Multimodal Unsupervised Image-to-Image Translation
|
|
- Lech Lis
- 6 lat temu
- Przeglądów:
Transkrypt
1 Multimodal Unsupervised Image-to-Image Translation Xun Huang 1, Ming-Yu Liu 2, Serge Belongie 1, Jan Kautz 2 Cornell University 1 NVIDIA 2 Abstract. Unsupervised image-to-image translation is an important and challenging problem in computer vision. Given an image in the source domain, the goal is to learn the conditional distribution of corresponding images in the target domain, without seeing any examples of corresponding image pairs. While this conditional distribution is inherently multimodal, existing approaches make an overly simplified assumption, modeling it as a deterministic one-to-one mapping. As a result, they fail to generate diverse outputs from a given source domain image. To address this limitation, we propose a Multimodal Unsupervised Image-to-image Translation (MUNIT) framework. We assume that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties. To translate an image to another domain, we recombine its content code with a random style code sampled from the style space of the target domain. We analyze the proposed framework and establish several theoretical results. Extensive experiments with comparisons to state-of-the-art approaches further demonstrate the advantage of the proposed framework. Moreover, our framework allows users to control the style of translation outputs by providing an example style image. Code and pretrained models are available at Keywords: GANs, image-to-image translation, style transfer 1 Introduction Many problems in computer vision aim at translating images from one domain to another, including super-resolution [1], colorization [2], inpainting [3], attribute transfer [4], and style transfer [5]. This cross-domain image-to-image translation setting has therefore received significant attention [6 25]. When the dataset contains paired examples, this problem can be approached by a conditional generative model [6] or a simple regression model [13]. In this work, we focus on the much more challenging setting when such supervision is unavailable. In many scenarios, the cross-domain mapping of interest is multimodal. For example, a winter scene could have many possible appearances during summer due to weather, timing, lighting, etc. Unfortunately, existing techniques usually assume a deterministic [8 10] or unimodal [15] mapping. As a result, they fail to capture the full distribution of possible outputs. Even if the model is made stochastic by injecting noise, the network usually learns to ignore it [6, 26].
2 <latexit sha1_base64="pfdcjxshcznrmhkbszumgzwcezo=">aaab93icbvbns8nafhypx7v+norry2irpjvebbu8flx4rgc00iaw2w7apztn2n0inesxepgg4tw/4s1/46bnqvshfoaz93ize6acke0431ztzxvtfao+2dja3tlt2nv79yrjjkeesxgieyfwldnbpc00p71uuhyhnd6ek+vsf3ikurfe3olpsv0yjwslgmhasihdhmryjwnmea8icrci7jbtdmzay8stsasqdap7azbmsbztoqnhsvvdj9v+jqvmhnoimcguttgz4bhtgypwtjwfz4ix6ngoqxql0jyh0uz9vzhjwklphjrjmqza9erxp6+f6ejcz5lim00fmr+kmo50gsow0jbjsjsfgokjzcyrimmsmdgmq4ypwv388jlxttuxbef2rnw5qtqowyecwqm4ca4duieueeagg2d4htfryxqx3q2p+wjnqnyo4a+szx9sdpmc</latexit> <latexit sha1_base64="pfdcjxshcznrmhkbszumgzwcezo=">aaab93icbvbns8nafhypx7v+norry2irpjvebbu8flx4rgc00iaw2w7apztn2n0inesxepgg4tw/4s1/46bnqvshfoaz93ize6acke0431ztzxvtfao+2dja3tlt2nv79yrjjkeesxgieyfwldnbpc00p71uuhyhnd6ek+vsf3ikurfe3olpsv0yjwslgmhasihdhmryjwnmea8icrci7jbtdmzay8stsasqdap7azbmsbztoqnhsvvdj9v+jqvmhnoimcguttgz4bhtgypwtjwfz4ix6ngoqxql0jyh0uz9vzhjwklphjrjmqza9erxp6+f6ejcz5lim00fmr+kmo50gsow0jbjsjsfgokjzcyrimmsmdgmq4ypwv388jlxttuxbef2rnw5qtqowyecwqm4ca4duieueeagg2d4htfryxqx3q2p+wjnqnyo4a+szx9sdpmc</latexit> <latexit sha1_base64="pfdcjxshcznrmhkbszumgzwcezo=">aaab93icbvbns8nafhypx7v+norry2irpjvebbu8flx4rgc00iaw2w7apztn2n0inesxepgg4tw/4s1/46bnqvshfoaz93ize6acke0431ztzxvtfao+2dja3tlt2nv79yrjjkeesxgieyfwldnbpc00p71uuhyhnd6ek+vsf3ikurfe3olpsv0yjwslgmhasihdhmryjwnmea8icrci7jbtdmzay8stsasqdap7azbmsbztoqnhsvvdj9v+jqvmhnoimcguttgz4bhtgypwtjwfz4ix6ngoqxql0jyh0uz9vzhjwklphjrjmqza9erxp6+f6ejcz5lim00fmr+kmo50gsow0jbjsjsfgokjzcyrimmsmdgmq4ypwv388jlxttuxbef2rnw5qtqowyecwqm4ca4duieueeagg2d4htfryxqx3q2p+wjnqnyo4a+szx9sdpmc</latexit> <latexit sha1_base64="p8erjlipbaj1gaddnbu1k3gltke=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leumfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53syura+kz5s7k1vbo7v90/agmzkkj9irlunrbrypmgvmgg006iki5dttvh+cb3249uasbfvzkknijxulciewys1hrqz9600q/w3lo7a1omxkfqukdzr371bpkkmrwgckx113mte2ryguy4nvz6qayjjmm8pf1lby6pdrlztvn0ypubiqsyjqyaqb8nmhxrpyld2xljm9klxi7+53vte10ggrnjaqgg80vrypgrkh8ddziixpcjjzgozm9fziqvjsyglifglb68tpyz+lxdvtuvna6lnmpwbmdwch5cqanuoqk+ehiaz3ifn0c6l8678zfvltnfzch8gfp5a3ejjo0=</latexit> <latexit sha1_base64="p8erjlipbaj1gaddnbu1k3gltke=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leumfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53syura+kz5s7k1vbo7v90/agmzkkj9irlunrbrypmgvmgg006iki5dttvh+cb3249uasbfvzkknijxulciewys1hrqz9600q/w3lo7a1omxkfqukdzr371bpkkmrwgckx113mte2ryguy4nvz6qayjjmm8pf1lby6pdrlztvn0ypubiqsyjqyaqb8nmhxrpyld2xljm9klxi7+53vte10ggrnjaqgg80vrypgrkh8ddziixpcjjzgozm9fziqvjsyglifglb68tpyz+lxdvtuvna6lnmpwbmdwch5cqanuoqk+ehiaz3ifn0c6l8678zfvltnfzch8gfp5a3ejjo0=</latexit> <latexit sha1_base64="p8erjlipbaj1gaddnbu1k3gltke=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leumfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53syura+kz5s7k1vbo7v90/agmzkkj9irlunrbrypmgvmgg006iki5dttvh+cb3249uasbfvzkknijxulciewys1hrqz9600q/w3lo7a1omxkfqukdzr371bpkkmrwgckx113mte2ryguy4nvz6qayjjmm8pf1lby6pdrlztvn0ypubiqsyjqyaqb8nmhxrpyld2xljm9klxi7+53vte10ggrnjaqgg80vrypgrkh8ddziixpcjjzgozm9fziqvjsyglifglb68tpyz+lxdvtuvna6lnmpwbmdwch5cqanuoqk+ehiaz3ifn0c6l8678zfvltnfzch8gfp5a3ejjo0=</latexit> <latexit