Krzysztof Dembczyński. Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08
|
|
- Jadwiga Kulesza
- 8 lat temu
- Przeglądów:
Transkrypt
1 Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08
2 Plan wykładu Systemy baz i hurtowni danych wprowadzenie do wykładu Modele danych i ewolucja systemów baz danych Projektowanie hurtowni danych i modelowanie wielowymiarowe Systemy OLAP Proces ekstrakcji, transformacji i ładowania danych (Proces ETL) Analiza i eksploracja danych
3 Plan wykładu 1 Języki zapytań do hurtowni danych 2 SQL3 3 MDX 4 Podsumowanie
4 Plan wykładu 1 Języki zapytań do hurtowni danych 2 SQL3 3 MDX 4 Podsumowanie
5 Hurtownie danych wymagaja specyficznego podejścia do zadawania zapytań. SQL3 (ROLAP) MDX (MOLAP)
6 Plan wykładu 1 Języki zapytań do hurtowni danych 2 SQL3 3 MDX 4 Podsumowanie
7 SQL3 Rozszerzenia języka SQL GROUP BY ROLLUP, GROUP BY CUBE.
8 GROUP BY CUBE SELECT Czas, Produkt, Lokalizacja, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY CUBE (Czas, Produkt, Lokalizacja, Dostawca);
9 GROUP BY CUBE SELECT Czas, Produkt, Lokalizacja, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Lokalizacja, Dostawca UNION ALL SELECT Czas, Produkt, Lokalizacja, *, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Lokalizacja UNION ALL SELECT Czas, Produkt, *, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Dostawca UNION ALL... UNION ALL SELECT *, *, *, *, SUM(Zysk) FROM Sprzedaż;
10 GROUP BY CUBE SELECT Academic_year, Name, AVG(Grade) FROM Students_grades GROUP BY CUBE(Academic_year, Name); Academic_year Name AVG(Grade) 2001/2 Stefanowski /2 Słowiński /3 Stefanowski /3 Słowiński /4 Stefanowski /4 Słowiński /4 Dembczyński /2 NULL /3 NULL /4 NULL 3.8 NULL Stefanowski 3.9 NULL Słowiński 3.6 NULL Dembczyński 4.8 NULL NULL 3.95
11 GROUP BY ROLLUP SELECT Czas, Produkt, Lokalizacja, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY ROLLUP (Czas, Produkt, Lokalizacja, Dostawca);
12 GROUP BY CUBE SELECT Czas, Produkt, Lokalizacja, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Lokalizacja, Dostawca UNION ALL SELECT Czas, Produkt, Lokalizacja, *, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Lokalizacja UNION ALL SELECT Czas, Produkt, *, *, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt UNION ALL SELECT Czas, *, *, *, SUM(Zysk) FROM Sprzedaż GROUP BY Czas UNION ALL SELECT *, *, *, *, SUM(Zysk) FROM Sprzedaż;
13 GROUP BY ROLLUP SELECT Academic_year, Name, AVG(Grade) FROM Students_grades G GROUP BY ROLLUP(Academic_year, Name); Academic_year Name AVG(Grade) 2001/2 Stefanowski /2 Słowiński /3 Stefanowski /3 Słowiński /4 Stefanowski /4 Słowiński /4 Dembczyński /2 NULL /3 NULL /4 NULL 3.8 NULL NULL 3.95
14 Plan wykładu 1 Języki zapytań do hurtowni danych 2 SQL3 3 MDX 4 Podsumowanie
15 (Multidimensional Expressions): Podstawowe terminy: Wymiar (Dimension), Hierarchia (Hierarchy), Poziom (Level), Członek (Member), Miara (Measure), Krotka (Tuple), Zbiór (Set). MDX SELECT {[CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford]} ON ROWS, {[DATE].[All DATE].[March], [DATE].[All DATE].[April]} ON COLUMNS FROM MDDBCARS;
