Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki
|
|
- Mikołaj Kaczmarek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
2 Efektywność przetwarzania OLAP 1. Indeksowanie B-drzewo Indeks bitmapowy Indeks połączeniowy Bitmapowy indeks połączeniowy 2. Perspektywa zmaterializowana koncepcja przepisywanie zapytań odświeżanie wybór perspektyw do materializacji 3. Optymalizacja GROUP BY 4. Partycjonowanie 5. Kompresja 6. Przetwarzanie równoległe 2
3 B-drzewo (B-tree) 4 x<=4 x> x<=2 2<x<=4 4<x<=6 6<x<=8 8<x
4 Indeks połączeniowy (join index) Zmaterializowany wynik połączenia np. indeks na atrybucie Sklepy.sklep_id Sklepy sklep_id nazwa Sprzedaż sklep_id produkt_id l_sztuk 4
5 Wprowadzenie (2) Zapytania analityczne często nie są selektywne wybierają kilkadziesiąt % rekordów tabeli Indeksy B-drzewo są efektywne dla selektywności max 20% Zastosowanie innego rodzaju indeksu do indeksowania danych w HD indeks bitmapowy 5
6 Indeks bitmapowy - definicje Krotność atrybutu - szerokość dziedziny atrybutu Mapa bitowa - wektor bitów bit odpowiada rekordowi tabeli Indeks bitmapowy zbiór map bitowych - jedna mapa opisuje jedną wartość z dziedziny Dostęp do map bitowych 2-wymiarowa tablica indeks B-drzewo... 6
7 Indeks bitmapowy - wykorzystanie select count(*) from sprzedaż where marka in ('Audi', 'Ford') and typ = 'sport' and plec='k'; 7
8 Indeks bitmapowy - charakterystyka (1) Mały rozmiar dla atrybutów o małej krotności Przykład l_rekordów = krotność A = 4 adres_rekordu = 10B (Oracle) indeks bitmapowy na atrybucie A 4 mapy bitowe: 4 x ( / 8) = 4 x 125kB = 500kB indeks B + -drzewo na atrybucie A x 10B = 10MB 8
9 Indeks bitmapowy - charakterystyka (2) Szybkość przetwarzania mały indeks mała liczba operacji we/wy przetwarzanie w RAM przetwarzanie 64 bitów w jednym cyklu zegara szybkie operacje AND, OR, NOT, COUNT na mapach bitowych nie nadaje się do obsługi operatora LIKE 9
10 Indeks bitmapowy - charakterystyka (3) Duży rozmiar dla atrybutów o dużej krotności Przykład l_rekordów = krotność A = 1024 adres_rekordu = 10B indeks bitmapowy na atrybucie A 1024 mapy bitowe: 1024 x ( / 8) = 1024 x 125kB = 128MB indeks B + -drzewo na atrybucie A x 10B = 10MB 10
11 Indeks bitmapowy charakterystyka (5) Koszty uaktualniania indeksów w trakcie pracy systemu wstawianie rekordów zwiększanie długości map bitowych usuwanie rekordów zmniejszanie długości map bitowych modyfikowanie rekordów operacje na 2 mapach współbieżność blokowane są ciągłe obszary map bitowych 11
12 Eksperyment (1) Oracle10g R2 bufor danych: 73MB; SGA: 570MB liczba rekordów w indeksowanej tabeli: 3,2 mln 12
13 Eksperyment (2) select count(1) from T where... liczba rekordów w indeksowanej tabeli: 3,2 mln krotność indeksowanego atrybutu:
14 Eksperyment (3) select sum(val) from T where... liczba rekordów w indeksowanej tabeli: 3,2 mln krotność indeksowanego atrybutu:
15 Eksperyment (4) Tworzenie indeksów 15
16 Techniki zmniejszania rozmiaru IB Podział dziedziny indeksowanego atrybutu na zakresy Kodowanie map bitowych Kompresja map bitowych 16
17 Podział na zakresy (1) Dziedzina indeksowanego atrybutu jest dzielona na zadane zakresy np. temperatura <0, 20), <20, 40), <40, 60), <60, 80), <80, 100) indeksowany atrybut indeks bitmapowy z podziałem na zakresy zapytanie: policz rekordy dla których 10<=temp<45 17