sha1_base64="c39ohb+iczrcjlninxh29e9lt8m=">aaab2hicbzdnsgmxfixv1l86vq1rn8eiucptn+pocooygmml7vaymtttacyzjheemvqfxlhrfdb3vo3pz0ktbwif5ytk3hmxslokgi+vtrw9s7tx3/cpgv7h0xgz8wtz0ggmra5y04+5rsu1hirjyb8wylnyys+e3i3y3jmak3p9slmco4yptuyl4oss7qjzctrbumwtomtowvqj5ucwyuwzosahulwdtlbqvhfduiic+8psyshfli9x4fdzdg1ulcecs3pnjcznjtua2nl9+alimbwzlhy3m04t+zdbmp9lg5ls66isuigjtvh9ljakuc4wo7neghskzg64mnlnyssegy7ineo7djp/n96e8lj90w4eaqjdkzzbbxtgcm7hhroqgoaexudnm3iv3vuqqpq37uwefsn7+aap5iom</latexit> <latexit sha1_base64="qio2ntzxdamqtzwwlo4psir2o2o=">aaab4xicbzdntgixfixv4b8ikrp100hmxjezn+roxi1ltbwgaui6pqovtjtp7xjjhhdw40knl+xot7edlbq8szmv57tpvsdkpbdo+99eawnza3unvfvzq+4fhnaoqi2rm8n4yltuphnry6vqpesbkndsw2kssd6ojrdf3n7ixgqthnca8n5cr0reglf0vut5kaezyqbw9xv+xgqdgixuyanmopbvg2qwjvwhk9tabucn2m+pqcekn1v6meupzrm64l2hiibc9vp5tdny5pwhibvxrygzu79f5dsxdppe7mzccwxxs8l8l+tmgf/1c6hsdllii4/itblupfiddixhdoxuawvgufkjg1ndgbqcihkc1zxxibxoxdf8ex/kcaknca4bxmin3eetqmdwcc/wbu+e9l69j0vbjw9z2zh8kff5a02ijtw=</latexit> <latexit sha1_base64="qio2ntzxdamqtzwwlo4psir2o2o=">aaab4xicbzdntgixfixv4b8ikrp100hmxjezn+roxi1ltbwgaui6pqovtjtp7xjjhhdw40knl+xot7edlbq8szmv57tpvsdkpbdo+99eawnza3unvfvzq+4fhnaoqi2rm8n4yltuphnry6vqpesbkndsw2kssd6ojrdf3n7ixgqthnca8n5cr0reglf0vut5kaezyqbw9xv+xgqdgixuyanmopbvg2qwjvwhk9tabucn2m+pqcekn1v6meupzrm64l2hiibc9vp5tdny5pwhibvxrygzu79f5dsxdppe7mzccwxxs8l8l+tmgf/1c6hsdllii4/itblupfiddixhdoxuawvgufkjg1ndgbqcihkc1zxxibxoxdf8ex/kcaknca4bxmin3eetqmdwcc/wbu+e9l69j0vbjw9z2zh8kff5a02ijtw=</latexit> <latexit sha1_base64="hayuivpkjey1g10168xmcbdfprs=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0m8wmfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53s2vrg5lz5u7kzu7d/ud08amuzkkj9irlu3rbrypmgvmgg026iki5dtjvh5cb3o49uasbfvzkmnijxslciewys1h4azn6smqjw3lo7b1olxkfquka1qh71h5kkmrwgckx1z3mte2ryguy4nvx6qayjjhm8oj1lby6pdrl5ttn0zpuhiqsyjqyaq78nmhxrpy1d2xljm9blxi7+5/vsezwcjikknvsqxaio5chill+ohkxryvjuekwus7cimsyke2mdykpwll9ejf5f/aru3rm15nwrrhlo4btowynlamittmahag/wdk/w5kjnxxl3phatjaeyoyy/cd5/ag/jjok=</latexit> <latexit sha1_base64="p8erjlipbaj1gaddnbu1k3gltke=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leumfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53syura+kz5s7k1vbo7v90/agmzkkj9irlunrbrypmgvmgg006iki5dttvh+cb3249uasbfvzkknijxulciewys1hrqz9600q/w3lo7a1omxkfqukdzr371bpkkmrwgckx113mte2ryguy4nvz6qayjjmm8pf1lby6pdrlztvn0ypubiqsyjqyaqb8nmhxrpyld2xljm9klxi7+53vte10ggrnjaqgg80vrypgrkh8ddziixpcjjzgozm9fziqvjsyglifglb68tpyz+lxdvtuvna6lnmpwbmdwch5cqanuoqk+ehiaz3ifn0c6l8678zfvltnfzch8gfp5a3ejjo0=</latexit> <latexit sha1_base64="p8erjlipbaj1gaddnbu1k3gltke=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leumfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53syura+kz5s7k1vbo7v90/agmzkkj9irlunrbrypmgvmgg006iki5dttvh+cb3249uasbfvzkknijxulciewys1hrqz9600q/w3lo7a1omxkfqukdzr371bpkkmrwgckx113mte2ryguy4nvz6qayjjmm8pf1lby6pdrlztvn0ypubiqsyjqyaqb8nmhxrpyld2xljm9klxi7+53vte10ggrnjaqgg80vrypgrkh8ddziixpcjjzgozm9fziqvjsyglifglb68tpyz+lxdvtuvna6lnmpwbmdwch5cqanuoqk+ehiaz3ifn0c6l8678zfvltnfzch8gfp5a3ejjo0=</latexit> <latexit sha1_base64="p8erjlipbaj1gaddnbu1k3gltke=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leumfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53syura+kz5s7k1vbo7v90/agmzkkj9irlunrbrypmgvmgg006iki5dttvh+cb3249uasbfvzkknijxulciewys1hrqz9600q/w3lo7a1omxkfqukdzr371bpkkmrwgckx113mte2ryguy4nvz6qayjjmm8pf1lby6pdrlztvn0ypubiqsyjqyaqb8nmhxrpyld2xljm9klxi7+53vte10ggrnjaqgg80vrypgrkh8ddziixpcjjzgozm9fziqvjsyglifglb68tpyz+lxdvtuvna6lnmpwbmdwch5cqanuoqk+ehiaz3ifn0c6l8678zfvltnfzch8gfp5a3ejjo0=</latexit> <latexit sha1_base64="p8erjlipbaj1gaddnbu1k3gltke=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leumfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53syura+kz5s7k1vbo7v90/agmzkkj9irlunrbrypmgvmgg006iki5dttvh+cb3249uasbfvzkknijxulciewys1hrqz9600q/w3lo7a1omxkfqukdzr371bpkkmrwgckx113mte2ryguy4nvz6qayjjmm8pf1lby6pdrlztvn0ypubiqsyjqyaqb8nmhxrpyld2xljm9klxi7+53vte10ggrnjaqgg80vrypgrkh8ddziixpcjjzgozm9fziqvjsyglifglb68tpyz+lxdvtuvna6lnmpwbmdwch5cqanuoqk+ehiaz3ifn0c6l8678zfvltnfzch8gfp5a3ejjo0=</latexit> <latexit sha1_base64="kckignvhlp7zbs/r3wtr7iuq6hs=">aaab93icbvbns8nafhypx7v+torry2irpjvebbu8flx4rghsoq1hs920szebslsrasgv8ejbxat/xzv/xk2bg7yolawz7/fmj0g4u9q2v63kyura+kz1s7a1vbnbb+ztp6g4lys6joax7avyuc4edtxtnpyssxeucnonjtef332kurfy3otpqr0ijwqlgchash6jpoiwhhpms7vcz5zcbzttlj0dwizoszpqoum3vgbdmkqrfzpwrftfsrptzvhqrjjna4nu0qstcr7rvqecr1r52sx4jo6nmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqzepzfly8t97r12bjvz5rtq7knkhzcezyaa+fqhhvogaseunigv3iznqwx6936mi9wrhlnap7a+vwbzgatfw==</latexit> <latexit sha1_base64="kckignvhlp7zbs/r3wtr7iuq6hs=">aaab93icbvbns8nafhypx7v+torry2irpjvebbu8flx4rghsoq1hs920szebslsrasgv8ejbxat/xzv/xk2bg7yolawz7/fmj0g4u9q2v63kyura+kz1s7a1vbnbb+ztp6g4lys6joax7avyuc4edtxtnpyssxeucnonjtef332kurfy3otpqr0ijwqlgchash6jpoiwhhpms7vcz5zcbzttlj0dwizoszpqoum3vgbdmkqrfzpwrftfsrptzvhqrjjna4nu0qstcr7rvqecr1r52sx4jo6nmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqzepzfly8t97r12bjvz5rtq7knkhzcezyaa+fqhhvogaseunigv3iznqwx6936mi9wrhlnap7a+vwbzgatfw==</latexit> <latexit sha1_base64="mcmsho6mikfqc4m6w092bxmm1xq=">aaab63icbvbns8naej3ur1q/qh69lbbbu0leqikhghepfywttkfstpn26wytdjdccf0nxjyoepupefpfug1z0nyha4/3zpizf6aca+o6305pbx1jc6u8xdnz3ds/qb4epeokuwx9lohedukquxcjvufgycdvsonqydsc38789hmqzrp5ycypbjedsh5xro2vfn3pvwm/wnpr7hxklxgfqugbvr/61rsklitrgiao1l3ptu2qu2u4ezit9dknkwvjossupzlgqin8fuyunfllqkje2zkgznxfezmntz7eoe2mqrnpzw8m/ud1mxndbtmxawzqsswikbpejgt2orlwhcyiiswukw5vjwxefwxg5loxixjll68s/6j+xxfvl2vnmyknmpzakzydbw1owh20wacghj7hfd4c6bw4787horxkfdph8afo5w8zxy50</latexit> <latexit sha1_base64="mcmsho6mikfqc4m6w092bxmm1xq=">aaab63icbvbns8naej3ur1q/qh69lbbbu0leqikhghepfywttkfstpn26wytdjdccf0nxjyoepupefpfug1z0nyha4/3zpizf6aca+o6305pbx1jc6u8xdnz3ds/qb4epeokuwx9lohedukquxcjvufgycdvsonqydsc38789hmqzrp5ycypbjedsh5xro2vfn3pvwm/wnpr7hxklxgfqugbvr/61rsklitrgiao1l3ptu2qu2u4ezit9dknkwvjossupzlgqin8fuyunfllqkje2zkgznxfezmntz7eoe2mqrnpzw8m/ud1mxndbtmxawzqsswikbpejgt2orlwhcyiiswukw5vjwxefwxg5loxixjll68s/6j+xxfvl2vnmyknmpzakzydbw1owh20wacghj7hfd4c6bw4787horxkfdph8afo5w8zxy50</latexit> <latexit