16 (Multidimensional Expressions): MDX SELECT {[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]} ON COLUMNS, {[DATE].[ALL DATE].[MARCH], [DATE].[ALL DATE].[APRIL]} ON ROWS FROM MDDBCARS WHERE ([MEASURES].[SALES_N])
17 (Multidimensional Expressions): MDX SELECT {[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]} ON COLUMNS, {[DATE].[ALL DATE].[JANUARY]:[DATE].[ALL DATE].[APRIL]} ON ROWS FROM MDDBCARS
18 (Multidimensional Expressions): MDX SELECT {[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]} ON COLUMNS, {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
19 (Multidimensional Expressions): MDX SELECT {[CARS].[ALL CARS].[FORD].CHILDREN} ON COLUMNS, {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
20 (Multidimensional Expressions): MDX SELECT {([CARS].[ALL CARS].[CHEVY], [MEASURES].[SALES_SUM]), ([CARS].[ALL CARS].[CHEVY], [MEASURES].[SALES_N]), ([CARS].[ALL CARS].[FORD], [MEASURES].[SALES_SUM]), ([CARS].[ALL CARS].[FORD], [MEASURES].[SALES_N]) } ON COLUMNS, {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
21 (Multidimensional Expressions): MDX SELECT {CROSSJOIN({[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]}, {[MEASURES].[SALES_SUM], [MEASURES].[SALES_N]}) } ON COLUMNS, {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
22 (Multidimensional Expressions): MDX SELECT {CROSSJOIN ({[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]}, {[MEASURES].[SALES_SUM], [MEASURES].[SALES_N]}) } ON COLUMNS, NON EMPTY {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
23 (Multidimensional Expressions): MDX SELECT NON EMPTY [Store Type].[Store Type].MEMBERS ON COLUMNS, FILTER([Store].[Store City].MEMBERS, (Measures.[Unit Sales], [Time].[1997]) > 25000) ON ROWS FROM [Sales] WHERE (Measures.[Profit], [Time].[Year].[1997])
24 (Multidimensional Expressions): MDX SELECT Measures.MEMBERS ON COLUMNS, ORDER({[Store].[Store City].MEMBERS}, Measures.[Sales Count], BDESC) ON ROWS FROM [Sales]
25 (Multidimensional Expressions): MDX WITH MEMBER Measures.ProfitPercent AS (Measures.[Store Sales] - Measures.[Store Cost]) / (Measures.[Store Cost]), FORMAT_STRING = #.00%, SOLVE_ORDER = 1 WITH MEMBER [Time].[First Half 97] AS [Time].[1997].[Q1] + [Time].[1997].[Q2] MEMBER [Time].[Second Half 97] AS [Time].[1997].[Q3] + [Time].[1997].[Q4]
26 (Multidimensional Expressions): MDX WITH MEMBER Measures.ProfitPercent AS (Measures.[Store Sales] - Measures.[Store Cost]) / (Measures.[Store Cost]), FORMAT_STRING = #.00%, SOLVE_ORDER = 1 MEMBER [Time].[First Half 97] AS [Time].[1997].[Q1] + [Time].[1997].[Q2] MEMBER [Time].[Second Half 97] AS [Time].[1997].[Q3] + [Time].[1997].[Q4] SELECT {[Time].[First Half 97], [Time].[Second Half 97], [Time].[1997].CHILDREN} ON COLUMNS, {[Store].[Store Name].MEMBERS} ON ROWS FROM [Sales]
27 (Multidimensional Expressions): MDX WITH SET [Quarter1] AS GENERATE([Time].[Year].MEMBERS, {[Time].CURRENTMEMBER.FIRSTCHILD}) SELECT [Quarter1] ON COLUMNS, [Store].[Store Name].MEMBERS ON ROWS FROM [Sales] WHERE (Measures.[Profit])
28 Plan wykładu 1 Języki zapytań do hurtowni danych 2 SQL3 3 MDX 4 Podsumowanie
29 Podsumowanie SQL3 język dla systemów ROLAP, MDX język dla systemów MOLAP.
30 Plan wykładu Systemy baz i hurtowni danych wprowadzenie do wykładu Modele danych i ewolucja systemów baz danych Projektowanie hurtowni danych i modelowanie wielowymiarowe Systemy OLAP Proces ekstrakcji, transformacji i ładowania danych (Proces ETL) Analiza i eksploracja danych
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie
Bardziej szczegółowoSystemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia
Bardziej szczegółowoprzygotował: pawel@kasprowski.pl Podstawy języka MDX Tworzenie zbiorów
Podstawy języka MDX Tworzenie zbiorów Używanie zbiorów Zbiór to: wynik działania funkcji (np. funkcji members) lista elementów otoczona {...} {[Store Sales], [Unit Sales]} on columns, [Product].[Prod].[Category].members
Bardziej szczegółowoProjektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoProjektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoPodstawy MDX. Podstawy MDX. Podstawy MDX. Struktura kostki [BiznesG]
Podstawowe zapytanie MDX ma strukturę podobną do zapytań SQL. Najprostsza postać zwraca dwuwymiarową kostkę: opis osi ON COLUMNS, opis osi ON ROWS FROM nazwa_kostki [WHERE opis_plastra] Najprostsza postać
Bardziej szczegółowoSystemy baz danych i hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Celem wykładu jest przypomnienie
Bardziej szczegółowoJPivot & Mondrian. 16 maja Krukar, Lewandowska (BiHD) JPivot & Mondrian 16 maja / 42
JPivot & Mondrian Urszula Krukar Agnieszka Lewandowska 16 maja 2007 Krukar, Lewandowska (BiHD) JPivot & Mondrian 16 maja 2007 1 / 42 1 Wprowadzenie 2 Pentaho BI Suite 3 Mondrian 4 Schemat kostki 5 JPivot
Bardziej szczegółowoOLAP i hurtownie danych c.d.
OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji
Bardziej szczegółowoSAS OLAP Cube Studio Wprowadzenie
SAS OLAP Cube Studio Wprowadzenie Izabela Szczęch i Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoIntegracja i Eksploracja Danych
Integracja i Eksploracja Danych Laboratorium nr 4 Wprowadzenie do języka MDX. Zadania: 1) Analogicznie do przykładu zawartego na poprzednich zajęciach, korzystając z SQL Server Business Intelligence Development
Bardziej szczegółowoSystemy OLAP. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Bardziej szczegółowoSystemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07 Plan wykładu Systemy baz
Bardziej szczegółowoProjektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Izabela Szczęch Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Bardziej szczegółowoWstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Bardziej szczegółowoAnalityczny język zapytań MDX: podstawy
ITA-102 Hurtownie Danych Moduł 7 Wersja 1.0 Spis treści Analityczny język zapytań MDX: podstawy Analityczny język zapytań MDX: podstawy... 1 Informacje o module... 2 Przygotowanie teoretyczne... 4 Podstawy
Bardziej szczegółowoHurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Bardziej szczegółowoHurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
Bardziej szczegółowoOnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX
OnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX 24 kwietnia 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą
Bardziej szczegółowoModelowanie wymiarów
Wymiar Modelowanie wymiarów struktura umożliwiająca grupowanie danych z tabeli faktów implementowana jako obiekt bazy danych DIMENSION wykorzystanie DIMENSION zaawansowane przepisywanie zapytań (ang. query
Bardziej szczegółowoModele danych - wykład V
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie
Bardziej szczegółowoProjektowanie hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2004/05 Plan wykładu Ewolucja
Bardziej szczegółowoJPivot & Mondrian. inż. Urszula Krukar, inż. Agnieszka Lewandowska,
inż. Urszula Krukar, ukrukar@gmail.com inż. Agnieszka Lewandowska, agnieszkalewandowska@gmail.com Bazy i Hurtownie Danych 12 marca 2007 Cel projektu przygotowanie instalacji webowej aplikacji JPivot i
Bardziej szczegółowoModele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne
Bardziej szczegółowoCzęść 1: OLAP. Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych
Łukasz Przywarty 171018 Wrocław, 05.12.2012 r. Grupa: CZW/N 10:00-13:00 Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych Część 1: OLAP Prowadzący: dr inż. Henryk Maciejewski
Bardziej szczegółowoHurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoKostki OLAP i język MDX
Kostki OLAP i język MDX 24 kwietnia 2015 r. Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały różne rodzaje zadań,
Bardziej szczegółowoProjektowanie baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Bardziej szczegółowo- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji
6. Język SQL Język SQL (Structured Query Language): - język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji - stworzony w IBM w latach 70-tych DML (Data Manipulation
Bardziej szczegółowoHurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)
Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni
Bardziej szczegółowoHurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence
Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoWprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Bardziej szczegółowoKARTA PRZEDMIOTU. Hurtownie i eksploracja danych D1_5
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Bardziej szczegółowoAnalityczny język zapytań MDX: zaawansowane
ITA-102 Hurtownie Danych Moduł 8 Wersja 1.0 Spis treści Analityczny język zapytań MDX: zaawansowane Analityczny język zapytań MDX: zaawansowane... 1 Informacje o module... 2 Przygotowanie teoretyczne...
Bardziej szczegółowoHurtownie danych a transakcyjne bazy danych
Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,
Bardziej szczegółowoSpis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services
Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...
Bardziej szczegółowoBUSINESS INTELLIGENCE DEVELOPMENT Tego Cię nauczymy:
BUSINESS INTELLIGENCE DEVELOPMENT Tego Cię nauczymy: Cały kurs został podzielony na moduły skupiające się na istotnych z punktu widzenia specjalisty Microsoft Business Intelligence zagadnieniach. Moduły
Bardziej szczegółowoHurtownie danych - opis przedmiotu
Hurtownie danych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Hurtownie danych Kod przedmiotu 11.3-WI-INFD-HD Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Zintegrowane
Bardziej szczegółowoRozszerzenia grupowania
Rozszerzenia grupowania 226 Plan rozdziału 227 Wprowadzenie ROLLUP CUBE GROUPING SETS GROUPING Rozszerzenia grupowania danych 228 W złożonych magazynach danych oprócz tabel faktów i wymiarów istnieje dodatkowo
Bardziej szczegółowoSpis tre±ci. Przedmowa... Cz ± I
Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja
Bardziej szczegółowoHurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
Bardziej szczegółowoJęzyk SQL. Rozdział 7. Zaawansowane mechanizmy w zapytaniach
Język SQL. Rozdział 7. Zaawansowane mechanizmy w zapytaniach Ograniczanie rozmiaru zbioru wynikowego, klauzula WITH, zapytania hierarchiczne. 1 Ograniczanie liczności zbioru wynikowego (1) Element standardu
Bardziej szczegółowoBazy danych - Materiały do laboratoriów IV
Bazy danych - Materiały do laboratoriów IV dr inż. Olga Siedlecka-Lamch Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 17 marca 2011 roku Pozostałe funkcje wierszowe Oracle:
Bardziej szczegółowoInformatyka sem. III studia inżynierskie Transport 2018/19 LAB 2. Lab Backup bazy danych. Tworzenie kopii (backup) bazy danych
Informatyka sem. III studia inżynierskie Transport 2018/19 Lab 2 LAB 2 1. Backup bazy danych Tworzenie kopii (backup) bazy danych Odtwarzanie bazy z kopii (z backup u) 1. Pobieramy skrypt Restore 2. Pobieramy
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoStruktury danych i optymalizacja
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Bardziej szczegółowoCel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania
Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu
Bardziej szczegółowoPlan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych
1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni
Bardziej szczegółowoBazy danych 8. Podzapytania i grupowanie. P. F. Góra
Bazy danych 8. Podzapytania i grupowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2009 Podzapytania Podzapytania pozwalaja na tworzenie strukturalnych podzapytań, co umożliwia izolowanie poszczególnych
Bardziej szczegółowoORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL
ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Raportowanie z wykorzystaniem fraz rollup, cube Frazy cube, rollup, grouping sets umożliwiają rozszerzoną
Bardziej szczegółowoInformatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Bazy danych 2 Nazwa modułu w języku angielskim Databases 2 Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Bardziej szczegółowoHURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.
HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2013-2017 realizacja w roku akademickim 2016/17 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Bardziej szczegółowoJerzy Nawrocki, Wprowadzenie do informatyki
Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Baza danych Bazy danych = zorganizowana kolekcja danych Bazy danych (2) Cel Agenda Przedstawić relacyjny model baz danych Era przed-relacyjna
Bardziej szczegółowoTechnologie baz danych
Plan wykładu Technologie baz danych Wykład 6: Algebra relacji. SQL - cd Algebra relacji operacje teoriomnogościowe rzutowanie selekcja przemianowanie Małgorzata Krętowska Wydział Informatyki Politechnika
Bardziej szczegółowoBD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego
BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne
Bardziej szczegółowoProces ekstrakcji, transformacji i ładowania danych (Proces ETL)
Proces ekstrakcji, transformacji i ładowania danych () Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Bardziej szczegółowoBazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski
Bazy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 5 Strukturalny język zapytań (SQL - Structured Query Language) Algebraiczny rodowód podstawowe działania w przykładach Bazy danych.
Bardziej szczegółowo4. Znaczenie czasu w modelowaniu i strukturalizacji danych
Temat1- Geneza 1. Ewolucja systemów opartych na bazach danych Początki to np. ręczne spisy danych na papirusie w Egipcie. Ręczne zapisywanie danych trwało aż do końca XIX wieku. W XIX wieku stworzone zostały
Bardziej szczegółowoHurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.
Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą
Bardziej szczegółowoAnalityczny język zapytań MDX: wstęp
Moduł 6 Wersja 1.0 Spis treści Analityczny język zapytań MDX: wstęp Analityczny język zapytań MDX: wstęp... 1 Informacje o module... 2 Przygotowanie teoretyczne... 3 Podstawy teoretyczne... 3 Porady praktyczne...
Bardziej szczegółowoWykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania.
Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Przykładowa RBD o schematach relacji (tzw. płaska postać RBD): N(PRACOWNICY) = {ID_P, IMIĘ,
Bardziej szczegółowoInformatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Bazy danych 2 Nazwa modułu w języku angielskim Databases 2 Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Bardziej szczegółowoBazy Danych i Usługi Sieciowe
Bazy Danych i Usługi Sieciowe Ćwiczenia I Paweł Daniluk Wydział Fizyki Jesień 2011 P. Daniluk (Wydział Fizyki) BDiUS ćw. I Jesień 2011 1 / 15 Strona wykładu http://bioexploratorium.pl/wiki/ Bazy_Danych_i_Usługi_Sieciowe_-_2011z
Bardziej szczegółowoBazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych
Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy
Bardziej szczegółowo"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie. Krzysztof Jankiewicz
"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie Krzysztof Jankiewicz Plan Opis schematu dla "kilku słów" Postać polecenia SQL Sposoby dostępu do tabel Indeksy B*-drzewo Indeksy
Bardziej szczegółoworodzaj zajęć semestr 1 semestr 2 semestr 3 Razem Lp. Nazwa modułu E/Z Razem W I
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2017/2018L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalność: grafika
Bardziej szczegółowoLAB 3 (część 1 Projektu)
Informatyka sem. III studia inżynierskie Transport 2018/19 LAB 3 (część 1 Projektu) Na zajęciach należy zaprojektować schemat bazy danych oraz przygotować dokument zawierający: Temat: Autor: 1. Opis 2.
Bardziej szczegółowoBazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych
Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje
Bardziej szczegółowoSchematy logiczne dla hurtowni danych
Schematy logiczne dla hurtowni danych 26 Plan rozdziału 27 Model biznesowy, logiczny i fizyczny hurtowni danych Podstawowe pojęcia w modelu logicznym, logiczny model wielowymiarowy Implementacje ROLAP/MOLAP
Bardziej szczegółowoSAS ETL Studio Wprowadzenie
SAS ETL Studio Wprowadzenie Izabela Szczęch i Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoJęzyk DML. Instrukcje DML w różnych implementacjach SQL są bardzo podobne. Podstawowymi instrukcjami DML są: SELECT INSERT UPDATE DELETE
Język DML Instrukcje DML w różnych implementacjach SQL są bardzo podobne. Podstawowymi instrukcjami DML są: SELECT INSERT UPDATE DELETE Systemy Baz Danych, Hanna Kleban 1 INSERT Instrukcja INSERT dodawanie
Bardziej szczegółowoTechnologie baz danych
Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD
Bardziej szczegółowo5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:
Bardziej szczegółowoPROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU. Rozproszone Systemy Baz Danych
OPIS PRZEDMIOTU Nazwa przedmiotu Rozproszone Systemy Baz Danych Kod przedmiotu Wydział Instytut/Katedra Kierunek Specjalizacja/specjalność Wydział Matematyki, Fizyki i Techniki Instytut Mechaniki i Informatyki
Bardziej szczegółowoHurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
Bardziej szczegółowoBazy danych i usługi sieciowe