18 Podział na zakresy (2) Możliwe budowanie map bitowych dla wybranych zbiorów wartości np. {żółty, pomarańczowy, czerwony}, {błękitny, niebieski, granatowy} Cechy uniezależnienie liczby map bitowych od szerokości dziedziny w zbiorze wskazanym przez mapę bitową znajdują się również rekordy nie spełniające warunku selekcji konieczność odfiltrowania 18
19 Kodowanie map bitowych (1) Zastąpienie wartości indeksowanego atrybutu inną wartością, której reprezentacja za pomocą map bitowych zajmie mniej miejsca Przykład krotność indeksowanego atrybutu: podstawowy indeks bitmapowy: map bitowych zakodowanie różnych wartości na log =16 bitów konieczność odwzorowania wartości oryginalnych w zakodowane tabela odwzorowania 19
20 Kodowanie map bitowych (2) zapytanie: select * from T where taryfa = 'Kubali' maska IB: B2 B1 B0 atrybut zakodowany IB tabela odwzorowania 20
21 Kompresja map bitowych Kodowanie run-length zastąpienie jednorodnego ciągu bitów o wartości w (0 lub 1) i o długości m ciągiem: [w m] kompresja BBC (Oracle) kompresja WAH kompresja RLH podział mapy bitowej na słowa o długości n bitów BBC słowa 8 bitowe WAH słowa 31 bitowe RLH słowa 1024 bitowe lub brak podziału 21
22 Kompresja WAH i BBC WAH - Word Aligned Hybrid BBC - Byte-aligned Bitmap Compression Wypełnienie słowo złożone z samych zer lub z samych jedynek podlega kompresji Dopełnienie słowo złożone z zer i jedynek nie podlega kompresji Format skompresowanego słowa bit pierwszy wartość 1 oznacza wypełnienie wartość 0 oznacza dopełnienie bit drugi oznacza wartość wypełnienia (0 lub 1) kolejne bity służą do zapisania długości wypełnienia, tj. liczby jednorodnych zer lub jedynek 22
23 Kompresja WAH (1) Przykład Założenia 32 bitowy procesor mapa bitowa złożona z 5456 bitów Działanie kompresji WAH krok 1: podział mapy bitowej na grupy złożone z 31 bitów 23
24 Kompresja WAH (2) Działanie kompresji WAH krok 2: scalenie grup z identycznymi bitami w jedną grupę scalane są grupy 2 do 175 grupa niejednorodna grupa niejednorodna 24
25 Kompresja WAH (3) Działanie kompresji WAH kodowanie 3 grup wynikowych grupa pierwsza dopełnienie przebiegu 1 grupa wypełnienie przebiegu 2 grupa 176 dopełnienie przebiegu 2 25
26 Kompresja WAH i BBC - wady Podział mapy bitowej na słowa pogarsza jakość jej kompresji jednorodne ciągi bitów nie zawsze pasują do długości słowa i w takim przypadku nie mogą być kompresowane Ze wzrostem krotności indeksowanego atrybutu maleje liczba jednorodnych ciągów bitów (przy nieuporządkowaniu danych) 26
27 Kompresja RLH RLH - Run-Length Huffman Bazuje na kodowaniu run-length (zmodyfikowane) kodowaniu Huffmana 27
28 Kodowanie Huffmana (1) Koncepcja: oryginalne symbole są zastępowane ciągami bitów, przy czym symbole występujące częściej są zastępowane krótszymi ciągami bitów Przykład zakodować ciąg znaków: to_jest_test Działanie kodowania Huffmana Krok 1: obliczenie częstości występowania symboli w kodowanym ciągu 28
29 Kodowanie Huffmana (2) Działanie kodowania Huffmana Krok 2: zbudowanie drzewa kodów Huffmana 29
30 Kodowanie Huffmana (3) Działanie kodowania Huffmana Krok 3: wyznaczenie kodów Huffmana i zastąpienie nimi oryginalnych symboli oryginalny tekst: 12B skompresowany tekst: 4B 30
31 Kompresja RLH (1) Zmodyfikowane kodowanie run-length kodowaniu podlegają odległości pomiędzy kolejnymi bitami o wartości jeden Wzrost krotności atrybutu zmniejszanie się gęstości map bitowych zmniejszanie się liczby symboli wykorzystywanych do kodowania map bitowych 31
