PROBABILISTIC ANALYSIS OF THE CYCLICAL FLUCTUATIONS ON THE BUSINESS CYCLE CLOCK: THE CASE OF VISEGRAD GROUP 1
|
|
- Leszek Marczak
- 5 lat temu
- Przeglądów:
Transkrypt
1 F O L I A O E C O N O M I C A C R A C O V I E N S I A Vol. LVIII (2017) PL ISSN X PROBABILISTIC ANALYSIS OF THE CYCLICAL FLUCTUATIONS ON THE BUSINESS CYCLE CLOCK: THE CASE OF VISEGRAD GROUP 1 ŁUKASZ LENART Cracow University of Economics, Department of Mathematics lenartl@uek.krakow.pl STRESZCZENIE Ł. Lenart. Analiza probabilistyczna wahań cyklicznych na zegarze cyklu: Analiza dla państw grupy wyszehradzkiej. Folia Oeconomica Cracoviensia 2017, 58: W artykule przedstawiono metodologię wyznaczania rozkładu predyktywnego dla położenia punktów na zegarze cyklu koniunkturalnego. Metodologia ta oparta jest na kilkustopniowej procedurze, polegającej na wyznaczeniu rozkładu predyktywnego analizowanej zmiennej oraz zastosowaniu metod filtracji. Podejście to umożliwia, miedzy innymi, wyznaczenie prawdopodobieństw związanych z położeniem punktów zegara w danej ćwiartce układu współrzędnych. Wyniki empiryczne przedstawiono dla gospodarek grupy wyszehradzkiej. W przypadku rozważanych gospodarek, podejście probabilistyczne pozwoliło na oszacowanie szans wejścia w daną fazę aktywności gospodarczej dla przeszłych, obecnych oraz przyszłych chwil czasowych. Ze względu na zastosowanie klasy modeli SARIMA uzyskane wyniki prognozy poza okres rozważanej próby nie wskazują na wysokie prawdopodobieństwa osiągnięcia danej fazy cyklu. W większości przypadków prawdopodobieństwa wystąpienia danej fazy cyklu stabilizują się na równym poziomie wraz ze wzrostem horyzontu prognozy (po ok. 1/4). Sugeruje to potrzebę wykorzystania modeli zawierających komponenty cykliczne o charakterze stochastycznym lub deterministycznym. ABSTRACT The paper investigates a methodology for determining the predictive distribution for the position of the points on a business cycle clock. The presented methodology is based on a multi-step procedure, which consists in determining the predictive distribution of the analyzed variable and applying the filtration methods. The presented approach allows, among other things, to determine the probabilities associated with the position of the clock points in a quadrant of the coordinate 1 This publication was financed from the funds granted to the Faculty of Finance and Law at Cracow University of Economics, within the framework of the subsidy for the maintenance of research potential.
2 106 system. Empirical results were presented for the Visegrad Group economies. For the economies considered, the probabilistic approach allowed us to estimate the probabilities of entering a given phase of economic activity for past, present and future time. The predictive distributions, beyond the period under consideration, do not indicate the high probability of achieving a particular phase of the cycle. In most cases, the probability of a given cycle phase stabilizes at the same level, as the forecast horizon increases (approximately 1/4). This suggests the need to use models containing stochastic or deterministic cyclical components. SŁOWA KLUCZOWE KEY WORDS zegar cyklu koniunkturalnego, filtr HP, prognoza wahań cyklicznych, model SARIMA business cycle clock, HP filtration, prediction for cyclical fluctuations, SARIMA model 1. INTRODUCTION Business Cycle Clock (BCC in short) is a popular tool for monitoring business activity in an intuitive way. The main purpose of the classical BCC is to clearly visualize the dynamics of economic activity (expansion, slowdown, recession and recovery). This is achieved by using the simple (two-dimensional) clock type graph. For Europe s economies the most popular BCC is the clock presented by Eurostat. Based on the gross domestic product, this tool determines the growth cycle for selected European economies and graphically illustrates the current cyclical position using the business cycle clock. They consider the six phases of the cycle clock: sector 1 expansion, with decelerating growth; sector 2 slowdown; sector 3 recession; sector 4 recession, with accelerating growth; sector 5 recovery; sector 6 expansion, with accelerating growth (see to Mazzi et al. (2015) for more details). Note that, the business cycle clock can be directly determined by the deviation cycle. Therefore, only the correctly determined deviation cycle can be useful from a practical point of view. Unfortunately, in such a case, a controversial procedure called detrending may be the source of uncertainty for the points position on the BCC. Note that, there are several different filtration methods to extract the business cycle form a observed time series. The most popular is the Hodrick Prescott filter (HP) see Hodrick and Prescott (1997), Baxter King filter (BK) see Baxter and King (1999) and Christiano Fitzgerald filter (CF) see Christiano and Fitzgerald (2003). Uncertainty related to the points position on the BCC can have different sources. One source is the arbitrary selection of the filtration method. However, in this article we are not comparing the results for different filtration methods. We only consider the HP filtration method. The problem of choosing the filtration method was discussed by de Haan et al. (2008), Canova (1998), Estrella (2007), Burnside (1998), and many others. Another source of uncertainty on the business cycle clock is the uncertainty related to the future economic situation. Let us note that the popular methods
3 107 that extract the deviation cycle use full sample. Therefore, new observations can significantly change the points position on the BCC. This may cause other conclusions regarding current or past cyclical position. The main purpose of this article is to analyze the uncertainty associated only with the future economic situation. In this paper we would like to shed only light on this problem. We use a simple SARIMA model (without classical cyclical component) to predict (observed time series) future economic situation. Finally, we determine the predictive distribution for the growth cycle and the predictive distribution for the points position on the BCC. We are not interested in details in choosing the best predictive model. Chapter 2 presents the data used in the empirical analysis. Chapter 3 presents the methodology for determining the predictive distribution for the deviation cycle and the predictive distribution for the points position on the BCC. Chapter 4 provides an analysis of empirical data, where the time series on GDP for the Visegrad Group economies are used. 2. DATA PRESENTATION AND PREPARATION We consider GDP and main components (output, expenditure and income), chain linked volumes (index 2010=100), unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) in Visegrad Group (V4) the Czech Republic, Hungary, Poland and Slovakia. The series start in the first quarter of 2002 and ends in the last quarter of 2016 (60 observations, 15 years). Before the main analysis we take the natural logarithm of the considered time series, to stabilize the amplitude. In order to eliminate the seasonal fluctuations we use simple centered moving average (2x4MA). The Figure 1 presents the logarithm of the data with centered moving average 2x4MA. Figure 1. The logarithm of GDP and main components (index 2010=100), in Visegrad Group countries from Q to Q (dark line) with centered moving average 2x4MA (gray line)
4 THE BUSINESS CYCLE FLUCTUATIONS AND THE FORECASTING METHODOLOGY Let " Pt t :! Z, be observed time series and let " Pt t t :! Z, be the 2x4MA process for the logarithm of " Pt : Z,, i.e., t! P t = 6 ln ^ P h+ 2ln ^ P h+ 2ln ^ Ph+ 2ln ^ P h+ ln ^ P h@ / 8. t t-2 t- 1 t t+ 1 t+ 2 To obtain the cyclical fluctuations we use standard Hodrick and Prescott see Hodrick and Prescott (1997) filter for the process " Pt t t :! Z,, with smoothing parameter denoted by λ. For simplicity, we denote the Hodrick and Prescott filter, with smoothing parameter λ, by HP(λ). The cyclical process obtained by HP(λ) filter we denote by " CHP, m, t : t! Z,. For the finite sample P t, P t 1 2, f, P t we use standard HP filtration procedure, n by using simple matrix multiplication. Under the matrix notation and C = 6 C, C,, HP,, n HP,, 1 HP,, 2 f l m m m HP, m, n Pt = 6 Pt 1, Pt 2, fpt l, the cyclical component C HP,λ is obtained via C = HP P t, HP, m, n m, n ) where HP λ,n = [r ij ] is n n symmetric matrix with all non-zero elements given by r ij Z ] 6 ]- 4 ] 1 = [ ] 5 ]- 2 ] 1 \ for i = j and i = 34,, f, n- 2 for i- j = 1 and i = 2, 3, f, n- 1 for i- j = 2 and i = 1, 2, f, n for i = j = 2 for i- j = 1 and i! " 1, n, for i = j and i! " 1, n,. Note that, the cyclical component C HP,λ,n depends on considered sample P t and the smoothing parameter λ. Based on cyclical component C HP,λ,n the path on the business cycle clock is defined via bivariate sequence of the points BCC HP, m, n = 6 ^C HP, m, 2 - C HP, m, 1, C HP, m, 2 h, ^C HP, m, 3 - C HP, m, 2, C HP, m, 3 h, f, ^C HP, m, n - C HP, m, n - 1, C HP, m, n h@ l (see to Lenart and Pipień (2016) and Lenart and Pipień (2013) for the related problems). Therefore, if the sample is expanded the actual path on the business
5 109 cycle clock may change compared with the past path (for fixed time interval). To clarify this problem we consider some illustrative example. We evaluate the path on the business cycle clock based on GDP in Poland for two samples. The first ends in the last quarter of 2016 and the second ends at the first quarter of Taking into account used methodology (described above), for the first sample the last point for the path on business cycle clock is related to the second quarter of 2016, while for the second sample to the third quarter of In both cases we fix λ = Figure 2. The paths on the business cycle clock for two samples. The case of Poland The results shown in Figure 2 clearly indicate that the points position on a business cycle clock at a given time is determined by the range of the sample. Note that, the above paths on the business cycle clock are smooth enough to assess the economic situation. Unfortunately, the future unknown economic situation is not taken into account here. This is a source of uncertainty for the present points position and as well as for the past and future. To investigate the uncertainty for the points position on the business cycle clock we evaluate the forecast for the future observations of observed time series. Let Pr h = 6 Pr n, Pr + 1 n+ 2, f, Pr n+ h@ be the h variate predictive distribution (conditional on P t ) for the horizons 1,2,, h. Then, the distribution of the cyclical fluctuations can be defined in the natural way via: C = HP ) 6 P t, P t, f, P t, P r, P r, f, P l HP, m, n, h m, n + h 1 2 n n + 1 n + 2 n + h In the same manner we define the distribution for the path on the business cycle clock BCC HP,λ,n,h. Note that, if the distribution of the vector Pr h is normal, then both C HP,λ,n,h and BCC HP,λ,n,h has multivariate normal distributions.
6 110 Note that the methodology presented above differs from very well-known model of cyclical fluctuations based on unobserved components; see for example to Harvey and Jaeger (1993) and Hervey et al. (2007). The above-mentioned construct assumes that: * P = n + } n,t + f nt = nt-1+ bt-1 b = b + g, t t t t t- 1 t where f t + NID ^ 0, R fh and g t + NID ^ 0, R gh, and the vector cycle ψ n,t is a generalization of cycle ψ 1,t presented in Harvey and Jeager (1993). The higher n the stronger mass concentration for the spectral density in an neighborhood of unknown frequency. To obtain smooth path for cyclical fluctuations the appropriate high n should be considered. For more details see to Trimbur (2006), Harvey and Trimbur (2003), Koopman and Shephard (2015), Pelagatti (2016), Azevedo et al. (2006), Harvey et al. (2007), Koopman and Azevedo (2008). 4. ILLUSTRATIVE EMPIRICAL EXAMPLE The predictive distribution for logarithm of the observed process " Pt t :! Z, is evaluated using simple class of seasonal ARIMA models. We consider SARIMA (p, d, q) (P, D, Q) 4 models with the following restrictions: 0 p, q 5, 0 P, Q 3, 0 d, D 1. For each particular model we calculate the value of AIC. Finally, we chose model with minimal AIC. It is known that a better fit in the sample does not necessary provide more accurate forecasts for cyclical fluctuations. But the aim of this paper is to show only the illustrative example, rather than comprehensive discussion. Note that such class of models is not popular in business cycle fluctuations analysis. We use this class to show only a simple illustrative example. Table 1 shows the final models with minimal AIC, for each country respectively. Table 1 The model with minimal AIC Country Model specification (with minimal AIC) Czech Republic SARIMA(0,1,0)(1,1,2) 4 Hungary SARIMA(1,0,3)(0,1,0) 4 Poland SARIMA(0,1,0)(0,1,1) 4 Slovakia SARIMA(3,1,0)(0,1,1) 4
7 111 For each country, the predictive distribution has been evaluated, with h = 12. Then, the 50 thousands samples from predictive distribution was determined. The sample period covers the period from first quarter of 2002 to fourth quarter of The prediction period covers the period from the first quarter of 2017 to the fourth quarter of In the next step, the predictive distribution for centered moving average (2x12MA) process was evaluated, by using previous samples. Hence, the forecast period for centered moving average process covers the period from the third quarter of 2016 to the second quarter of Finally, samples for the predictive distribution for the vectors C HP,λ,n,h and BCC HP,λ,n,h has been evaluated. Based on the above predictive distributions, for each point from the path on business cycle clock BCC HP,λ,n,h, the probability of being in the first (expansion), second (slowdown), third (recession) and fourth (recovery) quadrant was approximated. The results are shown in Figure 3 for Czech Republic, Figure 6 for Hungary, Figure 9 for Poland and Figure 12 for Slovakia. The median of the cyclical fluctuations (obtained by HP procedure) with 60% and 90% prediction intervals are presented in Figure 4 for Czech Republic, Figure 7 for Hungary, Figure 10 for Poland and Figure 13 for Slovakia. Finally, for each time series, we present the boundary of the 90% prediction area for the points position on business cycle clock concerning period from the second quarter of 2016 to the second quarter of 2017 (Figures: 5,8,11,14). For each predictive distribution we consider four smoothing parameters λ of HP filtration, which corresponds to 5, 8, 10 and 12 years, respectively. Presented results may indicate the most likely scenario for the economic situation. Below, we formulate the exemplary interpretation for the obtained results. In the case of Czech Republic, based on the predictive distribution, the most likely in the first, second and third quarter of 2016 is the slowdown. For each considered smoothing parameters λ, the probability of slowdown is higher than The probability of the recession and recovery is less likely for the higher smoothing parameter λ. For smoothing parameter λ, which corresponds to 12 years, the probability of the recession or recovery is less than 0.25 at each quarter during period from 2016 to In the case of Hungary, the bigger parameter λ, the smaller probability of recession and recovery in 2016 and In addition, the bigger parameter λ, the higher correlation in (bivariate) predictive distribution for the points position on business cycle clock for second quarter of 2016 and for third quarter of 2016 (see Figure 8, first and second column). This fact is observed also for other analyzed countries. In the fourth quarter of 2016 the results for λ corresponding to 8, 10, 12 years indicate that the less likely is the recession (probability below 0,2) and the recovery (probability below 0,05). For Poland the predictive distribution for cyclical fluctuations (see Figure 10) shows that during the period from the third quarter of 2016 to the fourth quarter
8 112 of 2017 the probability of expansion, slowdown, recession and recovery stabilize on the level approx. 1/4. Although the amplitude of cyclical fluctuations for Poland is stable over time, the predictive distributions beyond the sample do not indicate a clear entry into any phase of the business cycle. Probably, this is a consequence of simplicity of model that was chosen. After a great crisis, the growth cycle for Slovakia was flattened. Predictive distributions indicate a much lower amplitude value than during the great crisis and directly before it. This distinguishes Slovakia from Poland, for which the amplitude of cyclical fluctuations throughout the analysis period is stable over considered time. In the case of Slovakia, the predictive distributions for the points position on the business cycle clock (in the period under consideration from the second quarter of 2016 to the second quarter of 2017) are characterized by the largest dispersion (measured by variance) compared to the distributions for other considered economies. In the fourth quarter of 2016, only for the Czech Republic and Hungary, the estimated probabilities indicate a greater chance of expansion or slowdown than recession or recovery. In addition, these probabilities increase with the increase of the smoothing parameter λ. For Poland and Slovakia these probabilities have comparative values. The above results suggest the need to include more sophisticated predictive models. The extended analysis should take into account the cyclical nature of the variables being analyzed. Both models with stochastic as well as deterministic nature see Lenart and Mazur (2016), Lenart et al. (2016), Mazur (2016), Mazur (2017a), Mazur (2017b) of cyclical fluctuations can be used.
9 113 Figure 3. The probability of expansion (first quadrant), slowdown (second quadrant), recession (third quadrant) and recovery (fourth quadrant) for Czech Republic
10 114 Figure 4. The median (solid line) of cyclical fluctuations obtained by HP filtration with 60% and 90% prediction bounds (dotted lines). The case of Czech Republic
11 115 Figure 5. The boundary (solid line) of 90% prediction area for the points position on business cycle clock. The case of Czech Republic
12 116 Figure 6. The probability of expansion (first quadrant), slowdown (second quadrant), recession (third quadrant) and recovery (fourth quadrant) for Hungary
13 117 Figure 7. The median (solid line) of cyclical fluctuations obtained by HP filtration with 60% and 90% prediction bounds (dotted lines). The case of Hungary
14 118 Figure 8. The boundary (solid line) of 90% prediction area for the points position on business cycle clock. The case of Hungary
15 119 Figure 9. The probability of expansion (first quadrant), slowdown (second quadrant), recession (third quadrant) and recovery (fourth quadrant) for Poland
16 120 Figure 10. The median (solid line) of cyclical fluctuations obtained by HP filtration with 60% and 90% prediction bounds (dotted lines). The case of Poland
17 121 Figure 11. The boundary (solid line) of 90% prediction area for the points position on business cycle clock. The case of Poland
18 122 Figure 12. The probability of expansion (first quadrant), slowdown (second quadrant), recession (third quadrant) and recovery (fourth quadrant) for Slovakia
19 123 Figure 13. The median (solid line) of cyclical fluctuations obtained by HP filtration with 60% and 90% prediction bounds (dotted lines). The case of Slovakia
20 124 Figure 14. The boundary (solid line) of 90% prediction area for the points position on business cycle clock. The case of Slovakia
21 CONCLUSIONS In this paper we investigate the problem of determining the prediction distributions for points position on business cycle clock. Our finding is that for present and past time the prediction distribution for points position on BCC may be marked by strong correlation between coordinates. This finding may help us to assess the actual and the past economic situation much better. In the empirical example the only SARIMA models were considered. By only applying this class of models, the ability to formulate conclusions is limited. The more advanced predictive distributions with cyclical component should be considered. Furthermore, the multivariate forecasting model for the whole Visegrad Group would allow to determine the probability of the same cycle phase for all analyzed economies. This give the opportunity to determine the degree of synchronization of cyclical fluctuations in probabilistic categories. REFERENCES Azevedo J., Koopman S., Rua A. (2006), Tracking the business cycle of the euro area: a multivariate model-based band-pass filter, Journal of Business & Economic Statistics 24(3), Baxter M., King R.G. (1999), Measuring Business Cycles: Approximate Band Pass Filters For Economic Time Series, The Review of Economics and Statistics, MIT Press, 81(4), Burnside C. (1998), Detrending and business cycle facts: a comment, Journal of Monetary Economics, 41, Canova F. (1998), Detrending and Business Cycle Facts, Journal of Monetary Economics, 41, Christiano L.J., Fitzgerald T.J. (2003), The Band Pass Filter, International Economic Review, 44, de Haan J., Inklaar R., Jong-A-Pin R. (2008), Will Business Cycles In The Euro Area Converge? A Critical Survey of Empirical Research, Journal of Economic Surveys vol. 22, Estrella A. (2007), Extracting Business Cycle Fluctuations: What Do Time Series Filters Really Do? Staff Report 289, Federal Reserve Bank of New York. Harvey A., Jaeger A. (1993), Detrending, Stylized Facts and the Business Cycle, Journal of Applied Econometrics, 8, Harvey A., Trimbur T., Van Dijk H. (2007), Trends and Cycles in Economic Time Series: A Bayesian Approach, Journal of Econometrics, 140, Harvey A., Trimbur T. (2003), General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series, The Review of Economics and Statistics, 85(2), Hodrick R., Prescott E. (1997), Postwar U.S. Business Cycles: An Empirical Investigation, Journal of Money, Credit and Banking, 29, Koopman S.J., Shephard N. (2015), Unobserved Components and Time Series Econometrics, Oxford University Press, Oxford. Koopman S., Azevedo J. (2008), Measuring Synchronization and Convergence of Business Cycles for the Euro Area, UK and USA, Oxford Bulletin of Economics and Statistics, 70(1), Lenart Ł., Pipień M. (2013), Almost Periodically Correlated Time Series in Business Fluctuations Analysis, Acta Physica Polonica A, 123(3),
22 126 Lenart Ł., Pipień M. (2016), Koncepcja wstęgowego zegara cyklu koniunkturalnego w ujęciu nieparametrycznym, Przegląd Statystyczny 63(4), Lenart Ł., Mazur B. (2016), On Bayesian estimation of almost periodic in mean autoregressive models, Przegląd Statystyczny, 63(3): Lenart Ł., Mazur B., Pipień M. (2016), Statistical analysis of business cycle fluctuations in Poland before and after the crisis, Equilibrium, Quarterly Journal of Economics and Economic Policy, 11(4), Mazur B. (2016), Growth Cycle Analysis: the case of Polish Monthly Macroeconomic Indicators, Folia Oeconomica Cracoviensia, 57, Mazur B. (2017a), Density Forecasts of Polish Industrial Production: a Probabilistic Perspective on Business Cycle Fluctuations, Working Papers, 75/2017, Institute of Economic Research, revised May 2017, Mazur B. (2017b), Probabilistic Prediction Using Disaggregate Data: The Case of Value Added in Poland, Folia Oeconomica Cracoviensia, 58: Mazzi G.L. (2015), Complementing scoreboards with composite indicators: the new business cycle clock, EURONA Eurostat Review on National Accounts and Macroeconomic Indicators, 02/2015, Luxembourg, Pelagatti M. (2016), Time Series Modelling with Unobserved Components, Taylor & Francis Group, Boca Raton. Trimbur T. (2006), Properties of Higher Order Stochastic Cycles, Journal of Time Series Analysis, 27, 1 17.
Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005
Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and
Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment
Cracow University of Economics Poland
Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Paweł Lula Cracow University of Economics, Poland pawel.lula@uek.krakow.pl Latent Dirichlet Allocation (LDA) Documents Latent
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some
Institutional Determinants of IncomeLevel Convergence in the European Union: Are Institutions Responsible for Divergence Tendencies of Some Countries? Dr Mariusz Próchniak Katedra Ekonomii II, Szkoła Główna
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL Formanminsidemlookmatmpoliticsxmculturexmsocietymandm economyminmthemregionmofmcentralmandmeasternm EuropexmtheremismnomothermsourcemlikemNew Eastern EuropeImSincemitsmlaunchminmPw--xmthemmagazinemhasm
Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach
UNIWERSTYTET EKONOMICZNY W POZNANIU WYDZIAŁ EKONOMII Mgr Marta Majtkowska Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach 2002-2013 Streszczenie rozprawy
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Latest Development of Composite Indicators in the Czech Republic
Latest Development of Composite Indicators in the Czech Republic Marie Hörmannová Czech Statistical Office Aim of the presentation: describe the current economic development as reflected by the composite
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Instructions for student teams
The EduGIS Academy Use of ICT and GIS in teaching of the biology and geography subjects and environmental education (junior high-school and high school level) Instructions for student teams Additional
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Has the heat wave frequency or intensity changed in Poland since 1950?
Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures
Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)
Czy mobilność pracowników uczelni jest gwarancją poprawnej realizacji mobilności studentów? Jak polskie uczelnie wykorzystują mobilność pracowników w programie Erasmus+ do poprawiania stopnia umiędzynarodowienia
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards
INSPIRE Conference 2010 INSPIRE as a Framework for Cooperation Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards Elżbieta Bielecka Agnieszka Zwirowicz
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)
PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 Maciej Foremny 1, Szymon Gudowski 2, Michał Malesza 3, Henryk Bąkowski 4 TRIBOLOGICAL WEAR ESTIMATION OF THE ENGINE OILS USED IN DRIFTING 1. Introduction
!850016! www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C,
OSTC GLOBAL TRADING CHALLENGE MANUAL
OSTC GLOBAL TRADING CHALLENGE MANUAL Wrzesień 2014 www.ostc.com/game Po zarejestrowaniu się w grze OSTC Global Trading Challenge, zaakceptowaniu oraz uzyskaniu dostępu to produktów, użytkownik gry będzie
Procesy cykliczne w gospodarce Polski
Procesy cykliczne w gospodarce Polski Marta Skrzypczyńska 1 Streszczenie Współczesny cykl koniunkturalny objawia się wahaniami poziomu mierników aktywności gospodarczej wokół długookresowego trendu lub
Updated Action Plan received from the competent authority on 4 May 2017
1 To ensure that the internal audits are subject to Response from the GVI: independent scrutiny as required by Article 4(6) of Regulation (EC) No 882/2004. We plan to have independent scrutiny of the Recommendation
photo graphic Jan Witkowski Project for exhibition compositions typography colors : +48 506 780 943 : janwi@janwi.com
Jan Witkowski : +48 506 780 943 : janwi@janwi.com Project for exhibition photo graphic compositions typography colors Berlin London Paris Barcelona Vienna Prague Krakow Zakopane Jan Witkowski ARTIST FROM
POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik
POLITECHNIKA WARSZAWSKA Wydział Zarządzania ROZPRAWA DOKTORSKA mgr Marcin Chrząścik Model strategii promocji w zarządzaniu wizerunkiem regionu Warmii i Mazur Promotor dr hab. Jarosław S. Kardas, prof.
Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu
IONS-14 / OPTO Meeting For Young Researchers 2013 Khet Tournament On 3-6 July 2013 at the Faculty of Physics, Astronomy and Informatics of Nicolaus Copernicus University in Torun (Poland) there were two
Krytyczne czynniki sukcesu w zarządzaniu projektami
Seweryn SPAŁEK Krytyczne czynniki sukcesu w zarządzaniu projektami MONOGRAFIA Wydawnictwo Politechniki Śląskiej Gliwice 2004 SPIS TREŚCI WPROWADZENIE 5 1. ZARZĄDZANIE PROJEKTAMI W ORGANIZACJI 13 1.1. Zarządzanie
Country fact sheet. Noise in Europe overview of policy-related data. Poland
Country fact sheet Noise in Europe 2015 overview of policy-related data Poland April 2016 The Environmental Noise Directive (END) requires EU Member States to assess exposure to noise from key transport
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT
Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society
Prof. Piotr Bledowski, Ph.D. Institute of Social Economy, Warsaw School of Economics local policy, social security, labour market Unit of Social Gerontology, Institute of Labour and Social Studies ageing
Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc
Raport bieżący: 44/2018 Data: 2018-05-23 g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Zawiadomienie o zmianie udziału w ogólnej liczbie głosów w Serinus Energy plc Podstawa prawna: Inne
Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form
Formularz recenzji magazynu Review Form Identyfikator magazynu/ Journal identification number: Tytuł artykułu/ Paper title: Recenzent/ Reviewer: (imię i nazwisko, stopień naukowy/name and surname, academic
Akademia Morska w Szczecinie. Wydział Mechaniczny
Akademia Morska w Szczecinie Wydział Mechaniczny ROZPRAWA DOKTORSKA mgr inż. Marcin Kołodziejski Analiza metody obsługiwania zarządzanego niezawodnością pędników azymutalnych platformy pływającej Promotor:
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
P R A C A D Y P L O M O W A
POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu P R A C A D Y P L O M O W A Autor: inż. METODA Ε-CONSTRAINTS I PRZEGLĄDU FRONTU PARETO W ZASTOSOWANIU DO ROZWIĄZYWANIA PROBLEMU OPTYMALIZACJI
CEE 111/211 Agenda Feb 17
CEE 111/211 Agenda Feb 17 Tuesday: SW for project work: Jetstream, MSP, Revit, Riuska, POP, SV On R: drive; takes time to install Acoustics today: \\cife server\files\classes\cee111\presentations Thursday:
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia
INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS
Kompozyty 11: 2 (2011) 130-135 Krzysztof Dragan 1 * Jarosław Bieniaś 2, Michał Sałaciński 1, Piotr Synaszko 1 1 Air Force Institute of Technology, Non Destructive Testing Lab., ul. ks. Bolesława 6, 01-494
Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)
Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa
Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Asking whether there are commission fees when you withdraw money in a certain country
- General Can I withdraw money in [country] without paying fees? Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Asking whether there are commission fees when you withdraw money in a certain
QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: ORGANIZACJA I ZARZĄDZANIE z. 74 Nr kol. 1921 Adrian KAPCZYŃSKI Politechnika Śląska Instytut Ekonomii i Informatyki QUANTITATIVE AND QUALITATIVE CHARACTERISTICS
DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES
KATY MCKEOUGH XIAO-LI MENG, VINAY KASHYAP, ANETA SIEMIGINOWSKA, DAVID VAN DYK, SHIHAO YANG, LUIS CAMPOS, DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES INTRODUCTION SCIENTIFIC MOTIVATION
2014-3-30. Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów
Wykonanie pomiarów sygnałów wibroakustycznych przy stałych oraz zmiennych warunkach eksploatacyjnych na stanowisku testowym. Część II: Analiza poprawności pomiarów. Autorzy: Urbanek J., Jabłoński A., Barszcz
Asking whether there are commission fees when you withdraw money in a certain country