Bazy danych i usługi sieciowe Ćwiczenia I Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS ćw. I Jesień 2014 1 / 16 Strona wykładu http://bioexploratorium.pl/wiki/ Bazy_danych_i_usługi_sieciowe_-_2014z
Bardziej szczegółowoĆwiczenia z Zaawansowanych Systemów Baz Danych
Ćwiczenia z Zaawansowanych Systemów Baz Danych Hurtownie danych Zad 1. Projekt schematu hurtowni danych W źródłach danych dostępne są następujące informacje dotyczące operacji bankowych: Klienci banku
Bardziej szczegółowoSpecjalizacja magisterska Bazy danych
Specjalizacja magisterska Bazy danych Strona Katedry http://bd.pjwstk.edu.pl/katedra/ Prezentacja dostępna pod adresem: http://www.bd.pjwstk.edu.pl/bazydanych.pdf Wymagania wstępne Znajomość podstaw języka
Bardziej szczegółowoBazy analityczne (hurtownie danych, bazy OLAP)
Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,
Bardziej szczegółowoHurtownie danych - przegląd technologii
Funkcje analityczne SQL CUBE (1) Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel JOB DEPTNO SUM(SAL) 8750
Bardziej szczegółowoPolitechnika Łódzka, ul. Żeromskiego 116, 90-924 Łódź, tel. (042) 631 28 83. Projekt współfinansowany przez Unię Europejską
Oracle i DB2 zadanie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej
Bardziej szczegółowoSylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia.
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Bardziej szczegółowoIndeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Bardziej szczegółowoWprowadzenie do Systemu SAS
Wprowadzenie do Systemu SAS Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 204/5 Nazwa Bazy danych Nazwa jednostki prowadzącej przedmiot Wydział Matematyczno - Przyrodniczy Kod Studia Kierunek studiów Poziom
Bardziej szczegółowow tym laborat. Razem semin. konwer. wykłady ćwicz. w tym laborat. Razem ECTS Razem semin. konwer.
A 08- IO2S-13 Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka GRUPA TREŚCI PODSTAWOWYCH Nazwa modułu studia II stopnia studia stacjonarne od roku akademickiego 2015/2016 semestr 1 semestr
Bardziej szczegółowoPodzapytania. Rozdział 5. Podzapytania. Podzapytania wyznaczające wiele krotek (1) Podzapytania wyznaczające jedną krotkę
Podzapytania Rozdział 5 Podzapytania podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, klauzula WITH, operatory ANY, ALL i EXISTS, zapytania hierarchiczne Podzapytanie jest poleceniem
Bardziej szczegółowo1 DML - zapytania, część II Grupowanie Operatory zbiorowe DML - modyfikacja 7. 3 DCL - sterowanie danymi 9.
Plan wykładu Spis treści 1 DML - zapytania, część II 1 1.1 Grupowanie................................... 1 1.2 Operatory zbiorowe............................... 5 2 DML - modyfikacja 7 3 DCL - sterowanie
Bardziej szczegółowoCzęść I Istota analizy biznesowej a Analysis Services
Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w
Bardziej szczegółowoWstęp Wprowadzenie do BD Podstawy SQL. Bazy Danych i Systemy informacyjne Wykład 1. Piotr Syga
Bazy Danych i Systemy informacyjne Wykład 1 Piotr Syga 09.10.2017 Ogólny zarys wykładu Podstawowe zapytania SQL Tworzenie i modyfikacja baz danych Elementy dynamiczne, backup, replikacja, transakcje Algebra
Bardziej szczegółowoAnaliza i eksploracja danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni
Bardziej szczegółowoFunkcje analityczne SQL CUBE (1)
Funkcje analityczne SQL CUBE (1) JOB DEPTNO SUM(SAL) --------- ---------- ---------- 29025 10 8750 20 10875 30 9400 CLERK 4150 CLERK 10 1300 CLERK 20 1900 CLERK 30 950 ANALYST 6000 ANALYST 20 6000 MANAGER
Bardziej szczegółowoModele danych i ich ewolucja
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2004/05 Plan wykładu Ewolucja systemów
Bardziej szczegółowoWielowymiarowy model danych
Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:
Bardziej szczegółowoEwolucja systemów baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2004/05 Plan wykładu Relacyjne
Bardziej szczegółowo