32 Kompresja RLH (2) Mapy bitowe, zakodowane z wykorzystaniem zmodyfikowanego kodowania run-length są kompresowane z wykorzystaniem kodowania Huffmana Częstości odległości we wszystkich mapach bitowych są reprezentowane w drzewie kodów Huffmana Rozmiar drzewa kodów Huffmana jest niewielki przechowywane w RAM, zwiększając efektywność kompresowania i dekompresowania map bitowych 32
33 Kompresja RLH (3) Przykładowe działanie Krok 1: kodowanie map bitowych obliczenie częstości symboli 33
34 Kompresja RLH (4) Przykładowe działanie Krok 2: zbudowanie drzewa kodów Huffmana 34
35 Przykładowe działanie Krok 3: kompresja oryginalna mapa bitowa płeć='kobieta' Kompresja RLH (5) reprezentacja mapy po zmodyfikowanym kodowaniu run-length skompresowana mapa bitowa RLH 35
36 WAH i RLH: rozmiary Liczba rekordów indeksowanej tabeli: 2 mln 36
37 WAH i RLH: czasy odpowiedzi Zapytanie: select... from... where indeksowany_atrybut in (w1, w2,..., w100) 37
38 Indeksy bitmapowe w systemach komercyjnych (1) Oracle definiowane jawnie przez administratora kompresowane automatycznie (BBC) wykorzystywane do optymalizacji zapytań gwiaździstych HD_wykl04_indeks-STAR-KJ bitmapowy indeks połączeniowy 38
39 Indeksy bitmapowe w systemach komercyjnych (2) Oracle - bitmapowy indeks połączeniowy create bitmap index sprz_jbi on sprzedaz(produkty.kategoria) from sprzedaz, produkty where sprzedaz.produkt_id= produkty.produkt_id; 39
40 Indeksy bitmapowe w systemach komercyjnych (3) Oracle - optymalizacja zapytań gwiaździstych z wykorzystaniem bitmapowego indeksu połączeniowego select sum(wartosc), pr.nazwa, sk.nazwa from sprzedaz sp, sklepy sk, produkty pr where sk.wojewodztwo in ('Mazowieckie', 'Wielkopolskie') and pr.kategoria='kosmetyki' and sp.sklep_id=sk.sklep_id and sp.produkt_id=pr.produkt_id group by pr.nazwa, sk.nazwa; Zdefiniowano bitmapowe indeksy połączeniowe na atrybutach Sklepy.wojewodztwo Produkty.kategoria 40
41 Indeksy bitmapowe w systemach komercyjnych (4) Indeks na Produkty.kategoria będzie zawierał tyle map bitowych ile jest różnych kategorii produktów (w tabeli Produkty) pojedyncza mapa tego indeksu, np. dla grupy kosmetyki będzie wskazywała na te rekordy w tabeli sprzedaż, które opisują sprzedaż kosmetyków Indeks na Sklepy.wojewodztwo będzie zawierał tyle map bitowych ile jest różnych województw w tabeli sklepy pojedyncza mapa tego indeksu, np. dla Wielkopolski będzie opisywała te sprzedaże, które zrealizowano w Wielkopolsce 41
42 Indeksy bitmapowe w systemach komercyjnych (5) Nastąpi przepisanie oryginalnego zapytania do zapytania z wykorzystaniem połączeniowych indeksów bitmapowych Krok 1 odczytanie mapy opisującej sprzedaż produktów kategorii kosmetyki (MB kosmetyki ) odczytanie mapy opisującej sprzedaż w województwie wielkopolskim (MB Wielkopolska ) odczytanie mapy opisującej sprzedaż w województwie mazowieckim (MB Mazowsze ) Krok2 wyznaczenie wynikowej mapy (MB wynik ) Krok3 MB wynik = MB kosmetyki and (MB Wielkopolska or MB Mazowsze ) odczytanie rekordów z tabeli z wykorzystaniem mapy MB wynik 42
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie
Hurtownie danych - przegląd technologii
Efektywność przetwarzania OLAP Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel. Indeksowanie
