matematycznych czerpiemy z a) rytmu ornamentów b) kształtu narzędzi c) budowy liczebników 71. Babilończycy przyjmowali, że stosunek długości okręgu do jego średnicy jest równy a) 3 b) c) Babilońskie zajmowanie się liczbami i figurami jest traktowane jako pramatematyka ze względu na a) przybliżony charakter rezultatów b) stosowanie algorytmów c) brak dedukcji 73. Pierwszy system pozycyjny był a) sześćdziesiątkowy b) dziesiątkowy c) dwudziestkowy 74. Metodologia dedukcyjna to koncepcja a) Achajów b) Sumerów c) Dorów 75. Europejską skalę muzyczną skonstruowano w a) XVII wieku b) -V wieku c) IX wieku 76. Gwiazdy medycejskie to a) satelity Marsa b) satelity Jowisza c) planetoidy 77. Rozprawa o metodzie ma za temat a) algebrę b) rachunek prawdopodobieństwa c) analizę matematyczną 78. Wprowadzenie liczb rzeczywistych przez Teaitetosa opierało się na a) rozwinięciach dziesiętnych b) przekrojach liczb wymiernych c) ułamkach łańcuchowych 79. Sylogizmy to sposób badania a) liczb niewymiernych b) konstruowalności figur c) poprawności rozumowań 80. Elementy Euklidesa powstały około a) -300 roku b) -200 roku c) -100 roku 81. W dowolnym trójkącie pokrywają się środki ciężkości a) wierzchołków i obszaru b) obwodu i obszaru c) wierzchołków i obwodu 82. Objętość i pole kuli pierwszy obliczył a) Archimedes b) Apoloniusz c) Euklides 83. Najobszerniejsza historia matematyki napisana przed upadkiem Rzymu pochodzi od a) Seneki b) Pappusa c) Pliniusza Starszego 84. Typowe symbole matematyczne +, -, wprowadził a) Stevin b) Viete c) Kartezjusz 85. Matematyka na Wschodzie była uważana za a) najgłębszą prawdę o świecie b) trenażer umysłu c) narzędzie do badania przyrody 86. Sylwester II był a) Włochem b) Francuzem c) Niemcem 87. System dziesiętny w Europie rozpropagowało dzieło a) al Chwarizmiego b) Fibonacciego c) Bombellego 88. Do szybkiego liczenia w systemie dziesiętnym używano tablic a) trygonometrycznych 4
5 b) logarytmicznych c) kwadratów 89. Algebrę stworzyli a) Hindusi b) Grecy 90. Formalizm matematyczny ma tę samą strukturę co a) pismo klinowe b) pismo chińskie c) znaki runiczne 91. Metoda wyczerpywania to sposób a) mierzenia objętości b) mierzenia pola c) tworzenia ułamków łańcuchowych 5
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II (A) zna; (B) rozumie; umie zastosować wiadomości w sytuacjach typowych; (D) umie zastosować wiadomości w sytuacjach problemowych; 1. Pierwiastki i potęgi
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
klasa I Dział Główne wymagania edukacyjne Forma kontroli
semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Liczby i wyrażenia. Uczeń: Uczeń: 1 Liczby naturalne i całkowite. - sprawnie
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ
PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328
Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
w najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny
Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,
Matematyka Wymagania edukacyjne dla uczniów klas VIII Rok szkolny 2018/2019. Dział Ocena Umiejętności Potęgi i pierwiastki. Na ocenę dopuszczającą
Matematyka Wymagania edukacyjne dla uczniów klas VIII Rok szkolny 2018/2019 Dział Ocena Umiejętności Potęgi i pierwiastki Uczeń: - oblicza wartości potęg o wykładniku całkowitym dodatnim i całkowitej podstawie
Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.
6 Orientacyjnie 40 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.. Śmietankowe ponad wszystko Statystyka. Powtórzenie wiadomości ze statystyki 3 Czytanka. O języku matematyki, czyli
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
Wymagania na poszczególne oceny z matematyki w klasie III G.
Wymagania na poszczególne oceny z matematyki w klasie III G. DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania na ocenę dopuszczającą (2) zna sposób zaokrąglania liczb umie oszacować wynik działań umie
PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE
Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Klasa 3 Przewodnik po zadaniach
Klasa 3 Przewodnik po zadaniach www.gimplus.pl 1 Spis treści 1. Liczby i wyrażenia algebraiczne (str. 3) 1.1 System dziesiątkowy 1.2 System rzymski 1.3 Liczby wymierne i niewymierne 1.4 Podstawowe działania
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
Wymagania szczegółowe z matematyki klasa 7
Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ 1) ocenę celującą otrzymuje uczeń, który spełnił wymagania na ocenę bardzo dobrą oraz: - umie zapisać i odczytać w
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska
Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska 200.03.4 Motywacja wprowadzenia π Kluczowym momentem w historii liczby π było zauważenie przez starożytnych Babilończyków
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres
LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres rozróżniać liczby naturalne, całkowite, wymierne, dodawać, odejmować,
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny konieczne (ocena dopuszczająca) 1.
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności
KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Na ocenę dopuszczającą uczeń:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna
Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)
Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:
Dopuszczający Dostateczny Dobry Bardzo dobry Celujący
Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane
rozszerzające (ocena dobra)
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 8 ROK SZKOLNY 2018/2019 OPARTE NA PROGRAMIE NAUCZANIA MATEMATYKI W SZKOLE PODSTAWOWEJ MATEMATYKA Z PLUSEM Wymagania na poszczególne oceny konieczne (ocena dopuszczająca)
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);
Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,
szacować wyniki działań, zaokrąglać liczby do podanego rzędu, zapisywać i odczytywać liczby naturalne w systemie rzymskim, podać rozwinięcie dziesiętne ułamka zwykłego, odczytać współrzędną punktu na osi
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby
WYMAGANIA EDUKACYJNE Z MATEMATYKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje
Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych ocen klasyfikacyjnych z matematyki klasa 8
Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych ocen klasyfikacyjnych z matematyki klasa 8 Stopień Potęgi i pierwiastki oblicza wartości potęg o wykładniku całkowitym dodatnim
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające
DOSTOSOWANIE WYMAGAŃ Z MATEMATYKI KLASA VII DO INDYWIDUALNYCH POTRZEB UCZNIA
DOSTOSOWANIE WYMAGAŃ Z MATEMATYKI KLASA VII DO INDYWIDUALNYCH POTRZEB UCZNIA Opinia PPP.4223.418.2015 Dostosowanie w zakresie poziomu wymagań - unikanie odpytywania głośnego czytania na forum klasy (zwracanie
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III GIMNAZJUM NA ROK SZKOLNY 2017/2018
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III GIMNAZJUM NA ROK SZKOLNY 2017/2018 1. Ocena niedostateczna: Uczeń nie opanował wiadomości i umiejętności przewidzianych podstawą programową.
Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)
Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością
PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI
Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
O liczbach niewymiernych
O liczbach niewymiernych Agnieszka Bier Spotkania z matematyką jakiej nie znacie ;) 8 stycznia 0 Liczby wymierne i niewymierne Definicja Liczbę a nazywamy wymierną, jeżeli istnieją takie liczby całkowite
Osiągnięcia ponadprzedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu
Liczby. Wymagania programowe kl. VII. Dział
Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do
Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:
Zakres tematyczny - PINGWIN Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania: zapisywanie i porównywanie liczb rachunki pamięciowe porównywanie
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry