Nie tylko prąd i ciepło lecz również odsalanie - nie tylko na ziemi, ale i na wodzie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nie tylko prąd i ciepło lecz również odsalanie - nie tylko na ziemi, ale i na wodzie"

Transkrypt

1 Nie tylko prąd i ciepło lecz również odsalanie - nie tylko na ziemi, ale i na wodzie Powstanie i rozwój energetyki jądrowej w Rosji należy rozpatrywać w okresie, kiedy istniał jeszcze Związek Radziecki. To właśnie w Związku Radzieckim w 1954 r. uruchomiono pierwszą w świecie elektrownię jądrową w Obninsku, 105 km na południowy-zachód od Moskwy. Elektrownia ta - jak na obecne warunki - była małym obiektem o mocy zaledwie 5 MWe (moc cieplna 30 MW). Energii cieplnej dostarczał reaktor o konstrukcji kanałowej z moderatorem grafitowym, chłodzony zwykłą wodą, dwuobiegowy. W obiegu pierwotnym woda pod ciśnieniem 10 MPa przepływając przez rdzeń reaktora, odbierała ciepło, temperatura wody na wyjściu z reaktora wynosiła st. C. Ciepło to było z kolei przekazywane w obiegu wtórnym w czterech wymiennikach ciepła, gdzie wytwarzana była para o parametrach ciśnienie 1,25 MPa i temperaturze st. C. Ponieważ w Obninsku istniał Instytut Atomowy (utworzony w grudniu 1945 r.), gdzie opracowywano i budowano nowe typy reaktorów (reaktory na neutrony prędkie, reaktory napędowe dla okrętów podwodnych czy reaktory zasilające sztuczne satelity), a także szkolono załogi atomowych okrętów podwodnych, cała wytwarzana przez tę elektrownię energia elektryczna była zużywana wyłącznie do zasilania urządzeń i potrzeb własnych Instytutu. Stąd też elektrownię tę trudno jest uznać za komercyjną. Reaktor AM-1 wytwarzał energię elektryczną przez pięć pierwszych lat, po czym był on eksploatowany nadal, ale już jako reaktor badawczy. W maju 2002 r., a wiec po 48 latach eksploatacji, reaktor AM-1 został całkowicie wyłączony z eksploatacji i przewidziany do dalszego zagospodarowania już jako obiekt muzealny. W oparciu o doświadczenia zebrane na reaktorze AM-1 w latach r. uruchomiono sześć reaktorów podobnego typu, ale o większej mocy tj. 100 MWe w elektrowni Troick na Syberii (obecnie również już nie pracują), które jednak nieco różniły się od prototypu w Obninsku. Mianowicie posiadały one dwa obiegi technologiczne: jeden wodny i drugi parowy, stąd też przyjęło się określać je jako LWGR (Light Water Graphite Reactor). Na bazie reaktora AM-1 z Obninska, w 1964 r. opracowano i uruchomiono reaktory kanałowe drugiej generacji w elektrowni Biełojarsk 1 (100 MWe) i w 1967 r. Biełojarsk 2 (200 MWe). Reaktory te konstruowano z myślą o uzyskaniu jak największej sprawności cieplnej elektrowni, stąd też - podobnie jak w elektrowniach konwencjonalnych - zastosowano w nich przegrzew pary. Parametry techniczne drugiego bloku były następujące: moc cieplna 530 MW, moc elektryczna 200 MW, sprawność brutto 37,4%, ciśnienie pary przed turbiną 9 MPa, temperatura pary 510 st. C, liczba wszystkich kanałów 998 (z czego 266 przeznaczonych do przegrzewu jądrowego), a średnie wzbogacenie paliwa 3%. Na podstawie doświadczeń zdobytych podczas pracy dwóch reaktorów w elektrowni w Biełojarsku, opracowano nowy typ reaktora energetycznego dużej mocy, tzw. RBMK (Reaktor Bolszoj Moszcznosti Kanalnyj) który stał się niejako standardem budowanych kolejnych bloków w ZSRR. Reaktory kanałowe typu RBMK dają możliwość rozbudowy do dużej mocy jednostkowej, nie mają bowiem grubościennego zbiornika ciśnieniowego). Reaktor ten pracuje z jednym obiegiem chłodzenia, typowym dla reaktora wrzącego oraz bez jądrowego przegrzewu pary, z którego

2 generalnie zrezygnowano. Pierwszy blok tego typu zaprojektowany w 1967 r. uruchomiono w 1973 r. w elektrowni Sosnowy Bór, 80 km na zachód od Leningradu (obecnie Sankt-Petersburg). W kolejno budowanych blokach typu RBMK wprowadzano dalsze zmiany i udoskonalenia, m.in. dodano obudowę ciśnieniową typu mokrego oraz układ awaryjnego chłodzenia rdzenia reaktora, a także zwiększono moc - np. w Ignalinie (obecnie Litwa) uruchomiono dwa bloki o mocy jednostkowej 1500 MWe. Równolegle do prac związanych z blokami typu RBMK opracowywano reaktory zbiornikowe moderowane i chłodzone zwykłą wodą pracującą pod ciśnieniem, w oznaczeniu rosyjskim WWER (Wodo-Wodianoj Energeticzeskij Reaktor), a więc typu PWR (Pressurized Water Reactor). Pierwszy blok tego typu uruchomiono w 1964 r. w elektrowni Nowoworoneż-1 o mocy 278 MWe. Od tego momentu budowano w b. ZSRR zarówno bloki WWER (dalsze bloki w Nowoworoneżu oraz w elektrowniach Kolskiej, Bałakowskiej i Kalinińskiej) jak i RBMK (dalsze bloki w Sosnowym Borze oraz w elektrowniach Kurskiej i Smoleńskiej). Warto tutaj zaznaczyć, iż elektrownia Kolska była pierwszą elektrownią jądrową, jaka została uruchomiona na dalekiej północy tj. poza Kołem Podbiegunowym zlokalizowana została nad brzegiem jeziora Imandra, w odległości 15 km od miejscowości Polarne Zorze. Wyposażona w cztery bloki WWER-440 zasila uprzemysłowiony okręg murmański, część energii elektrycznej jest obecnie eksportowana do Finlandii. O ile na początku przeważały bloki typu RBMK (w 1985 r. było 29, natomiast typu WWER 19) to później przeważały już bloki typu WWER (w 1987 r. pracowało 25 bloków RBMK i 27 bloków WWER). Z uwagi na to, iż bloki typu WWER są eksploatowane w wielu krajach Europy w tym sąsiadujących z Polską, warto nieco przybliżyć zagadnienia dotyczące stanu ich bezpieczeństwa. Bloki jądrowe pierwszej generacji WWER-440/V-230 zostały opracowane według projektów z lat 60. na podstawie ówczesnych norm i wymagań bezpieczeństwa. Ich system zabezpieczeń zapewnia wymagany poziom bezpieczeństwa przy rozerwaniu rurociągów o średnicy poniżej 100 mm (średnica głównego rurociągu obiegu pierwotnego wynosi 500 mm). Układ awaryjnego chłodzenia rdzenia reaktora ma ograniczoną wydajność z powodu niewielkiego zbiornika zasilającego oraz braku możliwości pracy w recyrkulacji. Projekty bloków drugiej generacji tj. WWER-440/V-213 i WWER 1000/V-338 opracowano znacznie później na podstawie nowych dokumentów bezpieczeństwa instalacji jądrowych. System zabezpieczeń zapewnia wymagany poziom bezpieczeństwa przy rozerwaniu rurociągów o średnicy do 500 mm, a więc nawet w przypadku rozerwania głównego rurociągu obiegu pierwotnego. Ponadto wyposażono je m.in. w pełnosprawny, odpowiadający aktualnym standardom układ awaryjnego chłodzenia rdzenia reaktora, jak również w osobną wieżę likwidacji nadciśnienia awaryjnego. Projekty trzeciej generacji tj. WWER-1000/V-320 zostały oparte na wymaganiach bezpieczeństwa elektrowni jądrowych stosowanych w praktyce światowej. Np. posiadają one już szczelną obudowę bezpieczeństwa tzw. containment. Zgodnie z zaleceniami organizacji międzynarodowych, którym odpowiadają obecne wymagania krajowe, elektrownie jądrowe muszą spełniać odpowiednie warunki bezpieczeństwa eksploatacji. Elektrownie pierwszej generacji podlegają corocznej analizie pracy i ewentualnie uzyskują zezwolenie na dalszą roczną eksploatację. Warto w tym miejscu wspomnieć także o próbach, jakie Związek Radziecki czynił już na przełomie lat 50. i 60. w zakresie małych, przewoźnych elektrowni jądrowych. Ich przeznaczeniem było dostarczanie energii elektrycznej oraz ciepła w mało zaludnionych okręgach dalekiej północy. W 1961 r. rozpoczęto w Obninsku eksploatację eksperymentalnej ruchomej elektrowni jądrowej

3 TES-3 (Transportnaja ElektroStancja wersja nr 3) o mocy 1,5 MWe. Zastosowano w niej reaktor z moderatorem oraz chłodzeniem wodnym pod ciśnieniem. Konstrukcja siłowni składała się z czterech dużych segmentów, które można było transportować na czterech platformach samochodowych lub jednym wagonie kolejowym. Jej zaletą było głównie to, że dla jej eksploatacji nie potrzeba było żadnych budynków. TES 3 była też traktowana jako wojskowa elektrownia ruchoma. Na bazie doświadczeń z TES-3, która pracowała do 1966 r. skonstruowano i uruchomiono następny rodzaj małej przewoźnej siłowni jądrowej ARBUS (Arctic Reactor Block System) o mocy 750 kwe. Jako moderatora oraz chłodziwa w obiegu pierwotnym użyto tutaj cieczy organicznej. W 1965 r. uruchomiono kolejną pilotową siłownię jądrową o większej mocy tj. 50 MWe VC-50. Pierwszą na dużą skalę przemysłową elektrociepłownię w warunkach polarnych uruchomiono w latach 70. w miejscowości Bilibino w okręgu czukockim, tj. 160 km na północ od Koła Polarnego. Były to cztery bloki kanałowe z moderatorem grafitowym, chłodzone wrzącą wodą, typu LWGR o mocy cieplnej 62,5 MW każdy, w tym mocy elektrycznej 12 MW. Warto zauważyć, iż bloki te pracują do dzisiaj dostarczając prąd oraz ciepło mieszkańcom obwodu magadańskiego, a znaczna część energii elektrycznej jest dostarczana do portu Pewek odległego o 500 km. Koszt energii elektrycznej jest tam 1,5 2 razy mniejszy, a energii cieplnej 2 2,9 raza mniejszy niż uzyskany z elektrowni Diesla czy elektrowni węglowej, jakie wcześniej pracowały w Bilibino. Paliwo jądrowe w ilości 40 ton rocznie jest dostarczane samolotem (lotnisko odległe o 32 km od miasta Bilibino). Nie bez znaczenia jest również fakt poprawy środowiska naturalnego w okolicy Bilibino. Na bazie doświadczeń uzyskanych z eksploatacji reaktorów wojskowych w Tomsku, gdzie przy okazji produkcji plutonu wykorzystywano ciepło dla celów grzewczych w mieście Tomsk oraz Siewiersk, podejmowano również działania w kierunku uruchamiania cywilnych ciepłowni jądrowych. Pierwszą pilotową ciepłownię z dwoma blokami AST-500 (o mocy cieplnej 500 MW) ukończono w miejscowości Gorki (5 km od granicy miasta nad rzeką Oka), ale nie weszła ona do eksploatacji. Ciepłownia ta miała ogrzewać część miasta zamieszkaną przez około osób (całe Gorki liczy ponad 1,5 mln mieszkańców). Również w Woroneżu została odroczona budowa dwóch bloków ciepłowniczych typu AST-500. Były Związek Radziecki był pionierem jeśli chodzi o wykorzystanie energii jądrowej na skalę przemysłową do odsalania wody morskiej. W 1973 r. uruchomiono pierwszy w świecie reaktor jądrowy do odsalania wody morskiej w miejscowości Szewczenko (obecnie Aktau w Kazachstanie) nad Morzem Kaspijskim. Był to reaktor na neutrony prędkie, BN-350 (Bystryj Neutron) o wydajności odsalania wody m sześc./dzień. Wraz z oddaniem do użytku w 2001 r. bloku Nr 1 w elektrowni jądrowej Rostów, (od między 1986 r. tj. awarii w Czarnobylu, uruchomiono tylko jeden blok Bałakowo 4) liczba eksploatowanych reaktorów energetycznych w Rosji wzrosła do 30 rys. 4. Są to bloki typu WWER 14 bloków (WWER bloków i WWER bloków), RBMK 11 bloków, LWGR 4 bloki oraz jeden typu FBR (Fast Breeder Reactor) tj. na neutrony prędkie BN-600 Biełojarsk-3. Ich całkowita moc zainstalowana wynosi MW. Rosyjskie elektrownie jądrowe wyprodukowały w 2001 roku 134,9 TWh energii elektrycznej tj. o 3,3% więcej niż w roku Udział energii jądrowej w całkowitej produkcji elektryczności wzrósł z 14,9% w 2000 r. do 15,4% - w 2001 r. Średni wskaźnik wykorzystania mocy brutto zainstalowanej w elektrowniach jądrowych wyniósł w 2001 r. 70,3%. Warto także zaznaczyć, że 1,2 TWh energii elektrycznej wyprodukowanej przez rosyjskie elektrownie jądrowe w 2001 r. zostało wyeksportowane do Finlandii.

4 Z eksploatacji wycofano ogółem już trzynaście bloków energetycznych, z czego jeden typu BWR VK-50 w Melekess (obecnie Dimitrowgrad), jeden reaktor na neutrony prędkie BOR-60 w Ulianowsku, dziewięć reaktorów typu LWGR (Obninsk-1, Troicka 1-6 i Biełojarska 1,2) oraz dwa reaktory typu WWER (Nowoworoneż 1,2). Obecnie w budowie znajduje się pięć bloków jądrowych, które miały być oddane do użytku na przełomie stulecia. Są to trzy bloki typu WWER-1000 (Bałakowo-5, Kalinin-3 i Rostów-2), jeden blok typu RBMK o mocy 925 MWe w elektrowni Kursk-5 oraz jeden blok FBR w Biełojarsku (BN-800) o mocy 750 MWe. Ponadto planuje się budowę kolejnych bloków tj. na południowym Uralu dwóch bloków prędkich BN-800 o mocy 750 MWe, dwóch bloków WWER-1000 (Kalinin-4 i Nowoworoneż-6), a także bloku nowej generacji WWER-640 o mocy 600 MWe w Sosnowym Borze. Aktualnie rozważane są w Rosji plany budowy pływających elektrowni (elektrociepłowni) jądrowych o mocy 60 MWe, na bazie reaktorów KLT-40, jakie stosowano w lodołamaczach i okrętach podwodnych. Byłyby one przeznaczone do zasilania przymorskich rejonów północno-wschodniej Rosji, oddalonych od sieci elektroenergetycznych czy ciepłowniczych, jak również do odsalania wody morskiej. Łącznie planuje się budowę 33 takich elektrowni w przeciągu najbliższych lat. Należy zauważyć, iż w rejonie Koła Polarnego zamieszkuje w Rosji około 20 milionów ludności. Przykładowe dane takiej pływającej elektrowni to: długość 150 m, szerokość 30 m, głębokość zanurzenia 4,5 m, projektowany czas eksploatacji 40 lat, czas pomiędzy przeładunkami paliwa 6 lat, personel 60 osób, szacunkowy koszt 109 milionów dolarów. Jako że jednostka ta nie jest wyposażona we własny napęd, musi zostać doholowana na miejsce przez inny statek. Koszt produkowanej energii elektrycznej ocenia się na 10 centów/kwh, co w tamtych warunkach geograficznych jest ceną bardzo niską. Pierwsza taka pływająca elektrociepłownia ma być uruchomiona w porcie Pewek na Półwyspie Czukotka. Pływającymi elektrowniami (elektrociepłowniami) zainteresowane są także inne kraje, jak np. Chiny, Indonezja i Filipiny. W okresie istnienia RWPG bloki energetyczne typu WWER były przedmiotem eksportu (w niektórych przypadkach tylko częściowego) do krajów byłego obozu socjalistycznego oraz do Finlandii. Ogółem uruchomiono 30 takich bloków, a to w: Rheinsberg (NRD) jeden blok typu WWER 70 MWe Greifswald (NRD) cztery bloki typu WWER-440/V-230, Jaslovskie Bohunice (Słowacja) trzy WWER-440/V-230 oraz dwa WWER-440/V-213, Dukovany (Czechy) cztery WWER-440/V-213, Paks (Węgry) cztery WWER-440/V-213, Kozłoduj (Bułgaria) cztery WWER-440/V-230 oraz dwa WWER-1000, Mochovce (Słowacja) dwa WWER-440/V-213, Temelin (Czechy) dwa WWER-1000, Loviisa (Finlandia) dwa WWER-440/V-213 (zmodyfikowane). Wiele z zamówionych, a nawet dostarczonych bloków typu WWER nie zostało uruchomionych, jak np. cztery bloki WWER 440 w Greifswald (NRD), dwa bloki WWER-1000 w Stendal (NRD), dwa bloki WWER 440 na Kubie, czy dwa bloki WWER-440 w Żarnowcu (Polska). Aktualnie Rosja uruchamia jeden blok WWER-1000 w elektrowni Bushehr (Iran), ponadto podpisała kontrakt na budowę dwóch bloków z reaktorami WWER-1000 w Liangyungang (Chiny) oraz dwóch bloków WWER-1000 w Kudankulam (Indie). Technologią rosyjską w zakresie energetyki jądrowej zainteresowane są ponadto takie kraje jak Egipt, Arabia Saudyjska, Brazylia czy Wietnam. Rosja posiada własne zasoby rudy uranowej (zlokalizowane głównie w Priagursku przy granicy z Chinami), aczkolwiek nie tak duże jak pozostałe republiki b. ZSRR (głównie Kazachstan i

5 Uzbekistan). Po roku 2010 Rosja chce podwoić produkcję uranu, w celu sprostania rosnącym potrzebom krajowym i eksportowym. Roczna produkcja uranu powinna wzrosnąć z obecnych ton do ton w roku Rosja zużywa obecnie ponad 8000 ton uranu rocznie, z czego połowę wykorzystuje krajowa energetyka jądrowa, połowa zaś jest eksportowana. Rosja posiada także zakłady wzbogacania uranu (Jekaterinburg, Tomsk, Krasnojarsk, Angarsk) oraz zakłady produkujące paliwo i gotowe elementy paliwowe (Nowosybirsk i Elektrostal w pobliżu Moskwy). Kraj ten należy też do nielicznych w świecie państw zajmujących się przeróbką wypalonego paliwa jądrowego z reaktorów cywilnych. W eksploatacji znajduje się zakład przerobu paliwa wypalonego RT-1 w Czelabińsku (Czelabińsk 65) w pobliżu miasta Kysztym. Zakłady RT-1 zwane inaczej Majak zostały uruchomione w 1948 r. dla celów wojskowych tj. produkcji plutonu. Z kolei w rejonie Krasnojarska (Krasnojarsk 26) rozpoczęto w 1977 r. budowę drugiego zakładu przerobu paliwa wypalonego (RT-2), którą przerwano w 1989 r. ze względu na brak funduszy. Zakład RT-2 miał mieć zdolność przerobową 1500 ton paliwa rocznie. Przerób paliwa z reaktorów RBMK został uznany za nieopłacalny, tak więc po czasowym ostudzeniu, przewiduje się kierowanie tego paliwa na składowiska odpadów. Jak na razie, wypalone paliwo z reaktorów RBMK przechowywane jest w zbiornikach przyreaktorowych na terenie poszczególnych elektrowni i już zaczyna brakować miejsca na następne partie wypalonego paliwa. Rosja pragnie rozwinąć przywóz z zagranicy wypalonego paliwa jądrowego dla jego przerobu oraz składowania. Pozwoliłoby to uzyskać co najmniej 20 miliardów dolarów dzięki przywozowi do 20 tys. ton paliwa w ciągu lat, przy czym zysk byłby przeznaczony na sfinansowanie modernizacji własnej gospodarki wypalonym paliwem i odpadami promieniotwórczymi. W rejonie Krasnojarska znajduje się jedyne w Rosji specjalistyczne, przejściowe składowisko paliwa wypalonego z reaktorów typu WWER o pojemności 6000 ton paliwa obecnie wypełnione w jednej trzeciej. Ocenia się, że składowisko mogłoby przyjąć do przerobu co najmniej 1000 ton paliwa z zagranicy. Zgodnie z amerykańsko-rosyjskim programem Megatony na Megawaty ( Miecze na Lemiesze ) którego realizacje rozpoczęto w 1994 r. Rosja dostarcza Stanom Zjednoczonym wstępnie rozcieńczony uran militarny (HEU Highly Enriched Uranium - wysoko wzbogacony uran) gdzie przerabiany jest na paliwo jądrowe LEU (Low Enriched Uranium). Do 2000 r. włącznie przerobiono już 120 ton militarnego uranu na paliwo jądrowe. Ilość ta odpowiada 4800 głowicom jądrowym. Dwie amerykańskie elektrownie jądrowe wykorzystują już takie paliwo. Porozumienie amerykańsko-rosyjskie przewiduje przerób w ciągu 20 lat 500 ton rosyjskiego uranu militarnego (po 30 ton rocznie) co jest równoważne ilości ton paliwa jądrowego. Więcej informacji znajdziesz tutaj.

Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce

Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce Stefan Chwaszczewski Program energetyki jądrowej w Polsce: Zainstalowana moc: 6 000 MWe; Współczynnik wykorzystania

Bardziej szczegółowo

8. TYPY REAKTORÓW JĄDROWYCH

8. TYPY REAKTORÓW JĄDROWYCH Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 8. TYPY REAKTORÓW JĄDROWYCH Dr inż. A. Strupczewski, prof. NCBJ Narodowe Centrum Badań Jądrowych Zasada działania EJ Reaktory BWR i

Bardziej szczegółowo

Energetyka jądrowa - reaktor

Energetyka jądrowa - reaktor Energetyka jądrowa - reaktor Autor: Sebastian Brzozowski biuro PTPiREE ( Energia Elektryczna lipiec 2012) Pierwszy na świecie eksperymentalny reaktor jądrowy CP1 (zwany wówczas stosem atomowym") uruchomiono

Bardziej szczegółowo

Elektrownie jądrowe (J. Paska)

Elektrownie jądrowe (J. Paska) 1. Energetyczne reaktory jądrowe Elektrownie jądrowe (J. Paska) Rys. 1. Przykładowy schemat reakcji rozszczepienia: 94 140 38 Sr, 54 Xe - fragmenty rozszczepienia Ubytek masy przy rozszczepieniu jądra

Bardziej szczegółowo

PROJEKT MALY WIELKI ATOM

PROJEKT MALY WIELKI ATOM PROJEKT MALY WIELKI ATOM MISZKIEL PRZEMYSŁAW SEMESTR 1LO2B ELEKTROWNIA W CZARNOBYLU Katastrofa w Czarnobylu - jedna z największych katastrof przemysłowych XX wieku, oceniana jako największa katastrofa

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 5 28 marca 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Kiedy efektywne

Bardziej szczegółowo

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Wykład 8 25 kwietnia 2017

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów  Wykład 8 25 kwietnia 2017 Energetyka Jądrowa Wykład 8 25 kwietnia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Typy i generacje reaktorów Teoretycznie istnieje daleko

Bardziej szczegółowo

Technologia reaktorów WWER

Technologia reaktorów WWER Technologia reaktorów WWER Spośród ponad 400 reaktorów energetycznych pracujących dziś na świecie zdecydowaną większość stanowią reaktory lekkowodne. Wśród nich najwięcej jest reaktorów wodnych ciśnieniowych.

Bardziej szczegółowo

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 9 28 kwietnia 2015

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 9 28 kwietnia 2015 Energetyka Jądrowa Wykład 9 28 kwietnia 2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Typy i generacje reaktorów Teoretycznie istnieje daleko

Bardziej szczegółowo

Modułowe Reaktory Jądrowe

Modułowe Reaktory Jądrowe Piotr Klukowski Modułowe Reaktory Jądrowe Koło Naukowe Energetyków Instytut Techniki Cieplnej, Politechnika Warszawska Konferencja: Nowoczesna Energetyka Europy Środkowo-Wschodniej 2015 Opiekun naukowy:

Bardziej szczegółowo

Dr inż. Andrzej Tatarek. Siłownie cieplne

Dr inż. Andrzej Tatarek. Siłownie cieplne Dr inż. Andrzej Tatarek Siłownie cieplne 1 Wykład 1 Podziały i klasyfikacje elektrowni Moc elektrowni pojęcia podstawowe 2 Energia elektryczna szczególnie wygodny i rozpowszechniony nośnik energii Łatwość

Bardziej szczegółowo

Reakcje rozszczepienia i energetyka jądrowa

Reakcje rozszczepienia i energetyka jądrowa J. Pluta, Metody i technologie jądrowe Reakcje rozszczepienia i energetyka jądrowa Energia wiązania nukleonu w jądrze w funkcji liczby masowej jadra A: E w Warunek energetyczny deficyt masy: Reakcja rozszczepienia

Bardziej szczegółowo

ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk Czyste energie wykład 11 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2014 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 11 maj Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 11 maj Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 11 maj 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład prof. Tadeusza Hilczera (UAM) prezentujący reaktor

Bardziej szczegółowo

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej Czyste energie wykład 13 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2013 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 10-11.XII.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Energetyka Jądrowa 11.XII.2018

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 9 9 maja Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 9 9 maja Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 9 9 maja 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Reaktor ATMEA 1 Reaktor ten będzie oferowany przez spółkę

Bardziej szczegółowo

Człowiek energia środowisko. Zrównoważona przyszłość Mazowsza, Kujaw i Ziemi Łódzkiej finansowanego ze środków

Człowiek energia środowisko. Zrównoważona przyszłość Mazowsza, Kujaw i Ziemi Łódzkiej finansowanego ze środków Janina Kawałczewska Zadanie realizowane w ramach projektu: Człowiek energia środowisko. Zrównoważona przyszłość Mazowsza, Kujaw i Ziemi Łódzkiej finansowanego ze środków Narodowego Funduszu Ochrony Środowiska

Bardziej szczegółowo

Elektrownie Atomowe. Łukasz Osiński i Aleksandra Prażuch

Elektrownie Atomowe. Łukasz Osiński i Aleksandra Prażuch Elektrownie Atomowe Łukasz Osiński i Aleksandra Prażuch Budowa atomu Czym jest elektrownia atomowa? Historia elektrowni atomowych Schemat elektrowni atomowych Zasada działania elektrowni atomowych Argentyna

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 10 5 maja 2015. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.

Energetyka Jądrowa. Wykład 10 5 maja 2015. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu. Energetyka Jądrowa Wykład 10 5 maja 2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Reaktor ATMEA 1 Reaktor ten będzie oferowany przez spółkę

Bardziej szczegółowo

Podstawy bezpieczeństwa energetyki jądrowej, Czarnobyl jak doszło do awarii

Podstawy bezpieczeństwa energetyki jądrowej, Czarnobyl jak doszło do awarii Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 6. Czarnobyl jak doszło do awarii Prof. NCBJ dr inż. A. Strupczewski Plan wykładu 1 1. Ogólna charakterystyka reaktora RBMK 2. Wady konstrukcyjne

Bardziej szczegółowo

PRODUKCJA I ZUŻYCIE ENERGII ELEKTRYCZNEJ W KRAJACH AMERYKI. Kasia Potrykus Klasa II Gdynia 2014r.

PRODUKCJA I ZUŻYCIE ENERGII ELEKTRYCZNEJ W KRAJACH AMERYKI. Kasia Potrykus Klasa II Gdynia 2014r. PRODUKCJA I ZUŻYCIE ENERGII ELEKTRYCZNEJ W KRAJACH AMERYKI. Kasia Potrykus Klasa II Gdynia 2014r. Ameryka Północna http://www.travelplanet.pl/przewodnik/ameryka-polnocna-i-srodkowa/ Ameryka Południowa

Bardziej szczegółowo

Elektrownia Jądrowa Loviisa (SF) I. Podział Reaktorów - kryteria

Elektrownia Jądrowa Loviisa (SF) I. Podział Reaktorów - kryteria Elektrownia Jądrowa Loviisa (SF) I. Podział Reaktorów - kryteria Energetyczne reaktory jądrowe 1) zastosowanie 2) widmo neutronów 3) chłodziwo/moderator 4) paliwo 5) budowa bjaśnienia skrótów 6) projekty

Bardziej szczegółowo

Energetyka dział gospodarki obejmujący przetwarzanie, gromadzenie, przenoszenie i wykorzystanie energii

Energetyka dział gospodarki obejmujący przetwarzanie, gromadzenie, przenoszenie i wykorzystanie energii Podstawowe pojęcia gospodarki energetycznej WYKŁAD 1 Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl Energetyka dział gospodarki obejmujący przetwarzanie, gromadzenie, przenoszenie i wykorzystanie

Bardziej szczegółowo

INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk 日本 The Fukushima INuclear Power Plant 福島第一原子力発電所 Fukushima Dai-Ichi Krzysztof Kozak INSTYTUT FIZYKI JĄDROWEJ PAN ROZSZCZEPIENIE

Bardziej szczegółowo

Onkalo -pierwsze składowisko głębokie wypalonego paliwa jądrowego i odpadów promieniotwórczych

Onkalo -pierwsze składowisko głębokie wypalonego paliwa jądrowego i odpadów promieniotwórczych Onkalo -pierwsze składowisko głębokie wypalonego paliwa jądrowego i odpadów promieniotwórczych XVII Konferencja Inspektorów Ochrony Radiologicznej Skorzęcin 11-14.06.2014 dr Wiesław Gorączko Politechnika

Bardziej szczegółowo

WSPÓŁCZESNE TECHNOLOGIE JĄDROWE W ENERGETYCE 1

WSPÓŁCZESNE TECHNOLOGIE JĄDROWE W ENERGETYCE 1 Współczesne technologie jądrowe w energetyce 73 WSPÓŁCZESNE TECHNOLOGIE JĄDROWE W ENERGETYCE 1 prof dr hab inż Jacek Marecki / Politechnika Gdańska 1 WPROWADZENIE Do awangardowych dziedzin nauki i techniki,

Bardziej szczegółowo

4. Wytwarzanie energii elektrycznej i cieplnej 4.1. Uwagi ogólne

4. Wytwarzanie energii elektrycznej i cieplnej 4.1. Uwagi ogólne 4. Wytwarzanie energii elektrycznej i cieplnej 4.1. Uwagi ogólne Elektrownia zakład produkujący energię elektryczną w celach komercyjnych; Ciepłownia zakład produkujący energię cieplną w postaci pary lub

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 8 26 kwietnia 2016 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Reakcja

Bardziej szczegółowo

ENERGETYKA JĄDROWA PERSPEKTYWY I ZAGROŻENIA

ENERGETYKA JĄDROWA PERSPEKTYWY I ZAGROŻENIA ENERGETYKA JĄDROWA PERSPEKTYWY I ZAGROŻENIA Jerzy Niewodniczański CO TO JEST ELEKTROWNIA JĄDROWA? To elektrownia cieplna, gdzie woda podgrzewana jest nie przez ciepło wyzwalane w czasie spalania węgla

Bardziej szczegółowo

Reaktor badawczy MARIA stan techniczny i wykorzystanie. Grzegorz Krzysztoszek

Reaktor badawczy MARIA stan techniczny i wykorzystanie. Grzegorz Krzysztoszek Nauka i technika wobec wyzwania budowy elektrowni jądrowej Mądralin 2013 Reaktor badawczy MARIA stan techniczny i wykorzystanie Grzegorz Krzysztoszek Warszawa 13-15 lutego 2013 ITC, Politechnika Warszawska

Bardziej szczegółowo

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań 24-25.04. 2012r EC oddział Opole Podstawowe dane Produkcja roczna energii cieplnej

Bardziej szczegółowo

ODNAWIALNE I NIEODNAWIALNE ŹRÓDŁA ENERGII. Filip Żwawiak

ODNAWIALNE I NIEODNAWIALNE ŹRÓDŁA ENERGII. Filip Żwawiak ODNAWIALNE I NIEODNAWIALNE ŹRÓDŁA ENERGII Filip Żwawiak WARTO WIEDZIEĆ 1. Co to jest energetyka? 2. Jakie są konwencjonalne (nieodnawialne) źródła energii? 3. Jak dzielimy alternatywne (odnawialne ) źródła

Bardziej szczegółowo

MATERIAŁ POMOCNICZY NR 1

MATERIAŁ POMOCNICZY NR 1 PYTANIE NR 4 Gmina w której mieszkasz jest rozważana jako jedna z potencjalnych lokalizacji elektrowni atomowej. Wiedząc jak silne kontrowersje i obawy budzi ten projekt, przyszły inwestor rozpoczął serię

Bardziej szczegółowo

Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole.

Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole. Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole. Rytro, 25 27 08.2015 System ciepłowniczy w Opolu moc zainstalowana w źródle 282

Bardziej szczegółowo

Przedsięwzięcia rozwojowe Elektrowni Rybnik S.A. 21 listopad 2008

Przedsięwzięcia rozwojowe Elektrowni Rybnik S.A. 21 listopad 2008 Przedsięwzięcia rozwojowe Elektrowni Rybnik S.A. 21 listopad 2008 Grupa EDF EDF na świecie Brazylia Chiny Wybrzeże Kości Słoniowej Japonia Laos Mali Maroko Południowa Afryka Tajlandia Zjednoczone Emiraty

Bardziej szczegółowo

Typy konstrukcyjne reaktorów jądrowych

Typy konstrukcyjne reaktorów jądrowych 44 Typy konstrukcyjne 1) Reaktory zbiornikowe pręt regulacyjny wylot wody podgrzanej H wlot wody zasilającej pręty paliwowe osłona termiczna rdzeń reaktora D Wymiary zbiornika D do 6 m ; H do 20 m grubość

Bardziej szczegółowo

Nie ma paliwa tak kosztownego, jak brak paliwa. Atomowe Indie

Nie ma paliwa tak kosztownego, jak brak paliwa. Atomowe Indie Nie ma paliwa tak kosztownego, jak brak paliwa. Atomowe Indie Autor: dr Grzegorz Jezierski ( Energia Gigawat - listopad 2004) Dotychczas przedstawiane na łamach Energii Gigawat kraje, w których znaczny

Bardziej szczegółowo

CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY?

CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? Stefan Chwaszczewski Instytut Energii Atomowej POLATOM W obecnie eksploatowanych reaktorach energetycznych, w procesach rozszczepienia jądrowego wykorzystywane

Bardziej szczegółowo

wodór, magneto hydro dynamikę i ogniowo paliwowe.

wodór, magneto hydro dynamikę i ogniowo paliwowe. Obecnieprodukcjaenergiielektrycznejodbywasię główniewoparciuosurowcekonwencjonalne : węgiel, ropę naftową i gaz ziemny. Energianiekonwencjonalnaniezawszejest energią odnawialną.doniekonwencjonalnychźródełenergii,

Bardziej szczegółowo

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys Reaktor jądrowy Schemat Elementy reaktora Rdzeń Pręty paliwowe (np. UO 2 ) Pręty regulacyjne i bezpieczeństwa (kadm, bor) Moderator (woda, ciężka woda, grafit, ) Kanały chłodzenia (woda, ciężka woda, sód,

Bardziej szczegółowo

Energia chińskiego smoka. Próba zdefiniowania chińskiej polityki energetycznej. mgr Maciej M. Sokołowski WPiA UW

Energia chińskiego smoka. Próba zdefiniowania chińskiej polityki energetycznej. mgr Maciej M. Sokołowski WPiA UW Energia chińskiego smoka. Próba zdefiniowania chińskiej polityki energetycznej. mgr Maciej M. Sokołowski WPiA UW Definiowanie polityki Polityka (z gr. poly mnogość, różnorodność; gr. polis państwo-miasto;

Bardziej szczegółowo

Czym fascynuje, a czym niepokoi energetyka jądrowa?

Czym fascynuje, a czym niepokoi energetyka jądrowa? Czym fascynuje, a czym niepokoi energetyka jądrowa? Kohabitacja. Rola gazu w rozwoju gospodarki niskoemisyjnej Ludwik Pieńkowski Środowiskowe Laboratorium CięŜkich Jonów Uniwersytet Warszawski Fascynacja

Bardziej szczegółowo

Nowy Targ, styczeń Czesław Ślimak Barbara Okularczyk

Nowy Targ, styczeń Czesław Ślimak Barbara Okularczyk Nowy Targ, styczeń 2015 Czesław Ślimak Barbara Okularczyk Projekt geotermalny na Podhalu był pierwszym tego typu w Polsce. Początkowo realizowany jako projekt naukowy, szybko przekształcił się w zadanie

Bardziej szczegółowo

Reaktory jądrowe generacji III/III+, czyli poprawa bezpieczeństwa, wydajności oraz zmniejszenie ilości odpadów

Reaktory jądrowe generacji III/III+, czyli poprawa bezpieczeństwa, wydajności oraz zmniejszenie ilości odpadów Reaktory jądrowe generacji III/III+, czyli poprawa bezpieczeństwa, wydajności oraz zmniejszenie ilości odpadów Igor Królikowski, Michał Orliński Katedra Energetyki Jądrowej, Wydział Energetyki i Paliw

Bardziej szczegółowo

Do dyskusji. Czy potrafimy unieszkodliwiać odpady radioaktywne? Prof. dr inż. A. Strupczewski Narodowe Centrum Badań Jądrowych

Do dyskusji. Czy potrafimy unieszkodliwiać odpady radioaktywne? Prof. dr inż. A. Strupczewski Narodowe Centrum Badań Jądrowych Do dyskusji Czy potrafimy unieszkodliwiać odpady radioaktywne? Prof. dr inż. A. Strupczewski Narodowe Centrum Badań Jądrowych A.Strupczewski@cyf.gov.pl Układ barier izolujących paliwo wypalone w szwedzkim

Bardziej szczegółowo

Strategia rozwoju systemów wytwórczych PKE S.A. w ramach Grupy TAURON w perspektywie roku 2020

Strategia rozwoju systemów wytwórczych PKE S.A. w ramach Grupy TAURON w perspektywie roku 2020 Strategia rozwoju systemów wytwórczych PKE S.A. w ramach Grupy TAURON w perspektywie roku 2020 Henryk TYMOWSKI Wiceprezes Zarządu PKE S.A. Dyrektor ds. Rozwoju Eugeniusz BIAŁOŃ Dyrektor Projektów Budowy

Bardziej szczegółowo

Dlaczego Projekt Integracji?

Dlaczego Projekt Integracji? Integracja obszaru wytwarzania w Grupie Kapitałowej ENEA pozwoli na stworzenie silnego podmiotu wytwórczego na krajowym rynku energii, a tym samym korzystnie wpłynie na ekonomiczną sytuację Grupy. Wzrost

Bardziej szczegółowo

Nie bójmy się elektrowni jądrowych! Stanisław Kwieciński, Paweł Janowski Instytut Fizyki Jądrowej PAN w Krakowie

Nie bójmy się elektrowni jądrowych! Stanisław Kwieciński, Paweł Janowski Instytut Fizyki Jądrowej PAN w Krakowie Stanisław Kwieciński, Paweł Janowski Instytut Fizyki Jądrowej PAN w Krakowie PLAN WYKŁADU 1. Jak działa elektrownia jądrowa? 2. Czy elektrownia jądrowa jest bezpieczna? 3. Jakie są wady i zalety elektrowni

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Technologie energetyczne, w tym gazowe nowej generacji W11 INSTALACJE ENERGETYCZNE ZINTEGROWANE ZE ZGAZOWANIEM WĘGLA TECHNOLOGIE WĘGLOWE W

Bardziej szczegółowo

Rozszczepienie (fission)

Rozszczepienie (fission) Rozszczepienie (fission) Odkryte w 1938 r. przy naświetlaniu jąder 238 U neutronami Zaobserwowano rozpad beta produktów reakcji, przypisany początkowo radowi 226 Ra Hahn i Strassmann pokazali metodami

Bardziej szczegółowo

Budowa kotła na biomasę w Oddziale Zespół Elektrowni Dolna Odra

Budowa kotła na biomasę w Oddziale Zespół Elektrowni Dolna Odra 2011-11-02 Budowa kotła na biomasę w Oddziale Zespół Elektrowni Dolna Odra PGE Górnictwo i Energetyka Konwencjonalna S.A. Oddział Zespół Elektrowni Dolna Odra 27 28 październik 2011 roku PGE GiEK S.A.

Bardziej szczegółowo

ENERGETYCZNE WYKORZYSTANIE GAZU W ELEKTROCIEPŁOWNI GORZÓW

ENERGETYCZNE WYKORZYSTANIE GAZU W ELEKTROCIEPŁOWNI GORZÓW Polska Agencja Prasowa Warszawa 18.11.2010 r. ENERGETYCZNE WYKORZYSTANIE GAZU W ELEKTROCIEPŁOWNI GORZÓW Struktura zużycia paliwa do generacji energii elektrycznej STRUKTURA W UE STRUKTURA W POLSCE 2 BLOK

Bardziej szczegółowo

Energia ze słomy BFS Energo, Praga, Republika Czeska BFS Energo, a.s. Łańcuch paliwowy Wsparcie w procesie produkcji paliwa z pola wprost do kotła Łańcuch technologiczny Elektrownie/ciepłownie Kotłownie

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 7 11 kwietnia 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moderator

Bardziej szczegółowo

Produkcja energii elektrycznej. Dział: Przemysł Poziom rozszerzony NPP NE

Produkcja energii elektrycznej. Dział: Przemysł Poziom rozszerzony NPP NE Produkcja energii elektrycznej Dział: Przemysł Poziom rozszerzony NPP NE Znaczenie energii elektrycznej Umożliwia korzystanie z urządzeń gospodarstwa domowego Warunkuje rozwój rolnictwa, przemysłu i usług

Bardziej szczegółowo

*Z wykorzystaniem energii jądrowej, zarówno w sensie użycia materiałów rozszczepialnych (uran), jak reakcji syntezy termojądrowej, wiążą się problemy

*Z wykorzystaniem energii jądrowej, zarówno w sensie użycia materiałów rozszczepialnych (uran), jak reakcji syntezy termojądrowej, wiążą się problemy Zapraszamy na prezentacje której tematem jest Energia Jądrowa. *Z wykorzystaniem energii jądrowej, zarówno w sensie użycia materiałów rozszczepialnych (uran), jak reakcji syntezy termojądrowej, wiążą się

Bardziej szczegółowo

Zużycie Biomasy w Energetyce. Stan obecny i perspektywy

Zużycie Biomasy w Energetyce. Stan obecny i perspektywy Zużycie Biomasy w Energetyce Stan obecny i perspektywy Plan prezentacji Produkcja odnawialnej energii elektrycznej w Polsce. Produkcja odnawialnej energii elektrycznej w energetyce zawodowej i przemysłowej.

Bardziej szczegółowo

POLSKA ENERGETYKA STAN NA 2015 r. i CO DALEJ?

POLSKA ENERGETYKA STAN NA 2015 r. i CO DALEJ? POLSKA ENERGETYKA STAN NA 2015 r. i CO DALEJ? dr Zbigniew Mirkowski Katowice, 29.09.15 Zużycie energii pierwotnej - świat 98 bln $ [10 15 Btu] 49 bln $ 13 bln $ 27 bln $ 7,02 mld 6,12 mld 4,45 mld 5,30

Bardziej szczegółowo

ROZDZIAŁ VII. Kierunki rozwoju energii jądrowej. Produkcja energii w reaktorach fuzji jądrowejj TECHNICAL UNIVERSITY OF CZĘSTOCHOWA

ROZDZIAŁ VII. Kierunki rozwoju energii jądrowej. Produkcja energii w reaktorach fuzji jądrowejj TECHNICAL UNIVERSITY OF CZĘSTOCHOWA Kierunki rozwoju energii jądrowej. Produkcja energii w reaktorach fuzji jądrowejj 1. DOTYCHCZASOWE ROZWIĄZANIA KONSTRUKCYJNE REAKTORÓW ENERGETYCZNYCH Do podstawowych rozwiązań konstrukcyjnych reaktorów

Bardziej szczegółowo

Kogeneracja gazowa kontenerowa 2,8 MWe i 2,9 MWt w Hrubieszowie

Kogeneracja gazowa kontenerowa 2,8 MWe i 2,9 MWt w Hrubieszowie Kogeneracja gazowa kontenerowa 2,8 MWe i 2,9 MWt w Hrubieszowie LOKALIZACJA CHP w postaci dwóch bloków kontenerowych będzie usytuowana we wschodniej części miasta Hrubieszów, na wydzielonej (dzierżawa)

Bardziej szczegółowo

PRZYGOTOWANIE INFRASTRUKTURY DLA BUDOWY PIERWSZEJ ELEKTROWNI JĄDROWEJ W POLSCE

PRZYGOTOWANIE INFRASTRUKTURY DLA BUDOWY PIERWSZEJ ELEKTROWNI JĄDROWEJ W POLSCE PRZYGOTOWANIE INFRASTRUKTURY DLA BUDOWY PIERWSZEJ ELEKTROWNI JĄDROWEJ W POLSCE Tomasz Jackowski Ministerstwo Gospodarki, Warszawa Rys. 1. Podstawowy dokument dotyczący infrastruktury dla energetyki jądrowej.

Bardziej szczegółowo

Elektrociepłownie w Polsce statystyka i przykłady. Wykład 3

Elektrociepłownie w Polsce statystyka i przykłady. Wykład 3 Elektrociepłownie w Polsce statystyka i przykłady Wykład 3 Zakres wykładu Produkcja energii elektrycznej i ciepła w polskich elektrociepłowniach Sprawność całkowita elektrociepłowni Moce i ilość jednostek

Bardziej szczegółowo

Rozwój kogeneracji wyzwania dla inwestora

Rozwój kogeneracji wyzwania dla inwestora REC 2013 Rozwój kogeneracji wyzwania dla inwestora PGE Górnictwo i Energetyka Konwencjonalna S.A. Departament Inwestycji Biuro ds. Energetyki Rozproszonej i Ciepłownictwa PGE Górnictwo i Energetyka Konwencjonalna

Bardziej szczegółowo

Przyszłość energetyki słonecznej na tle wyzwań energetycznych Polski. Prof. dr hab. inż. Maciej Nowicki

Przyszłość energetyki słonecznej na tle wyzwań energetycznych Polski. Prof. dr hab. inż. Maciej Nowicki Przyszłość energetyki słonecznej na tle wyzwań energetycznych Polski Prof. dr hab. inż. Maciej Nowicki Polski system energetyczny na rozdrożu 40% mocy w elektrowniach ma więcej niż 40 lat - konieczność

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej Elektrownie atomowe materiały do wykładu Piotr Biczel treść wykładów 1. elektrownia

Bardziej szczegółowo

Rozszczepienie jądra atomowego

Rozszczepienie jądra atomowego Rozszczepienie jądra atomowego W przypadku izotopów 235 U i 239 Pu energia wzbudzenia jądra po wychwycie neutronu jest większa od wysokości bariery, którą trzeba pokonać aby nastąpiło rozszczepienie. Izotop

Bardziej szczegółowo

Jednostki Wytwórcze opalane gazem Alternatywa dla węgla

Jednostki Wytwórcze opalane gazem Alternatywa dla węgla VIII Konferencja Naukowo-Techniczna Ochrona Środowiska w Energetyce Jednostki Wytwórcze opalane gazem Alternatywa dla węgla Główny Inżynier ds. Przygotowania i Efektywności Inwestycji 1 Rynek gazu Realia

Bardziej szczegółowo

Terminal LNG w Świnoujściu - szansa dla regionu Polskie LNG IX konferencja Energetyka przygraniczna Polski i Niemiec doświadczenia i perspektywy

Terminal LNG w Świnoujściu - szansa dla regionu Polskie LNG IX konferencja Energetyka przygraniczna Polski i Niemiec doświadczenia i perspektywy Terminal LNG w Świnoujściu - szansa dla regionu Polskie LNG IX konferencja Energetyka przygraniczna Polski i Niemiec doświadczenia i perspektywy Sulechów, 16 listopada 2012 1 Terminal LNG w Świnoujściu

Bardziej szczegółowo

Energetyka jądrowa. 900s. Reakcje wywołane przez neutrony (nie ma problemu odpychania elektrostatycznego)

Energetyka jądrowa. 900s. Reakcje wywołane przez neutrony (nie ma problemu odpychania elektrostatycznego) Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe

Bardziej szczegółowo

Kocioł na biomasę z turbiną ORC

Kocioł na biomasę z turbiną ORC Kocioł na biomasę z turbiną ORC Sprawdzona technologia produkcji ciepła i energii elektrycznej w skojarzeniu dr inż. Sławomir Gibała Prezentacja firmy CRB Energia: CRB Energia jest firmą inżynieryjno-konsultingową

Bardziej szczegółowo

Instalacja geotermalna w Pyrzycach - aspekty techniczne

Instalacja geotermalna w Pyrzycach - aspekty techniczne Instalacja geotermalna w Pyrzycach - aspekty techniczne Bogusław Zieliński Geotermia Pyrzyce Sp. z o.o. ul. Ciepłownicza 27, 74-200 Pyrzyce bzielinski@geotermia.inet.pl Warszawa, 06 marzec 2017 Ogólna

Bardziej szczegółowo

Rozwój kogeneracji gazowej

Rozwój kogeneracji gazowej Rozwój kogeneracji gazowej Strategia Grupy Kapitałowej PGNiG PGNiG TERMIKA jest największym w Polsce wytwórcą ciepła i energii elektrycznej w skojarzeniu. Zakłady PGNiG TERMIKA wytwarzają 11 procent produkowanego

Bardziej szczegółowo

PRIORYTETY ENERGETYCZNE W PROGRAMIE OPERACYJNYM INFRASTRUKTURA I ŚRODOWISKO

PRIORYTETY ENERGETYCZNE W PROGRAMIE OPERACYJNYM INFRASTRUKTURA I ŚRODOWISKO PRIORYTETY ENERGETYCZNE W PROGRAMIE OPERACYJNYM INFRASTRUKTURA I ŚRODOWISKO Strategia Działania dotyczące energetyki są zgodne z załoŝeniami odnowionej Strategii Lizbońskiej UE i Narodowej Strategii Spójności

Bardziej szczegółowo

ENERGETYKA JĄDROWA, ŚWIAT EUROPA POLSKA

ENERGETYKA JĄDROWA, ŚWIAT EUROPA POLSKA ROZDZIAŁ ENERGETYKA JĄDROWA, ŚWIAT EUROPA POLSKA Nuclear energy, World Europe Poland Jerzy NIEWODNICZAŃSKI Państwowa Agencja Atomistyki, ul. Krucza 36, 00-522 Warszawa Streszczenie Przedstawiono stan energetyki

Bardziej szczegółowo

Ustawa o promocji kogeneracji

Ustawa o promocji kogeneracji Ustawa o promocji kogeneracji dr inż. Janusz Ryk New Energy User Friendly Warszawa, 16 czerwca 2011 Ustawa o promocji kogeneracji Cel Ustawy: Stworzenie narzędzi realizacji Polityki Energetycznej Polski

Bardziej szczegółowo

Energetyka nuklearna Rosji i byłych republik radzieckich szanse i zagrożenia dla UE.

Energetyka nuklearna Rosji i byłych republik radzieckich szanse i zagrożenia dla UE. Energetyka nuklearna Rosji i byłych republik radzieckich szanse i zagrożenia dla UE. Energetyka nuklearna Rosji Energetyka nuklearna Rosji jest rozwiniętą gałęzią rosyjskiej gospodarki. W Rosji stosowana

Bardziej szczegółowo

Prace Departamentu Energii Jądrowej dla Reaktora Maria i Energetyki Jądrowej. Zuzanna Marcinkowska

Prace Departamentu Energii Jądrowej dla Reaktora Maria i Energetyki Jądrowej. Zuzanna Marcinkowska Prace Departamentu Energii Jądrowej dla Reaktora Maria i Energetyki Jądrowej Zuzanna Marcinkowska Sympozjum NCBJ, DEPARTAMENT ENERGII JĄDROWEJ Zakład Eksploatacji Reaktora MARIA Zakład Techniki Reaktorów

Bardziej szczegółowo

PO CO NAM TA SPALARNIA?

PO CO NAM TA SPALARNIA? PO CO NAM TA SPALARNIA? 1 Obowiązek termicznego zagospodarowania frakcji palnej zawartej w odpadach komunalnych 2 Blok Spalarnia odpadów komunalnych energetyczny opalany paliwem alternatywnym 3 Zmniejszenie

Bardziej szczegółowo

STRESZCZENIE NIETECHNICZNE TRIGENNERACJA BIOMASOWA BARLINEK INWESTYCJE

STRESZCZENIE NIETECHNICZNE TRIGENNERACJA BIOMASOWA BARLINEK INWESTYCJE BARLINEK 2020 STRESZCZENIE NIETECHNICZNE TRIGENNERACJA BIOMASOWA BARLINEK INWESTYCJE SPIS TREŚCI 1. Barlinek Inwestycje 2. Strategiczne cele projektu 3. Zgodność projektu z polityką ochrony środowiska

Bardziej szczegółowo

1. Stan istniejący. Rys. nr 1 - agregat firmy VIESSMAN typ FG 114

1. Stan istniejący. Rys. nr 1 - agregat firmy VIESSMAN typ FG 114 1. Stan istniejący. Obecnie na terenie Oczyszczalni ścieków w Żywcu pracują dwa agregaty prądotwórcze tj. agregat firmy VIESSMAN typ FG 114 o mocy znamionowej 114 kw energii elektrycznej i 186 kw energii

Bardziej szczegółowo

Kalendarium budowy elektrowni jądrowej w Żarnowcu, czyli... jak straciliśmy swoją szansę?

Kalendarium budowy elektrowni jądrowej w Żarnowcu, czyli... jak straciliśmy swoją szansę? Kalendarium budowy elektrowni jądrowej w Żarnowcu, czyli... jak straciliśmy swoją szansę? Autor: dr Grzegorz Jezierski ( Energia Gigawat styczeń 2006) 4 czerwca 1955 r. utworzono w Polsce instytucję naukową

Bardziej szczegółowo

Międzynarodowe Targi Górnictwa, Przemysłu Energetycznego i Hutniczego KATOWICE 2015. Konferencja: WĘGIEL TANIA ENERGIA I MIEJSCA PRACY.

Międzynarodowe Targi Górnictwa, Przemysłu Energetycznego i Hutniczego KATOWICE 2015. Konferencja: WĘGIEL TANIA ENERGIA I MIEJSCA PRACY. Międzynarodowe Targi Górnictwa, Przemysłu Energetycznego i Hutniczego KATOWICE 2015 Konferencja: WĘGIEL TANIA ENERGIA I MIEJSCA PRACY Wprowadzenie Janusz Olszowski Górnicza Izba Przemysłowo-Handlowa Produkcja

Bardziej szczegółowo

Elektrownia Jądrowa Temelín

Elektrownia Jądrowa Temelín Elektrownia Jądrowa Temelín W Czechach działają obecnie dwie elektrownie atomowe mieszczące łącznie sześć reaktorów energetycznych. Nieco ponad 1/3 energii elektrycznej produkowanej w tym kraju pochodzi

Bardziej szczegółowo

Ważniejsze symbole używane w schematach... xix

Ważniejsze symbole używane w schematach... xix Przedmowa do wydania siódmego......... xv Wykaz ważniejszych oznaczeń........... xvii Ważniejsze symbole używane w schematach..... xix 1. Wstęp prof. dr hab. inż. Maciej Pawlik......... 1 1.1. Rozwój krajowego

Bardziej szczegółowo

ENERGIA JĄDROWA DO CZEGO JEST POTRZEBNA? CZY JEST BEZPIECZNA?

ENERGIA JĄDROWA DO CZEGO JEST POTRZEBNA? CZY JEST BEZPIECZNA? ENERGIA JĄDROWA DO CZEGO JEST POTRZEBNA? CZY JEST BEZPIECZNA? Elżbieta Maria Jamrozy Marcin Paweł Sadowski Wyższa Szkoła Oficerska Wojsk Lądowych Wrocław, listopad 2009 Jak powstaje energia? Jest wyzwalana

Bardziej szczegółowo

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Wykład 13 6 czerwca 2017

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów   Wykład 13 6 czerwca 2017 Energetyka Jądrowa Wykład 13 6 czerwca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Krótki przegląd Prawo rozpadu promieniotwórczego Rozpady

Bardziej szczegółowo

Budowa EJ dźwignią rozwoju polskiego przemysłu

Budowa EJ dźwignią rozwoju polskiego przemysłu Dr inż. Andrzej Strupczewski, prof. nadzw. NCBJ Budowa EJ dźwignią rozwoju polskiego przemysłu Zorganizowana przez Ministerstwo Energii konferencja Promieniujemy na całą gospodarkę Polski przemysł dla

Bardziej szczegółowo

5.5. Możliwości wpływu na zużycie energii w fazie wznoszenia

5.5. Możliwości wpływu na zużycie energii w fazie wznoszenia SPIS TREŚCI Przedmowa... 11 Podstawowe określenia... 13 Podstawowe oznaczenia... 18 1. WSTĘP... 23 1.1. Wprowadzenie... 23 1.2. Energia w obiektach budowlanych... 24 1.3. Obszary wpływu na zużycie energii

Bardziej szczegółowo

Skojarzone wytwarzanie energii elektrycznej i ciepła w źródłach rozproszonych (J. Paska)

Skojarzone wytwarzanie energii elektrycznej i ciepła w źródłach rozproszonych (J. Paska) 1. Idea wytwarzania skojarzonego w źródłach rozproszonych Rys. 1. Wytwarzanie energii elektrycznej i ciepła: rozdzielone (a) w elektrowni kondensacyjnej i ciepłowni oraz skojarzone (b) w elektrociepłowni

Bardziej szczegółowo

OPIS POTRZEB I WYMAGAŃ ZAMAWIAJĄCEGO

OPIS POTRZEB I WYMAGAŃ ZAMAWIAJĄCEGO OPIS POTRZEB I WYMAGAŃ ZAMAWIAJĄCEGO Budowa na terenie elektrociepłowni w Kaliszu kogeneracyjnego bloku energetycznego spalającego biomasę o mocy ok. 11 MWe i 22 MWt - Projekt BB10 1/7 SPIS DOKUMENTU 1.

Bardziej szczegółowo

Elektrownie / Maciej Pawlik, Franciszek Strzelczyk. wyd. 7 zm., dodr. Warszawa, Spis treści

Elektrownie / Maciej Pawlik, Franciszek Strzelczyk. wyd. 7 zm., dodr. Warszawa, Spis treści Elektrownie / Maciej Pawlik, Franciszek Strzelczyk. wyd. 7 zm., dodr. Warszawa, 2014 Spis treści Przedmowa do wydania siódmego Wykaz ważniejszych oznaczeń Ważniejsze symbole używane w schematach xv xvii

Bardziej szczegółowo

LPG KOLEJNA PŁASZCZYZNA DO AMERYKAŃSKOROSYJSKIEGO STARCIA NAD WISŁĄ?

LPG KOLEJNA PŁASZCZYZNA DO AMERYKAŃSKOROSYJSKIEGO STARCIA NAD WISŁĄ? 10.04.2018 LPG KOLEJNA PŁASZCZYZNA DO AMERYKAŃSKOROSYJSKIEGO STARCIA NAD WISŁĄ? W minionym roku opinię publiczną zelektryzowały doniesienia o dostawach skroplonego gazu (LNG) z USA do Polski. Surowiec

Bardziej szczegółowo

PGE Zespół Elektrowni Dolna Odra Spółka Akcyjna

PGE Zespół Elektrowni Dolna Odra Spółka Akcyjna Szczecin 3 grudnia 2009 Elektrownia Dolna Odra PGE Zespół Elektrowni Dolna Odra SA tworzą trzy elektrownie: Elektrownia Dolna Odra Elektrownia Pomorzany moc elektryczna 1772 MWe, moc cieplna 117,4 MWt

Bardziej szczegółowo

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa MECHANIK 7/2014 Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa WYZNACZENIE CHARAKTERYSTYK EKSPLOATACYJNYCH SIŁOWNI TURBINOWEJ Z REAKTOREM WYSOKOTEMPERATUROWYM W ZMIENNYCH

Bardziej szczegółowo

Prawo Energetyczne I Inne Ustawy Dotyczące Energetyki Kogeneracja Skuteczność Nowelizacji I Konieczność

Prawo Energetyczne I Inne Ustawy Dotyczące Energetyki Kogeneracja Skuteczność Nowelizacji I Konieczność Prawo Energetyczne I Inne Ustawy Dotyczące Energetyki Kogeneracja Skuteczność Nowelizacji I Konieczność dr inż. Janusz Ryk Polskie Towarzystwo Elektrociepłowni Zawodowych II Ogólnopolska Konferencja Polska

Bardziej szczegółowo

Nośniki energii w 2014 roku. Węgiel w fazie schyłkowej, atom trzyma się dobrze

Nośniki energii w 2014 roku. Węgiel w fazie schyłkowej, atom trzyma się dobrze Nośniki energii w 2014 roku. Węgiel w fazie schyłkowej, atom trzyma się dobrze ("Energia Gigawat" - 9/2015) Wydawany od 64 lat Raport BP Statistical Review of World Energy jest najbardziej wyczekiwanym

Bardziej szczegółowo

KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI

KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI Autor: Opiekun referatu: Hankus Marcin dr inŝ. T. Pająk Kogeneracja czyli wytwarzanie energii elektrycznej i ciepła w skojarzeniu

Bardziej szczegółowo

Produkcja energii elektrycznej z biogazu na przykładzie zakładu Mlekoita w Wysokim Mazowieckim. mgr inż. Andrzej Pluta

Produkcja energii elektrycznej z biogazu na przykładzie zakładu Mlekoita w Wysokim Mazowieckim. mgr inż. Andrzej Pluta Produkcja energii elektrycznej z biogazu na przykładzie zakładu Mlekoita w Wysokim Mazowieckim mgr inż. Andrzej Pluta Czym się zajmujemy? Firma Centrum Elektroniki Stosowanej CES Sp. z o.o. działa na rynku

Bardziej szczegółowo

Największe katastrofy jądrowe w historii

Największe katastrofy jądrowe w historii Największe katastrofy jądrowe w historii W 1990 roku Międzynarodowa Agencja Energii Atomowej opracowała siedmiostopniowy system stopniowania rodzajów awarii, gdzie poziom 0 oznacza brak albo zakłócenie

Bardziej szczegółowo