Run-Length Huffman - alternatywny algorytm kompresji map bitowych
Run-Length Huffman - alternatywny algorytm kompresji map bitowych Michał Stabno 1, Robert Wrembel 2 Streszczenie: Artykuł prezentuje nowy algorytm kompresji indeksów bitmapowych dla zastosowań w hurtowniach
Indeksy w hurtowniach danych
Indeksy w hurtowniach danych Hurtownie danych 2011 Łukasz Idkowiak Tomasz Kamiński Bibliografia Zbyszko Królikowski, Hurtownie danych. Logiczne i fizyczne struktury danych, Wydawnictwo Politechniki Poznańskiej,
"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie. Krzysztof Jankiewicz
"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie Krzysztof Jankiewicz Plan Opis schematu dla "kilku słów" Postać polecenia SQL Sposoby dostępu do tabel Indeksy B*-drzewo Indeksy
Jakub Pilecki Szymon Wojciechowski
Indeksy w hurtowniach danych Jakub Pilecki Szymon Wojciechowski Plan prezentacji 1. Czym są indeksy? 2. Cel stosowania indeksó w 3. Co należy indeksować? 4. Rodzaje indeksó w 5. B-drzewa (drzewa zró wnoważone)
Optymalizacja poleceń SQL
Optymalizacja poleceń SQL Przetwarzanie polecenia SQL użytkownik polecenie PARSER słownik REGUŁOWY RBO plan zapytania RODZAJ OPTYMALIZATORA? GENERATOR KROTEK plan wykonania statystyki KOSZTOWY CBO plan
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Wydajność hurtowni danych opartej o Oracle10g Database
Wydajność hurtowni danych opartej o Oracle10g Database 123 Plan rozdziału 124 Transformacja gwiaździsta Rozpraszanie przestrzeni tabel Buforowanie tabel Różnicowanie wielkości bloków bazy danych Zarządzanie
Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07 Plan wykładu Systemy baz
Optymalizacja poleceń SQL Metody dostępu do danych
Optymalizacja poleceń SQL Metody dostępu do danych 1 Metody dostępu do danych Określają, w jaki sposób dane polecenia SQL są odczytywane z miejsca ich fizycznej lokalizacji. Dostęp do tabeli: pełne przeglądnięcie,
Hurtownie danych 2. Wykład przygotował: Robert Wrembel. Zagadnienia implementacyjne i efektywność przetwarzania OLAP
Hurtownie danych 2 Zagadnienia implementacyjne i efektywność przetwarzania OLAP Wykład przygotował: Robert Wrembel ZSBD wykład 13 (1) 1 Plan wykładu Odświeżanie hurtowni danych Perspektywy zmaterializowane
Modelowanie wymiarów
Wymiar Modelowanie wymiarów struktura umożliwiająca grupowanie danych z tabeli faktów implementowana jako obiekt bazy danych DIMENSION wykorzystanie DIMENSION zaawansowane przepisywanie zapytań (ang. query
Indeksy. Indeks typu B drzewo
Indeksy dodatkowe struktury służące przyśpieszeniu dostępu do danych o użyciu indeksu podczas realizacji poleceń decyduje SZBD niektóre systemy bazodanowe automatycznie tworzą indeksy dla kolumn o wartościach
Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU
Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie
Optymalizacja poleceń SQL Indeksy
Optymalizacja poleceń SQL Indeksy Indeksy Dodatkowe struktury służące przyspieszaniu dostępu do danych. Tworzone dla relacji, są jednak niezależne logicznie i fizycznie od danych relacji. O użyciu indeksu
Indeksowanie w bazach danych
w bazach Katedra Informatyki Stosowanej AGH 5grudnia2013 Outline 1 2 3 4 Czym jest indeks? Indeks to struktura, która ma przyspieszyć wyszukiwanie. Indeks definiowany jest dla atrybutów, które nazywamy
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.
Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele
INDEKSY. Biologiczne Aplikacje Baz Danych. dr inż. Anna Leśniewska
INDEKSY Biologiczne Aplikacje Baz Danych dr inż. Anna Leśniewska alesniewska@cs.put.poznan.pl INDEKSY dodatkowe struktury służące przyspieszaniu dostępu do danych, tworzone dla relacji, są jednak niezależne
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Haszowanie (adresowanie rozpraszające, mieszające)
Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy
Wykład XII. optymalizacja w relacyjnych bazach danych
Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych
(duzo, przeczytac raz i zrozumiec powinno wystarczyc. To jest proste.)
39. Typy indeksowania w hurtowniach danych. (duzo, przeczytac raz i zrozumiec powinno wystarczyc. To jest proste.) Po co inne niŝ B-Tree? Bo B-Tree w hurtowniach danych jest zbyt mało efektywny. Oprócz
Przykładowe B+ drzewo
Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku
Oracle11g: Wprowadzenie do SQL
Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom
PODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych
PODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych 2005/2006 Wykład "Podstawy baz danych" 1 Statyczny model pamiętania bazy danych 1. Dane przechowywane są w pamięci zewnętrznej podzielonej
Przestrzenne bazy danych Podstawy języka SQL
Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
Modelowanie hierarchicznych struktur w relacyjnych bazach danych
Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego
Indeksy. Rozdział 18. Indeksy. Struktura indeksu. Adres rekordu
Indeksy Rozdział 8 Indeksy Indeksy B-drzewo i bitmapowe, zwykłe i złoŝone, unikalne i nieunikalne, odwrócone, funkcyjne, skompresowane, bitmapowe połączeniowe. Zarządzanie indeksami. dodatkowe struktury
Zastosowanie kompresji w kryptografii Piotr Piotrowski
Zastosowanie kompresji w kryptografii Piotr Piotrowski 1 Plan prezentacji I. Wstęp II. Kryteria oceny algorytmów III. Główne klasy algorytmów IV. Przykłady algorytmów selektywnego szyfrowania V. Podsumowanie
Język SQL. Rozdział 10. Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne.
Język SQL. Rozdział 10. Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne. 1 Perspektywa Perspektywa (ang. view) jest strukturą
STROJENIE BAZ DANYCH: INDEKSY. Cezary Ołtuszyk coltuszyk.wordpress.com
STROJENIE BAZ DANYCH: INDEKSY Cezary Ołtuszyk coltuszyk.wordpress.com Plan spotkania I. Wprowadzenie do strojenia baz danych II. III. IV. Mierzenie wydajności Jak SQL Server przechowuje i czyta dane? Budowa
wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK
wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK 1 2 3 Pamięć zewnętrzna Pamięć zewnętrzna organizacja plikowa. Pamięć operacyjna organizacja blokowa. 4 Bufory bazy danych. STRUKTURA PROSTA
Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Relacyjne bazy danych. Podstawy SQL
Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umożliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.
Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)
Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks
System plików przykłady. implementacji
Dariusz Wawrzyniak Plan wykładu CP/M MS DOS ISO 9660 UNIX NTFS System plików (2) 1 Przykłady systemu plików (1) CP/M katalog zawiera blok kontrolny pliku (FCB), identyfikujący 16 jednostek alokacji (zawierający
Definicja pliku kratowego
Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,
Partycjonowanie tabel (1)
Partycjonowanie tabel (1) Podział tabeli na mniejsze fragmenty operacje dostępu do dysków mogą być wykonywane równolegle; jest równoważone obciążenie dysków; polecenia SQL adresujące różne partycje mogą
Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych
1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni
ZADANIE 1. Rozwiązanie:
EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa
Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski
Kodowanie Huffmana Platforma programistyczna.net; materiały do laboratorium 24/5 Marcin Wilczewski Algorytm Huffmana (David Huffman, 952) Algorytm Huffmana jest popularnym algorytmem generującym optymalny
Relacyjne bazy danych. Podstawy SQL
Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umoŝliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia
Statystyki (1) Optymalizacja poleceń SQL Część 2. Statystyki (2) Statystyki (3) Informacje, opisujące dane i struktury obiektów bazy danych.
Statystyki (1) Informacje, opisujące dane i struktury obiektów bazy danych. Optymalizacja poleceń SQL Część 2. Statystyki i histogramy, metody dostępu do danych Przechowywane w słowniku danych. Używane
Optymalizacja poleceń SQL Wprowadzenie
Optymalizacja poleceń SQL Wprowadzenie 1 Fazy przetwarzania polecenia SQL 2 Faza parsingu (1) Krok 1. Test składniowy weryfikacja poprawności składniowej polecenia SQL. Krok 2. Test semantyczny m.in. weryfikacja
Optymalizacja poleceń SQL
Optymalizacja poleceń SQL Optymalizacja kosztowa i regułowa, dyrektywa AUTOTRACE w SQL*Plus, statystyki i histogramy, metody dostępu i sortowania, indeksy typu B* drzewo, indeksy bitmapowe i funkcyjne,
Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.
Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą
Systemy GIS Tworzenie zapytań w bazach danych
Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE
Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
AKD Metody słownikowe
AKD Metody słownikowe Algorytmy kompresji danych Sebastian Deorowicz 2009 03 19 Sebastian Deorowicz () AKD Metody słownikowe 2009 03 19 1 / 38 Plan wykładu 1 Istota metod słownikowych 2 Algorytm Ziva Lempela
- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji
6. Język SQL Język SQL (Structured Query Language): - język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji - stworzony w IBM w latach 70-tych DML (Data Manipulation
Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
Hurtownie danych - przegląd technologii
Partycjonowanie tabel (1) Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Podział tabeli na mniejsze fragmenty
Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2016/2017 Wykład nr 7 (11.01.2017) Rok akademicki 2016/2017, Wykład
Podstawy języka SQL. SQL Structured Query Languagestrukturalny
Podstawy języka SQL SQL Structured Query Languagestrukturalny język zapytań DDL Język definicji danych (np. tworzenie tabel) DML Język manipulacji danych (np. tworzenie zapytań) DCL Język kontroli danych
Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane.
Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane. 1 Perspektywa Perspektywa (ang. view) jest strukturą logiczną
System plików przykłady implementacji
System plików przykłady implementacji Dariusz Wawrzyniak CP/M MS DOS ISO 9660 UNIX NTFS Plan wykładu System plików (2) Przykłady implementacji systemu plików (1) Przykłady implementacji systemu plików
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność OLAP Perspektywy zmaterializowane
Wprowadzenie do baz danych
Wprowadzenie do baz danych Dr inż. Szczepan Paszkiel szczepanpaszkiel@o2.pl Katedra Inżynierii Biomedycznej Politechnika Opolska Wprowadzenie DBMS Database Managment System, System za pomocą którego można
Modele danych - wykład V
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność OLAP Perspektywy zmaterializowane
w ramach realizacji V etapu umowy nr 48/2009/F pt.
Sprawozdanie z realizacji zadania nr 4 w ramach realizacji V etapu umowy nr 48/2009/F pt. Realizacja programu Zintegrowanego Monitoringu Środowiska Przyrodniczego nadzór merytoryczny oraz prowadzenie pomiarów
Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 5 Kodowanie słownikowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Przemysław
Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy
1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć
Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko
Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych
SQL - Structured Query Language -strukturalny język zapytań SQL SQL SQL SQL
Wprowadzenie do SQL SQL - Structured Query Language -strukturalny język zapytań Światowy standard przeznaczony do definiowania, operowania i sterowania danymi w relacyjnych bazach danych Powstał w firmie
Język SQL. instrukcja laboratoryjna. Politechnika Śląska Instytut Informatyki. laboratorium Bazy Danych
Politechnika Śląska Instytut Informatyki instrukcja laboratoryjna laboratorium Bazy Danych przygotowali: mgr inż. Paweł Kasprowski (Kasprowski@zti.iinf.polsl.gliwice.pl) mgr inż. Bożena Małysiak (bozena@ivp.iinf.polsl.gliwice.pl)
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Aktywna hurtownia danych AHD [T. Thalhammer,
Wielowymiarowy model danych
Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:
Model relacyjny. Wykład II
Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji
Konstruowanie Baz Danych SQL UNION, INTERSECT, EXCEPT
Studia podyplomowe Inżynieria oprogramowania współfinansowane przez Unię Europejska w ramach Europejskiego Funduszu Społecznego Projekt Studia podyplomowe z zakresu wytwarzania oprogramowania oraz zarządzania
Struktura drzewa w MySQL. Michał Tyszczenko
Struktura drzewa w MySQL Michał Tyszczenko W informatyce drzewa są strukturami danych reprezentującymi drzewa matematyczne. W naturalny sposób reprezentują hierarchię danych toteż głównie do tego celu
Bitmapy - format i zastosowanie. Podstawowy format plików bitmapowych, dogodność zastosowania bitmap w prostych animacjach 2D.
Bitmapy - format i zastosowanie. Podstawowy format plików bitmapowych, dogodność zastosowania bitmap w prostych animacjach 2D. Format BMP został zaprojektowany przez firmę Microsoft, do przechowywania
Cwiczenie 4. Połączenia, struktury dodatkowe
Cwiczenie 4. Połączenia, struktury dodatkowe Optymalizacja poleceń SQL 1 W niniejszym ćwiczeniu przyjrzymy się, w jaki sposób realizowane są operacje połączeń w poleceniach SQL. Poznamy również dodatkowe
Entropia Kodowanie. Podstawy kompresji. Algorytmy kompresji danych. Sebastian Deorowicz
Algorytmy kompresji danych 2007 02 27 Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie definicja stowarzyszona ze zbiorem
Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36
Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów
Spis treści. Przedmowa
Spis treści Przedmowa V 1 SQL - podstawowe konstrukcje 1 Streszczenie 1 1.1 Bazy danych 1 1.2 Relacyjny model danych 2 1.3 Historia języka SQL 5 1.4 Definiowanie danych 7 1.5 Wprowadzanie zmian w tabelach
Bazy danych. Plan wykładu. Rozproszona baza danych. Fragmetaryzacja. Cechy bazy rozproszonej. Replikacje (zalety) Wykład 15: Rozproszone bazy danych
Plan wykładu Bazy danych Cechy rozproszonej bazy danych Implementacja rozproszonej bazy Wykład 15: Rozproszone bazy danych Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy danych (studia
P o d s t a w y j ę z y k a S Q L
P o d s t a w y j ę z y k a S Q L Adam Cakudis IFP UAM Użytkownicy System informatyczny Aplikacja Aplikacja Aplikacja System bazy danych System zarządzania baz ą danych Schemat Baza danych K o n c e p
Politechnika Poznańska TWO
Politechnika Poznańska TWO Data: 2009-11-24 Nr Lab.: I Prowadzący: dr inż. Szymon Wilk Mateusz Jancy Joanna Splitter Zadanie: DZIELENIE RELACYJNE Rok: I Grupa: B Semestr: I Ocena: Cel zadania: Wykonać
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki
Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania
Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu
DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna&
DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& Artur Wroński" Priorytety rozwoju technologii Big Data& Analiza większych zbiorów danych, szybciej& Łatwość użycia& Wsparcie
Zapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Kodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Kompresja Kodowanie arytmetyczne. Dariusz Sobczuk
Kompresja Kodowanie arytmetyczne Dariusz Sobczuk Kodowanie arytmetyczne (lata 1960-te) Pierwsze prace w tym kierunku sięgają początków lat 60-tych XX wieku Pierwszy algorytm Eliasa nie został opublikowany
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
PODSTAWY BAZ DANYCH. 10. Partycjonowanie tabel i indeksów. 2009/ Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 10. Partycjonowanie tabel i indeksów 1 Partycjonowanie tabel i indeksów w Oracle W celu poprawienia efektywności dostępu do danych oraz ułatwieniu zarządzania bardzo dużymi zbiorami
Autor: Joanna Karwowska
Autor: Joanna Karwowska SELECT [DISTINCT] FROM [WHERE ] [GROUP BY ] [HAVING ] [ORDER BY ] [ ] instrukcja może