sha1_base64="04ek1difgdo9cljglx+lmpeame4=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leqikhghepfuxbaepzbdft2s1u2n0ijfq/epgg4tuf5m1/46bnqvsfddzem2fmxphwpo3rfjultfwnza3ydmvnd2//ohp41nyyvyt6rhkpuihwldnbfcmmp91euryhnhbcyw3ud56o0kykbznnabdjkwari9hyqu0gmterdko1t+7ogvajv5aafggnql/9osrptiuhhgvd89zebblwhhfoz5v+qmmcyqspam9sgwoqg2x+7qydwwwiiqlscypm6u+jdmdat+pqdsbyjpwyl4v/eb3urfdbxkssgiriylgucmqkyl9hq6yomxxqcsak2vsrgwofibeb5sf4yy+vev+ifl137y9rzzsijtkcwcmcgwcnamidtmahao/wdk/w5kjnxxl3phatjaeyoyy/cd5/afdhjng=</latexit> <latexit sha1_base64="04ek1difgdo9cljglx+lmpeame4=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leqikhghepfuxbaepzbdft2s1u2n0ijfq/epgg4tuf5m1/46bnqvsfddzem2fmxphwpo3rfjultfwnza3ydmvnd2//ohp41nyyvyt6rhkpuihwldnbfcmmp91euryhnhbcyw3ud56o0kykbznnabdjkwari9hyqu0gmterdko1t+7ogvajv5aafggnql/9osrptiuhhgvd89zebblwhhfoz5v+qmmcyqspam9sgwoqg2x+7qydwwwiiqlscypm6u+jdmdat+pqdsbyjpwyl4v/eb3urfdbxkssgiriylgucmqkyl9hq6yomxxqcsak2vsrgwofibeb5sf4yy+vev+ifl137y9rzzsijtkcwcmcgwcnamidtmahao/wdk/w5kjnxxl3phatjaeyoyy/cd5/afdhjng=</latexit> <latexit sha1_base64="04ek1difgdo9cljglx+lmpeame4=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leqikhghepfuxbaepzbdft2s1u2n0ijfq/epgg4tuf5m1/46bnqvsfddzem2fmxphwpo3rfjultfwnza3ydmvnd2//ohp41nyyvyt6rhkpuihwldnbfcmmp91euryhnhbcyw3ud56o0kykbznnabdjkwari9hyqu0gmterdko1t+7ogvajv5aafggnql/9osrptiuhhgvd89zebblwhhfoz5v+qmmcyqspam9sgwoqg2x+7qydwwwiiqlscypm6u+jdmdat+pqdsbyjpwyl4v/eb3urfdbxkssgiriylgucmqkyl9hq6yomxxqcsak2vsrgwofibeb5sf4yy+vev+ifl137y9rzzsijtkcwcmcgwcnamidtmahao/wdk/w5kjnxxl3phatjaeyoyy/cd5/afdhjng=</latexit> C<latexit sha1_base64="knrhaebcmpawlfwlgpoytdqsnpo=">aaab8xicbvbnswmxfmzwr1q/qh69bivgqeykoikhqi8ek7i2sf1kns22odlksd4kzenp8ojbxav/xpv/xmy7b20dcawz75f5e6wcg3ddb6eytr6xuvxdru3s7u0f1a+pho3kngu+vulpxkqme1wyhzgi1ks1i0kkwdeatau/+8s04uo+wdrlyujgksecerbs0e8ijckrexs2qdfcpjshxivesrqorgdq/+opfc0sjoekykzgusmeodhaqwczwj8zlcv0qkyssfsshjkwn0ee4tordhgsth0s8fz9vzgtxjhpetnjiqjz9grxpy/iil4ocy7tdjiki4/itgbqulgfd7lmfmtueki1t1kxhrnnkniwaryeb/nkvejfng+a7v1lo3vbtlffj+gunsmpxaewukmd5cokfhpgr+jnaeffexc+fqmvp9w5rn/gfp4a24yrjg==</latexit> <latexit sha1_base64="sffvuszeuqoitcsou8wal9ss+ym=">aaab63icbvbns8naej3ur1q/qh69lbbbu0mkoikhghepfywttkfstpt26wytdidccf0nxjyoepupefpfug1z0nyha4/3zpizf6zsghtdb6e0tr6xuvxeruzs7u0fva+phk2sacz9lshed0jqubsk+yhq8k6qoy1dydvh+hbmt5+4nijrdzhjerdtorkrybst5ln+3pj2qzw37s5bvolxkbouapwrx71bwrkyk2ssgtp13bsdngoutpjppzcznli2pkpetvtrmjsgnx87jwdwgzao0byukrn6eyknstgtolsdmcwrwfzm4n9en8poksifsjpkii0wrzkkmjdz52qgngcoj5zqpow9lbar1zshzadiq/cwx14lfqn+xxfvl2rnmyknmpzakzydb5fqhdtogq8mbdzdk7w5ynlx3p2prwvjkwao4q+czx8ccy5l</latexit> <latexit sha1_base64="sffvuszeuqoitcsou8wal9ss+ym=">aaab63icbvbns8naej3ur1q/qh69lbbbu0mkoikhghepfywttkfstpt26wytdidccf0nxjyoepupefpfug1z0nyha4/3zpizf6zsghtdb6e0tr6xuvxeruzs7u0fva+phk2sacz9lshed0jqubsk+yhq8k6qoy1dydvh+hbmt5+4nijrdzhjerdtorkrybst5ln+3pj2qzw37s5bvolxkbouapwrx71bwrkyk2ssgtp13bsdngoutpjppzcznli2pkpetvtrmjsgnx87jwdwgzao0byukrn6eyknstgtolsdmcwrwfzm4n9en8poksifsjpkii0wrzkkmjdz52qgngcoj5zqpow9lbar1zshzadiq/cwx14lfqn+xxfvl2rnmyknmpzakzydb5fqhdtogq8mbdzdk7w5ynlx3p2prwvjkwao4q+czx8ccy5l</latexit> <latexit sha1_base64="ysqq7cpxqj+snm141b6z2jyyw4a=">aaab63icbvbns8naej3ur1q/qh69lbbbu0mkoikhghepfywttkfstpt26wytdidccf0nxjyoepupefpfug1z0nyha4/3zpizf6zsghtdb6e0tr6xuvxeruzs7u0fva+phk2sacz9lshed0jqubsk+yhq8k6qoy1dydvh+hbmt5+4nijrdzhjerdtorkrybst5jt+3pj2qzw37s5bvolxkbouapwrx71bwrkyk2ssgtp13bsdngoutpjppzcznli2pkpetvtrmjsgnx87jwdwgzao0byukrn6eyknstgtolsdmcwrwfzm4n9en8poksifsjpkii0wrzkkmjdz52qgngcoj5zqpow9lbar1zshzadiq/cwx14lfqn+xxfvl2rnmyknmpzakzydb5fqhdtogq8mbdzdk7w5ynlx3p2prwvjkwao4q+czx804y51</latexit> <latexit sha1_base64="ysqq7cpxqj+snm141b6z2jyyw4a=">aaab63icbvbns8naej3ur1q/qh69lbbbu0mkoikhghepfywttkfstpt26wytdidccf0nxjyoepupefpfug1z0nyha4/3zpizf6zsghtdb6e0tr6xuvxeruzs7u0fva+phk2sacz9lshed0jqubsk+yhq8k6qoy1dydvh+hbmt5+4nijrdzhjerdtorkrybst5jt+3pj2qzw37s5bvolxkbouapwrx71bwrkyk2ssgtp13bsdngoutpjppzcznli2pkpetvtrmjsgnx87jwdwgzao0byukrn6eyknstgtolsdmcwrwfzm4n9en8poksifsjpkii0wrzkkmjdz52qgngcoj5zqpow9lbar1zshzadiq/cwx14lfqn+xxfvl2rnmyknmpzakzydb5fqhdtogq8mbdzdk7w5ynlx3p2prwvjkwao4q+czx804y51</latexit> <latexit sha1_base64="ysqq7cpxqj+snm141b6z2jyyw4a=">aaab63icbvbns8naej3ur1q/qh69lbbbu0mkoikhghepfywttkfstpt26wytdidccf0nxjyoepupefpfug1z0nyha4/3zpizf6zsghtdb6e0tr6xuvxeruzs7u0fva+phk2sacz9lshed0jqubsk+yhq8k6qoy1dydvh+hbmt5+4nijrdzhjerdtorkrybst5jt+3pj2qzw37s5bvolxkbouapwrx71bwrkyk2ssgtp13bsdngoutpjppzcznli2pkpetvtrmjsgnx87jwdwgzao0byukrn6eyknstgtolsdmcwrwfzm4n9en8poksifsjpkii0wrzkkmjdz52qgngcoj5zqpow9lbar1zshzadiq/cwx14lfqn+xxfvl2rnmyknmpzakzydb5fqhdtogq8mbdzdk7w5ynlx3p2prwvjkwao4q+czx804y51</latexit> <latexit sha1_base64="zszna1jzozopxllahr/syohvree=">aaab93icbvbns8nafhzxs9apvj16wsycp5iuqqupbs8ekxpbaepybdft0s0m7g6egvjlvhhq8epf8ea/cdpmok0dc8pme7zzcrlollbtb2tldw19y7oyvd3e2d2r1fcphlscskjdevny9gkskgecuppptnujpdgkoo0gk+vc7z5sqvgs7vu0ov6er4kfjgbtjl9eg0ryjwnm2v3uz63crzfspj0dwizosrpqoupxvwbdmkqrfzpwrftfsrptzvhqrjjnq4nu0qstcr7rvqecr1r52sx4jk6mmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqaepzfly8tt9w8bnq3z432vdlgby7gge7bgxnoww10waucktzdk7xzt9al9w59zedxrhlnep7a+vwbzeqtga==</latexit> <latexit sha1_base64="zszna1jzozopxllahr/syohvree=">aaab93icbvbns8nafhzxs9apvj16wsycp5iuqqupbs8ekxpbaepybdft0s0m7g6egvjlvhhq8epf8ea/cdpmok0dc8pme7zzcrlollbtb2tldw19y7oyvd3e2d2r1fcphlscskjdevny9gkskgecuppptnujpdgkoo0gk+vc7z5sqvgs7vu0ov6er4kfjgbtjl9eg0ryjwnm2v3uz63crzfspj0dwizosrpqoupxvwbdmkqrfzpwrftfsrptzvhqrjjnq4nu0qstcr7rvqecr1r52sx4jk6mmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqaepzfly8tt9w8bnq3z432vdlgby7gge7bgxnoww10waucktzdk7xzt9al9w59zedxrhlnep7a+vwbzeqtga==</latexit> <latexit sha1_base64="zszna1jzozopxllahr/syohvree=">aaab93icbvbns8nafhzxs9apvj16wsycp5iuqqupbs8ekxpbaepybdft0s0m7g6egvjlvhhq8epf8ea/cdpmok0dc8pme7zzcrlollbtb2tldw19y7oyvd3e2d2r1fcphlscskjdevny9gkskgecuppptnujpdgkoo0gk+vc7z5sqvgs7vu0ov6er4kfjgbtjl9eg0ryjwnm2v3uz63crzfspj0dwizosrpqoupxvwbdmkqrfzpwrftfsrptzvhqrjjnq4nu0qstcr7rvqecr1r52sx4jk6mmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqaepzfly8tt9w8bnq3z432vdlgby7gge7bgxnoww10waucktzdk7xzt9al9w59zedxrhlnep7a+vwbzeqtga==</latexit> <latexit sha1_base64="4bkil3hbkdia9ktync7xfvzmu4w=">aaab93icbvbns8nafhypx7v+torry2irpjwkccp4khjxwmhyqhvczrtpl242yxcj1jbf4swdilf/ijf/jzs2b20dwbhm3upntpbwprrtf1uvtfwnza3qdm1nd2+/3jg4ffbxkgl1scxj2q+wopwj6mqmoe0nkuio4lqxtg8kv/dipwkxunezhhorhgswmok1kfxgfrhhpsgyz/3cz9q532jalxsoteqckjshrndvfa1hmukjkjthwkmbyyfay7dujhca14apogkmuzyma0mfjqjysnnwhj0azytcwjonnjqrvzcyhck1iwizwcruy14h/ucnuh1eehktsaqpiitdycqrjlhrahoxsynmm0mwkcxkrwscjsbadfuzjtjlx14lbrt11blvzpud67knkhzdczybaxfqgvvoggseunigv3iznqwx6936wixwrhlncp7a+vwbbzkthq==</latexit> <latexit sha1_base64="4bkil3hbkdia9ktync7xfvzmu4w=">aaab93icbvbns8nafhypx7v+torry2irpjwkccp4khjxwmhyqhvczrtpl242yxcj1jbf4swdilf/ijf/jzs2b20dwbhm3upntpbwprrtf1uvtfwnza3qdm1nd2+/3jg4ffbxkgl1scxj2q+wopwj6mqmoe0nkuio4lqxtg8kv/dipwkxunezhhorhgswmok1kfxgfrhhpsgyz/3cz9q532jalxsoteqckjshrndvfa1hmukjkjthwkmbyyfay7dujhca14apogkmuzyma0mfjqjysnnwhj0azytcwjonnjqrvzcyhck1iwizwcruy14h/ucnuh1eehktsaqpiitdycqrjlhrahoxsynmm0mwkcxkrwscjsbadfuzjtjlx14lbrt11blvzpud67knkhzdczybaxfqgvvoggseunigv3iznqwx6936wixwrhlncp7a+vwbbzkthq==</latexit> <latexit sha1_base64="4bkil3hbkdia9ktync7xfvzmu4w=">aaab93icbvbns8nafhypx7v+torry2irpjwkccp4khjxwmhyqhvczrtpl242yxcj1jbf4swdilf/ijf/jzs2b20dwbhm3upntpbwprrtf1uvtfwnza3qdm1nd2+/3jg4ffbxkgl1scxj2q+wopwj6mqmoe0nkuio4lqxtg8kv/dipwkxunezhhorhgswmok1kfxgfrhhpsgyz/3cz9q532jalxsoteqckjshrndvfa1hmukjkjthwkmbyyfay7dujhca14apogkmuzyma0mfjqjysnnwhj0azytcwjonnjqrvzcyhck1iwizwcruy14h/ucnuh1eehktsaqpiitdycqrjlhrahoxsynmm0mwkcxkrwscjsbadfuzjtjlx14lbrt11blvzpud67knkhzdczybaxfqgvvoggseunigv3iznqwx6936wixwrhlncp7a+vwbbzkthq==</latexit> <latexit sha1_base64="be29bhrz9fu232eicuklpu9ei+g=">aaab63icbvbns8naej34wetx1aoxxsj4kkkrvpbq8okxgrgfnptndtmu3wzc7kqsob/biwcvr/4hb/4bt20o2vpg4pheddpzwlqkg6777aysrq1vbja2yts7u3v7lypdb5nkmngfjtlr7zaaloxipgquvj1qtunq8ly4upn6rueujujupy5thsr0oeqkgeur+u+9vd7pvapuzz2blbovifuo0oxvvrr9hguxv8gknabjuskgoduomostcjczpkvsrae8y6mimtdbpjt2qk6t0idrom0pjdp190roy2pgcwg7y4pds+hnxf+8tobrzzallwbifzsvijjjmchtz0lfam5qji2htat7k2fdqildm0/zhuatvrxm/hrtqubenvcb10uajtigezgddy6gabfqbb8ychigv3hzlppivdsf89yvp5g5gj9wpn8apisoeg==</latexit> <latexit sha1_base64="be29bhrz9fu232eicuklpu9ei+g=">aaab63icbvbns8naej34wetx1aoxxsj4kkkrvpbq8okxgrgfnptndtmu3wzc7kqsob/biwcvr/4hb/4bt20o2vpg4pheddpzwlqkg6777aysrq1vbja2yts7u3v7lypdb5nkmngfjtlr7zaaloxipgquvj1qtunq8ly4upn6rueujujupy5thsr0oeqkgeur+u+9vd7pvapuzz2blbovifuo0oxvvrr9hguxv8gknabjuskgoduomostcjczpkvsrae8y6mimtdbpjt2qk6t0idrom0pjdp190roy2pgcwg7y4pds+hnxf+8tobrzzallwbifzsvijjjmchtz0lfam5qji2htat7k2fdqildm0/zhuatvrxm/hrtqubenvcb10uajtigezgddy6gabfqbb8ychigv3hzlppivdsf89yvp5g5gj9wpn8apisoeg==</latexit> <latexit sha1_base64="be29bhrz9fu232eicuklpu9ei+g=">aaab63icbvbns8naej34wetx1aoxxsj4kkkrvpbq8okxgrgfnptndtmu3wzc7kqsob/biwcvr/4hb/4bt20o2vpg4pheddpzwlqkg6777aysrq1vbja2yts7u3v7lypdb5nkmngfjtlr7zaaloxipgquvj1qtunq8ly4upn6rueujujupy5thsr0oeqkgeur+u+9vd7pvapuzz2blbovifuo0oxvvrr9hguxv8gknabjuskgoduomostcjczpkvsrae8y6mimtdbpjt2qk6t0idrom0pjdp190roy2pgcwg7y4pds+hnxf+8tobrzzallwbifzsvijjjmchtz0lfam5qji2htat7k2fdqildm0/zhuatvrxm/hrtqubenvcb10uajtigezgddy6gabfqbb8ychigv3hzlppivdsf89yvp5g5gj9wpn8apisoeg==</latexit> <latexit sha1_base64="pfdcjxshcznrmhkbszumgzwcezo=">aaab93icbvbns8nafhypx7v+norry2irpjvebbu8flx4rgc00iaw2w7apztn2n0inesxepgg4tw/4s1/46bnqvshfoaz93ize6acke0431ztzxvtfao+2dja3tlt2nv79yrjjkeesxgieyfwldnbpc00p71uuhyhnd6ek+vsf3ikurfe3olpsv0yjwslgmhasihdhmryjwnmea8icrci7jbtdmzay8stsasqdap7azbmsbztoqnhsvvdj9v+jqvmhnoimcguttgz4bhtgypwtjwfz4ix6ngoqxql0jyh0uz9vzhjwklphjrjmqza9erxp6+f6ejcz5lim00fmr+kmo50gsow0jbjsjsfgokjzcyrimmsmdgmq4ypwv388jlxttuxbef2rnw5qtqowyecwqm4ca4duieueeagg2d4htfryxqx3q2p+wjnqnyo4a+szx9sdpmc</latexit> <latexit sha1_base64="pfdcjxshcznrmhkbszumgzwcezo=">aaab93icbvbns8nafhypx7v+norry2irpjvebbu8flx4rgc00iaw2w7apztn2n0inesxepgg4tw/4s1/46bnqvshfoaz93ize6acke0431ztzxvtfao+2dja3tlt2nv79yrjjkeesxgieyfwldnbpc00p71uuhyhnd6ek+vsf3ikurfe3olpsv0yjwslgmhasihdhmryjwnmea8icrci7jbtdmzay8stsasqdap7azbmsbztoqnhsvvdj9v+jqvmhnoimcguttgz4bhtgypwtjwfz4ix6ngoqxql0jyh0uz9vzhjwklphjrjmqza9erxp6+f6ejcz5lim00fmr+kmo50gsow0jbjsjsfgokjzcyrimmsmdgmq4ypwv388jlxttuxbef2rnw5qtqowyecwqm4ca4duieueeagg2d4htfryxqx3q2p+wjnqnyo4a+szx9sdpmc</latexit> <latexit sha1_base64="pfdcjxshcznrmhkbszumgzwcezo=">aaab93icbvbns8nafhypx7v+norry2irpjvebbu8flx4rgc00iaw2w7apztn2n0inesxepgg4tw/4s1/46bnqvshfoaz93ize6acke0431ztzxvtfao+2dja3tlt2nv79yrjjkeesxgieyfwldnbpc00p71uuhyhnd6ek+vsf3ikurfe3olpsv0yjwslgmhasihdhmryjwnmea8icrci7jbtdmzay8stsasqdap7azbmsbztoqnhsvvdj9v+jqvmhnoimcguttgz4bhtgypwtjwfz4ix6ngoqxql0jyh0uz9vzhjwklphjrjmqza9erxp6+f6ejcz5lim00fmr+kmo50gsow0jbjsjsfgokjzcyrimmsmdgmq4ypwv388jlxttuxbef2rnw5qtqowyecwqm4ca4duieueeagg2d4htfryxqx3q2p+wjnqnyo4a+szx9sdpmc</latexit> <latexit sha1_base64="kckignvhlp7zbs/r3wtr7iuq6hs=">aaab93icbvbns8nafhypx7v+torry2irpjvebbu8flx4rghsoq1hs920szebslsrasgv8ejbxat/xzv/xk2bg7yolawz7/fmj0g4u9q2v63kyura+kz1s7a1vbnbb+ztp6g4lys6joax7avyuc4edtxtnpyssxeucnonjtef332kurfy3otpqr0ijwqlgchash6jpoiwhhpms7vcz5zcbzttlj0dwizoszpqoum3vgbdmkqrfzpwrftfsrptzvhqrjjna4nu0qstcr7rvqecr1r52sx4jo6nmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqzepzfly8t97r12bjvz5rtq7knkhzcezyaa+fqhhvogaseunigv3iznqwx6936mi9wrhlnap7a+vwbzgatfw==</latexit> <latexit sha1_base64="kckignvhlp7zbs/r3wtr7iuq6hs=">aaab93icbvbns8nafhypx7v+torry2irpjvebbu8flx4rghsoq1hs920szebslsrasgv8ejbxat/xzv/xk2bg7yolawz7/fmj0g4u9q2v63kyura+kz1s7a1vbnbb+ztp6g4lys6joax7avyuc4edtxtnpyssxeucnonjtef332kurfy3otpqr0ijwqlgchash6jpoiwhhpms7vcz5zcbzttlj0dwizoszpqoum3vgbdmkqrfzpwrftfsrptzvhqrjjna4nu0qstcr7rvqecr1r52sx4jo6nmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqzepzfly8t97r12bjvz5rtq7knkhzcezyaa+fqhhvogaseunigv3iznqwx6936mi9wrhlnap7a+vwbzgatfw==</latexit> C<latexit