- General Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Can I withdraw money in [country] without paying fees? Asking whether there are commission fees when you withdraw money in a certain
JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE
MACIEJ MATASEK JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE 1 Copyright by Wydawnictwo HANDYBOOKS Poznań 2014 Wszelkie prawa zastrzeżone. Każda reprodukcja lub adaptacja całości bądź części
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Click here if your download doesn"t start automatically
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH
INŻYNIERIA W ROLNICTWIE. MONOGRAFIE 16 ENGINEERING IN AGRICULTURE. MONOGRAPHS 16 WIESŁAW GOLKA TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH TRANSPORTATION IN RURAL FAMILY FARMS Falenty 2014 WYDAWNICTWO
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta www.michalbereta.pl 1. Przekształcenia atrybutów (ang. attribute reduction / transformation, feature extraction). Zamiast wybierad częśd atrybutów
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
UMOWY WYPOŻYCZENIA KOMENTARZ
UMOWY WYPOŻYCZENIA KOMENTARZ Zaproponowany dla krajów Unii Europejskiej oraz dla wszystkich zainteresowanych stron wzór Umowy wypożyczenia między muzeami i instytucjami kultury opracowany został przez
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA mgr inż. Piotr Smurawski ANALIZA CYKLU ŻYCIA SAMOCHODÓW OSOBOWYCH Z UWZGLĘDNIENIEM PROCESÓW OBSŁUGOWO-NAPRAWCZYCH Praca wykonana pod
The impact of the global gravity field models on the orbit determination of LAGEOS satellites
models on the Satelitarne metody wyznaczania pozycji we współczesnej geodezji i nawigacji, Poland 2-4.06.2011 Krzysztof Sośnica, Daniela Thaller, Adrian Jäggi, Rolf Dach and Gerhard Beutler Astronomical
Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)
MODULE DESCRIPTION Module code Module name Metody probabilistyczne i statystyka Module name in English Probabilistic Methods and Statistics Valid from academic year 2012/2013 MODULE PLACEMENT IN THE SYLLABUS
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
ZDANIA ANGIELSKIE W PARAFRAZIE
MACIEJ MATASEK ZDANIA ANGIELSKIE W PARAFRAZIE HANDYBOOKS 1 Copyright by Wydawnictwo HANDYBOOKS Poznań 2014 Wszelkie prawa zastrzeżone. Każda reprodukcja lub adaptacja całości bądź części niniejszej publikacji,
F-16 VIRTUAL COCKPIT PROJECT OF COMPUTER-AIDED LEARNING APPLICATION WEAPON SYSTEM POWER ON PROCEDURE
GRZESIK Norbert 1 Virtual cockpit, computer-aided learning application, maintenance procedures F-16 VIRTUAL COCKPIT PROJECT OF COMPUTER-AIDED LEARNING APPLICATION WEAPON SYSTEM POWER ON PROCEDURE Author,
Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw
Strategic planning Jolanta Żyśko University of Physical Education in Warsaw 7S Formula Strategy 5 Ps Strategy as plan Strategy as ploy Strategy as pattern Strategy as position Strategy as perspective Strategy
Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
Maximum A Posteriori Chris Piech CS109, Stanford University
Maximum A Posteriori Chris Piech CS109, Stanford University Previously in CS109 Game of Estimators Estimators Maximum Likelihood Non spoiler alert: this didn t happen in game of thrones aaab7nicbva9swnbej2lxzf+rs1tfomqm3anghywarvlcoydkjpsbfasjxt7x+6cei78cbslrwz9pxb+gzfjfzr4yodx3gwz84jecoou++0u1ty3nrek26wd3b39g/lhucveqwa8ywiz605adzdc8sykllytae6jqpj2ml6d+e0nro2i1qnoeu5hdkhekbhfk7u7j1lvne/75ypbc+cgq8tlsqvynprlr94gzmneftjjjel6boj+rjukjvm01esntygb0yhvwqpoxi2fzc+dkjordegya1skyvz9pzhryjhjfnjoiolilhsz8t+vm2j47wdcjslyxralwlqsjmnsdziqmjoue0so08lestiiasrqjlsyixjll6+s1kxnc2ve/wwlfpphuyqtoiuqehafdbidbjsbwrie4rxenmr5cd6dj0vrwclnjuepnm8fuskpig==
Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Asking whether there are commission fees when you withdraw money in a certain country
- General Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Asking whether there are commission fees when you withdraw money in a certain country Jakie opłaty obowiązują za korzystanie z obcych