sha1_base64="knrhaebcmpawlfwlgpoytdqsnpo=">aaab8xicbvbnswmxfmzwr1q/qh69bivgqeykoikhqi8ek7i2sf1kns22odlksd4kzenp8ojbxav/xpv/xmy7b20dcawz75f5e6wcg3ddb6eytr6xuvxdru3s7u0f1a+pho3kngu+vulpxkqme1wyhzgi1ks1i0kkwdeatau/+8s04uo+wdrlyujgksecerbs0e8ijckrexs2qdfcpjshxivesrqorgdq/+opfc0sjoekykzgusmeodhaqwczwj8zlcv0qkyssfsshjkwn0ee4tordhgsth0s8fz9vzgtxjhpetnjiqjz9grxpy/iil4ocy7tdjiki4/itgbqulgfd7lmfmtueki1t1kxhrnnkniwaryeb/nkvejfng+a7v1lo3vbtlffj+gunsmpxaewukmd5cokfhpgr+jnaeffexc+fqmvp9w5rn/gfp4a24yrjg==</latexit> <latexit sha1_base64="zszna1jzozopxllahr/syohvree=">aaab93icbvbns8nafhzxs9apvj16wsycp5iuqqupbs8ekxpbaepybdft0s0m7g6egvjlvhhq8epf8ea/cdpmok0dc8pme7zzcrlollbtb2tldw19y7oyvd3e2d2r1fcphlscskjdevny9gkskgecuppptnujpdgkoo0gk+vc7z5sqvgs7vu0ov6er4kfjgbtjl9eg0ryjwnm2v3uz63crzfspj0dwizosrpqoupxvwbdmkqrfzpwrftfsrptzvhqrjjnq4nu0qstcr7rvqecr1r52sx4jk6mmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqaepzfly8tt9w8bnq3z432vdlgby7gge7bgxnoww10waucktzdk7xzt9al9w59zedxrhlnep7a+vwbzeqtga==</latexit> <latexit sha1_base64="zszna1jzozopxllahr/syohvree=">aaab93icbvbns8nafhzxs9apvj16wsycp5iuqqupbs8ekxpbaepybdft0s0m7g6egvjlvhhq8epf8ea/cdpmok0dc8pme7zzcrlollbtb2tldw19y7oyvd3e2d2r1fcphlscskjdevny9gkskgecuppptnujpdgkoo0gk+vc7z5sqvgs7vu0ov6er4kfjgbtjl9eg0ryjwnm2v3uz63crzfspj0dwizosrpqoupxvwbdmkqrfzpwrftfsrptzvhqrjjnq4nu0qstcr7rvqecr1r52sx4jk6mmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqaepzfly8tt9w8bnq3z432vdlgby7gge7bgxnoww10waucktzdk7xzt9al9w59zedxrhlnep7a+vwbzeqtga==</latexit> <latexit sha1_base64="zszna1jzozopxllahr/syohvree=">aaab93icbvbns8nafhzxs9apvj16wsycp5iuqqupbs8ekxpbaepybdft0s0m7g6egvjlvhhq8epf8ea/cdpmok0dc8pme7zzcrlollbtb2tldw19y7oyvd3e2d2r1fcphlscskjdevny9gkskgecuppptnujpdgkoo0gk+vc7z5sqvgs7vu0ov6er4kfjgbtjl9eg0ryjwnm2v3uz63crzfspj0dwizosrpqoupxvwbdmkqrfzpwrftfsrptzvhqrjjnq4nu0qstcr7rvqecr1r52sx4jk6mmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqaepzfly8tt9w8bnq3z432vdlgby7gge7bgxnoww10waucktzdk7xzt9al9w59zedxrhlnep7a+vwbzeqtga==</latexit> <latexit sha1_base64="4bkil3hbkdia9ktync7xfvzmu4w=">aaab93icbvbns8nafhypx7v+torry2irpjwkccp4khjxwmhyqhvczrtpl242yxcj1jbf4swdilf/ijf/jzs2b20dwbhm3upntpbwprrtf1uvtfwnza3qdm1nd2+/3jg4ffbxkgl1scxj2q+wopwj6mqmoe0nkuio4lqxtg8kv/dipwkxunezhhorhgswmok1kfxgfrhhpsgyz/3cz9q532jalxsoteqckjshrndvfa1hmukjkjthwkmbyyfay7dujhca14apogkmuzyma0mfjqjysnnwhj0azytcwjonnjqrvzcyhck1iwizwcruy14h/ucnuh1eehktsaqpiitdycqrjlhrahoxsynmm0mwkcxkrwscjsbadfuzjtjlx14lbrt11blvzpud67knkhzdczybaxfqgvvoggseunigv3iznqwx6936wixwrhlncp7a+vwbbzkthq==</latexit> <latexit sha1_base64="4bkil3hbkdia9ktync7xfvzmu4w=">aaab93icbvbns8nafhypx7v+torry2irpjwkccp4khjxwmhyqhvczrtpl242yxcj1jbf4swdilf/ijf/jzs2b20dwbhm3upntpbwprrtf1uvtfwnza3qdm1nd2+/3jg4ffbxkgl1scxj2q+wopwj6mqmoe0nkuio4lqxtg8kv/dipwkxunezhhorhgswmok1kfxgfrhhpsgyz/3cz9q532jalxsoteqckjshrndvfa1hmukjkjthwkmbyyfay7dujhca14apogkmuzyma0mfjqjysnnwhj0azytcwjonnjqrvzcyhck1iwizwcruy14h/ucnuh1eehktsaqpiitdycqrjlhrahoxsynmm0mwkcxkrwscjsbadfuzjtjlx14lbrt11blvzpud67knkhzdczybaxfqgvvoggseunigv3iznqwx6936wixwrhlncp7a+vwbbzkthq==</latexit> <latexit sha1_base64="4bkil3hbkdia9ktync7xfvzmu4w=">aaab93icbvbns8nafhypx7v+torry2irpjwkccp4khjxwmhyqhvczrtpl242yxcj1jbf4swdilf/ijf/jzs2b20dwbhm3upntpbwprrtf1uvtfwnza3qdm1nd2+/3jg4ffbxkgl1scxj2q+wopwj6mqmoe0nkuio4lqxtg8kv/dipwkxunezhhorhgswmok1kfxgfrhhpsgyz/3cz9q532jalxsoteqckjshrndvfa1hmukjkjthwkmbyyfay7dujhca14apogkmuzyma0mfjqjysnnwhj0azytcwjonnjqrvzcyhck1iwizwcruy14h/ucnuh1eehktsaqpiitdycqrjlhrahoxsynmm0mwkcxkrwscjsbadfuzjtjlx14lbrt11blvzpud67knkhzdczybaxfqgvvoggseunigv3iznqwx6936wixwrhlncp7a+vwbbzkthq==</latexit> 2 Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz X 1 X 2 X 1 X 2 x<latexit sha1_base64="p8erjlipbaj1gaddnbu1k3gltke=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0leumfdwyvhcqyttkfstpt27wy37g7eevofvhhq8eop8ua/cdpmok0pbh7vztazl0w408z1v53syura+kz5s7k1vbo7v90/agmzkkj9irlunrbrypmgvmgg006iki5dttvh+cb3249uasbfvzkknijxulciewys1hrqz9600q/w3lo7a1omxkfqukdzr371bpkkmrwgckx113mte2ryguy4nvz6qayjjmm8pf1lby6pdrlztvn0ypubiqsyjqyaqb8nmhxrpyld2xljm9klxi7+53vte10ggrnjaqgg80vrypgrkh8ddziixpcjjzgozm9fziqvjsyglifglb68tpyz+lxdvtuvna6lnmpwbmdwch5cqanuoqk+ehiaz3ifn0c6l8678zfvltnfzch8gfp5a3ejjo0=</latexit> 1 c 1 c<latexit sha1_base64="sffvuszeuqoitcsou8wal9ss+ym=">aaab63icbvbns8naej3ur1q/qh69lbbbu0mkoikhghepfywttkfstpt26wytdidccf0nxjyoepupefpfug1z0nyha4/3zpizf6zsghtdb6e0tr6xuvxeruzs7u0fva+phk2sacz9lshed0jqubsk+yhq8k6qoy1dydvh+hbmt5+4nijrdzhjerdtorkrybst5ln+3pj2qzw37s5bvolxkbouapwrx71bwrkyk2ssgtp13bsdngoutpjppzcznli2pkpetvtrmjsgnx87jwdwgzao0byukrn6eyknstgtolsdmcwrwfzm4n9en8poksifsjpkii0wrzkkmjdz52qgngcoj5zqpow9lbar1zshzadiq/cwx14lfqn+xxfvl2rnmyknmpzakzydb5fqhdtogq8mbdzdk7w5ynlx3p2prwvjkwao4q+czx8ccy5l</latexit> 2 x 2 s<latexit sha1_base64="mcmsho6mikfqc4m6w092bxmm1xq=">aaab63icbvbns8naej3ur1q/qh69lbbbu0leqikhghepfywttkfstpn26wytdjdccf0nxjyoepupefpfug1z0nyha4/3zpizf6aca+o6305pbx1jc6u8xdnz3ds/qb4epeokuwx9lohedukquxcjvufgycdvsonqydsc38789hmqzrp5ycypbjedsh5xro2vfn3pvwm/wnpr7hxklxgfqugbvr/61rsklitrgiao1l3ptu2qu2u4ezit9dknkwvjossupzlgqin8fuyunfllqkje2zkgznxfezmntz7eoe2mqrnpzw8m/ud1mxndbtmxawzqsswikbpejgt2orlwhcyiiswukw5vjwxefwxg5loxixjll68s/6j+xxfvl2vnmyknmpzakzydbw1owh20wacghj7hfd4c6bw4787horxkfdph8afo5w8zxy50</latexit> 1 s S 2 <latexit sha1_base64="kckignvhlp7zbs/r3wtr7iuq6hs=">aaab93icbvbns8nafhypx7v+torry2irpjvebbu8flx4rghsoq1hs920szebslsrasgv8ejbxat/xzv/xk2bg7yolawz7/fmj0g4u9q2v63kyura+kz1s7a1vbnbb+ztp6g4lys6joax7avyuc4edtxtnpyssxeucnonjtef332kurfy3otpqr0ijwqlgchash6jpoiwhhpms7vcz5zcbzttlj0dwizoszpqoum3vgbdmkqrfzpwrftfsrptzvhqrjjna4nu0qstcr7rvqecr1r52sx4jo6nmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqzepzfly8t97r12bjvz5rtq7knkhzcezyaa+fqhhvogaseunigv3iznqwx6936mi9wrhlnap7a+vwbzgatfw==</latexit> 1 S 2 (a) Auto-encoding S<latexit sha1_base64="kckignvhlp7zbs/r3wtr7iuq6hs=">aaab93icbvbns8nafhypx7v+torry2irpjvebbu8flx4rghsoq1hs920szebslsrasgv8ejbxat/xzv/xk2bg7yolawz7/fmj0g4u9q2v63kyura+kz1s7a1vbnbb+ztp6g4lys6joax7avyuc4edtxtnpyssxeucnonjtef332kurfy3otpqr0ijwqlgchash6jpoiwhhpms7vcz5zcbzttlj0dwizoszpqoum3vgbdmkqrfzpwrftfsrptzvhqrjjna4nu0qstcr7rvqecr1r52sx4jo6nmkrhlm0tgs3u3xszjpsarogzlgkqra8q//p6qq4vviyjjnvukpmhmovix6hoaq2zpetzqsgysgayijlgehntuqqzepzfly8t97r12bjvz5rtq7knkhzcezyaa+fqhhvogaseunigv3iznqwx6936mi9wrhlnap7a+vwbzgatfw==</latexit> 1 S 2 (b) Translation Fig.1. An illustration of our method. (a) Images in each domain X i are encoded to a sharedcontentspacec andadomain-specificstylespaces i.eachencoderhasaninverse decoder omitted from this figure. (b) To translate an image in X 1 (e.g., a leopard) to X 2 (e.g., domestic cats), we recombine the content code of the input with a random style code in the target style space. Different style codes lead to different outputs. In this paper, we propose a principled framework for the Multimodal UNsupervised Image-to-image Translation (MUNIT) problem. As shown in Fig. 1 (a), our framework makes several assumptions. We first assume that the latent space of images can be decomposed into a content space and a style space. We further assume that images in different domains share a common content space but not the style space. To translate an image to the target domain, we recombine its content code with a random style code in the target style space (Fig. 1 (b)). The content code encodes the information that should be preserved during translation, while the style code represents remaining variations that are not contained in the input image. By sampling different style codes, our model is able to produce diverse and multimodal outputs. Extensive experiments demonstrate the effectiveness of our method in modeling multimodal output distributions and its superior image quality compared with state-of-the-art approaches. Moreover, the decomposition of content and style spaces allows our framework to perform example-guided image translation, in which the style of the translation outputs are controlled by a user-provided example image in the target domain. 2 Related Works Generative adversarial networks (GANs). The GAN framework [27] has achieved impressive results in image generation. In GAN training, a generator is trained to fool a discriminator which in turn tries to distinguish between generated samples and real samples. Various improvements to GANs have been proposed, such as multi-stage generation [28 33], better training objectives [34 39], and combination with auto-encoders [40 44]. In this work, we employ GANs to align the distribution of translated images with real images in the target domain. Image-to-image translation. Isola et al. [6] propose the first unified framework for image-to-image translation based on conditional GANs, which has been extended to generating high-resolution images by Wang et al. [20]. Recent studies have also attempted to learn image translation without supervision. This
3 Multimodal Unsupervised Image-to-Image Translation 3 problem is inherently ill-posed and requires additional constraints. Some works enforce the translation to preserve certain properties of the source domain data, such as pixel values [21], pixel gradients [22], semantic features [10], class labels [22], or pairwise sample distances [16]. Another popular constraint is the cycle consistency loss [7 9]. It enforces that if we translate an image to the target domain and back, we should obtain the original image. In addition, Liu et al. [15] propose the UNIT framework, which assumes a shared latent space such that corresponding images in two domains are mapped to the same latent code. A significant limitation of most existing image-to-image translation methods is the lack of diversity in the translated outputs. To tackle this problem, some works propose to simultaneously generate multiple outputs given the same input and encourage them to be different [13,45,46]. Still, these methods can only generate a discrete number of outputs. Zhu et al. [11] propose a Bicycle- GAN that can model continuous and multimodal distributions. However, all the aforementioned methods require pair supervision, while our method does not. A couple of concurrent works also recognize this limitation and propose extensions of CycleGAN/UNIT for multimodal mapping [47]/[48]. Our problem has some connections with multi-domain image-to-image translation [19,49,50]. Specifically, when we know how many modes each domain has and the mode each sample belongs to, it is possible to treat each mode as a separate domain and use multi-domain image-to-image translation techniques to learn a mapping between each pair of modes, thus achieving multimodal translation. However, in general we do not assume such information is available. Also, our stochastic model can represent continuous output distributions, while [19, 49,50] still use a deterministic model for each pair of domains. Style transfer. Style transfer aims at modifying the style of an image while preserving its content, which is closely related to image-to-image translation. Here, we make a distinction between example-guided style transfer, in which the target style comes from a single example, and collection style transfer, in which the target style is defined by a collection of images. Classical style transfer approaches [5, 51 56] typically tackle the former problem, whereas image-to-image translation methods have been demonstrated to perform well in the latter [8]. We will show that our model is able to address both problems, thanks to its disentangled representation of content and style. Learning disentangled representations. Our work draws inspiration from recent works on disentangled representation learning. For example, InfoGAN[57] and β-vae [58] have been proposed to learn disentangled representations without supervision. Some other works [59 66] focus on disentangling content from style. Although it is difficult to define content/style and different works use different definitions, we refer to content as the underling spatial structure and style as the rendering of the structure. In our setting, we have two domains that share the same content distribution but have different style distributions. 3 Multimodal Unsupervised Image-to-image Translation
4 4 Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz Assumptions Let x 1 X 1 and x 2 X 2 be images from two different image domains. In the unsupervised image-to-image translation setting, we are given samples drawn from two marginal distributions p(x 1 ) and p(x 2 ), without access to the joint distribution p(x 1,x 2 ). Our goal is to estimate the two conditionals p(x 2 x 1 ) and p(x 1 x 2 ) with learned image-to-image translation models p(x 1 2 x 1 ) and p(x 2 1 x 2 ), where x 1 2 is a sample produced by translating x 1 to X 2 (similar for x 2 1 ). In general, p(x 2 x 1 ) and p(x 1 x 2 ) are complex and multimodal distributions, in which case a deterministic translation model does not work well. To tackle this problem, we make a partially shared latent space assumption. Specifically, we assume that each image x i X i is generated from a content latent code c C that is shared by both domains, and a style latent code s i S i that is specific to the individual domain. In other words, a pair of corresponding images (x 1,x 2 ) from the joint distribution is generated by x 1 = G 1(c,s 1 ) and x 2 = G 2(c,s 2 ), where c,s 1,s 2 are from some prior distributions andg 1,G 2 aretheunderlyinggenerators.wefurtherassumethatg 1 andg 2 are deterministic functions and have their inverse encoders E 1 = (G 1) 1 and E 2 = (G 2) 1. Our goal is to learn the underlying generator and encoder functions with neural networks. Note that although the encoders and decoders are deterministic, p(x 2 x 1 ) is a continuous distribution due to the dependency of s 2. Our assumption is closely related to the shared latent space assumption proposed in UNIT [15]. While UNIT assumes a fully shared latent space, we postulate that only part of the latent space (the content) can be shared across domains whereas the other part (the style) is domain specific, which is a more reasonable assumption when the cross-domain mapping is many-to-many. Model Fig. 2 shows an overview of our model and its learning process. Similar toliuet al.[15],ourtranslationmodelconsistsofanencodere i andadecoderg i foreachdomainx i (i = 1,2).AsshowninFig.2(a),thelatentcodeofeachautoencoder is factorized into a content code c i and a style code s i, where (c i,s i ) = (E c i (x i),e s i (x i)) = E i (x i ). Image-to-image translation is performed by swapping encoder-decoder pairs, as illustrated in Fig. 2 (b). For example, to translate an image x 1 X 1 to X 2, we first extract its content latent code c 1 = E c 1(x 1 ) and randomly draw a style latent code s 2 from the prior distribution q(s 2 ) N(0,I). We then use G 2 to produce the final output image x 1 2 = G 2 (c 1,s 2 ). We note that although the prior distribution is unimodal, the output image distribution can be multimodal thanks to the nonlinearity of the decoder. Our loss function comprises a bidirectional reconstruction loss that ensures the encoders and decoders are inverses, and an adversarial loss that matches the distribution of translated images to the image distribution in the target domain. Bidirectional reconstruction loss. To learn pairs of encoder and decoder that are inverses of each other, we use objective functions that encourage reconstruction in both image latent image and latent image latent directions:
5 Multimodal Unsupervised Image-to-Image Translation 5 x 1 x 2 x 1 x 2 s 1 c 1 c 2 s 2 s 1 c 2 c 1 s 2 Decode Decode Encode Encode ˆx 1 ˆx 2 x 2 1 x 1 2 L1 loss GAN loss domain 1 auto encoders domain 2 auto encoders c s content features style features x images Gaussian prior ŝ 1 ĉ 2 ĉ 1 ŝ 2 Encode (a) Within-domain reconstruction (b) Cross-domain translation Fig. 2. Model overview. Our image-to-image translation model consists of two autoencoders(denoted by red and blue arrows respectively), one for each domain. The latent code of each auto-encoder is composed of a content code c and a style code s. We train the model with adversarial objectives (dotted lines) that ensure the translated images to be indistinguishable from real images in the target domain, as well as bidirectional reconstruction objectives (dashed lines) that reconstruct both images and latent codes. Image reconstruction. Given an image sampled from the data distribution, we should be able to reconstruct it after encoding and decoding. L x1 recon = E x1 p(x 1)[ G 1 (E c 1(x 1 ),E s 1(x 1 )) x 1 1 ] (1) Latent reconstruction. Given a latent code (style and content) sampled from the latent distribution at translation time, we should be able to reconstruct it after decoding and encoding. L c1 recon = E c1 p(c 1),s 2 q(s 2)[ E2(G c 2 (c 1,s 2 )) c 1 1 ] (2) L s2 recon = E c1 p(c 1),s 2 q(s 2)[ E2(G s 2 (c 1,s 2 )) s 2 1 ] (3) whereq(s 2 )isthepriorn(0,i),p(c 1 ) is given by c 1 = E c 1(x 1 ) and x 1 p(x 1 ). We note the other loss terms L x2 recon, L c2 recon, and L s1 recon are defined in a similar manner. We use L 1 reconstruction loss as it encourages sharp output images. ThestylereconstructionlossL si recon is reminiscent of the latent reconstruction lossusedinthepriorworks[11,31,44,57].ithastheeffectonencouragingdiverse outputs given different style codes. The content reconstruction loss L ci recon encourages the translated image to preserve semantic content of the input image. Adversarial loss. We employ GANs to match the distribution of translated images to the target data distribution. In other words, images generated by our model should be indistinguishable from real images in the target domain. L x2 GAN = E c 1 p(c 1),s 2 q(s 2)[log(1 D 2 (G 2 (c 1,s 2 )))]+E x2 p(x 2)[logD 2 (x 2 )] (4) where D 2 is a discriminator that tries to distinguish between translated images and real images in X 2. The discriminator D 1 and loss L x1 GAN are defined similarly.
6 6 Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz Total loss. We jointly train the encoders, decoders, and discriminators to optimize the final objective, which is a weighted sum of the adversarial loss and the bidirectional reconstruction loss terms. min max L(E 1,E 2,G 1,G 2,D 1,D 2 ) = L x1 GAN E 1,E 2,G 1,G 2 D +Lx2 GAN + 1,D 2 λ x (L x1 recon +L x2 recon)+λ c (L c1 recon +L c2 recon)+λ s (L s1 recon +L s2 recon) (5) where λ x, λ c, λ s are weights that control the importance of reconstruction terms. 4 Theoretical Analysis We now establish some theoretical properties of our framework. Specifically, we show that minimizing the proposed loss function leads to 1) matching of latent distributions during encoding and generation, 2) matching of two joint image distributions induced by our framework, and 3) enforcing a weak form of cycle consistency constraint. All the proofs are given in the supplementary material. First, we note that the total loss in Eq. (5) is minimized when the translated distribution matches the data distribution and the encoder-decoder are inverses. Proposition 1. Suppose there exists E1, E2, G 1, G 2 such that: 1) E1 = (G 1) 1 and E2 = (G 2) 1, and 2) p(x 1 2 ) = p(x 2 ) and p(x 2 1 ) = p(x 1 ). Then E1, E2, G 1, G 2 minimizes L(E 1,E 2,G 1,G 2 ) = max L(E 1,E 2,G 1,G 2,D 1,D 2 ) (Eq. (5)). D 1,D 2 Latent Distribution Matching For image generation, existing works on combining auto-encoders and GANs need to match the encoded latent distribution with the latent distribution the decoder receives at generation time, using either KLD loss [15,40] or adversarial loss [17,42] in the latent space. The autoencoder training would not help GAN training if the decoder received a very different latent distribution during generation. Although our loss function does not contain terms that explicitly encourage the match of latent distributions, it has the effect of matching them implicitly. Proposition 2. When optimality is reached, we have: p(c 1 ) = p(c 2 ), p(s 1 ) = q(s 1 ), p(s 2 ) = q(s 2 ) The above proposition shows that at optimality, the encoded style distributions match their Gaussian priors. Also, the encoded content distribution matches the distribution at generation time, which is just the encoded distribution from the other domain. This suggests that the content space becomes domain-invariant. Joint Distribution Matching Our model learns two conditional distributions p(x 1 2 x 1 ) and p(x 2 1 x 2 ), which, together with the data distributions, define two joint distributions p(x 1,x 1 2 ) and p(x 2 1,x 2 ). Since both of them are designed to approximate the same underlying joint distribution p(x 1,x 2 ), it is desirable that they are consistent with each other, i.e., p(x 1,x 1 2 ) = p(x 2 1,x 2 ).
7 Multimodal Unsupervised Image-to-Image Translation 7 Joint distribution matching provides an important constraint for unsupervised image-to-image translation and is behind the success of many recent methods. Here, we show our model matches the joint distributions at optimality. Proposition 3. When optimality is reached, we have p(x 1,x 1 2 ) = p(x 2 1,x 2 ). Style-augmented Cycle Consistency Joint distribution matching can be realized via cycle consistency constraint [8], assuming deterministic translation models and matched marginals [43, 67, 68]. However, we note that this constraint is too strong for multimodal image translation. In fact, we prove in the supplementary material that the translation model will degenerate to a deterministic function if cycle consistency is enforced. In the following proposition, we show that our framework admits a weaker form of cycle consistency, termed as styleaugmented cycle consistency, between the image style joint spaces, which is more suited for multimodal image translation. Proposition 4. Denote h 1 = (x 1,s 2 ) H 1 and h 2 = (x 2,s 1 ) H 2. h 1,h 2 are points in the joint spaces of image and style. Our model defines a deterministic mapping F 1 2 from H 1 to H 2 (and vice versa) by F 1 2 (h 1 ) = F 1 2 (x 1,s 2 ) (G 2 (E c 1(x 1 ),s 2 ),E s 1(x 1 )). When optimality is achieved, we have F 1 2 = F Intuitively, style-augmented cycle consistency implies that if we translate an image to the target domain and translate it back using the original style, we should obtain the original image. Note that we do not use any explicit loss terms to enforce style-augmented cycle consistency, but it is implied by the proposed bidirectional reconstruction loss. 5 Experiments 5.1 Implementation Details Fig. 3 shows the architecture of our auto-encoder. It consists of a content encoder, a style encoder, and a joint decoder. More detailed information and hyperparameters are given in the supplementary material. We will provide an open-source implementation in PyTorch [69]. Content encoder. Our content encoder consists of several strided convolutional layers to downsample the input and several residual blocks [70] to further process it. All the convolutional layers are followed by Instance Normalization (IN) [71]. Style encoder. The style encoder includes several strided convolutional layers, followed by a global average pooling layer and a fully connected (FC) layer. We do not use IN layers in the style encoder, since IN removes the original feature mean and variance that represent important style information [54]. Decoder. Our decoder reconstructs the input image from its content and style code. It processes the content code by a set of residual blocks and finally produces the reconstructed image by several upsampling and convolutional layers.
8 8 Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz Fig. 3. Our auto-encoder architecture. The content encoder consists of several strided convolutional layers followed by residual blocks. The style encoder contains several strided convolutional layers followed by a global average pooling layer and a fully connected layer. The decoder uses a MLP to produce a set of AdaIN [54] parameters from the style code. The content code is then processed by residual blocks with AdaIN layers, and finally decoded to the image space by upsampling and convolutional layers. Inspired by recent works that use affine transformation parameters in normalization layers to represent styles [54, 72 74], we equip the residual blocks with Adaptive Instance Normalization (AdaIN) [54] layers whose parameters are dynamically generated by a multilayer perceptron (MLP) from the style code. ( ) z µ(z) AdaIN(z,γ,β) = γ +β (6) σ(z) wherez istheactivationofthepreviousconvolutionallayer,µandσ arechannelwise mean and standard deviation, γ and β are parameters generated by the MLP. Note that the affine parameters are produced by a learned network, instead of computed from statistics of a pretrained network as in Huang et al. [54]. Discriminator. We use the LSGAN objective proposed by Mao et al. [38]. We employ multi-scale discriminators proposed by Wang et al. [20] to guide the generators to produce both realistic details and correct global structure. Domain-invariant perceptual loss. The perceptual loss, often computed as a distance in the VGG [75] feature space between the output and the reference image, has been shown to benefit image-to-image translation when paired supervision is available [13, 20]. In the unsupervised setting, however, we do not have a reference image in the target domain. We propose a modified version of perceptual loss that is more domain-invariant, so that we can use the input image as the reference. Specifically, before computing the distance, we perform Instance Normalization [71] (without affine transformations) on the VGG features in order to remove the original feature mean and variance, which contains much domain-specific information [54,76]. We find it accelerates training on high-resolution ( ) datasets and thus employ it on those datasets.
9 Multimodal Unsupervised Image-to-Image Translation Evaluation Metrics Human Preference. To compare the realism and faithfulness of translation outputs generated by different methods, we perform human perceptual study on Amazon Mechanical Turk (AMT). Similar to Wang et al. [20], the workers are given an input image and two translation outputs from different methods. They are then given unlimited time to select which translation output looks more accurate. For each comparison, we randomly generate 500 questions and each question is answered by 5 different workers. LPIPS Distance. To measure translation diversity, we compute the average LPIPS distance[77] between pairs of randomly-sampled translation outputs from the same input as in Zhu et al. [11]. LPIPS is given by a weighted L 2 distance between deep features of images. It has been demonstrated to correlate well with human perceptual similarity [77]. Following Zhu et al. [11], we use 100 input images and sample 19 output pairs per input, which amounts to 1900 pairs in total. We use the ImageNet-pretrained AlexNet [78] as the deep feature extractor. (Conditional) Inception Score. The Inception Score (IS) [34] is a popular metric for image generation tasks. We propose a modified version called Conditional Inception Score (CIS), which is more suited for evaluating multimodal image translation. When we know the number of modes in X 2 as well as the ground truth mode each sample belongs to, we can train a classifier p(y 2 x 2 ) to classify an image x 2 into its mode y 2. Conditioned on a single input image x 1, the translation samples x 1 2 should be mode-covering (thus p(y 2 x 1 ) = p(y x 1 2 )p(x 1 2 x 1 )dx 1 2 should have high entropy) and each individual sample should belong to a specific mode (thus p(y 2 x 1 2 ) should have low entropy). Combing these two requirements we get: CIS = E x1 p(x 1)[E x1 2 p(x 2 1 x 1)[KL(p(y 2 x 1 2 ) p(y 2 x 1 ))]] (7) To compute the (unconditional) IS, p(y 2 x 1 ) is replaced with the unconditional class probability p(y 2 ) = p(y x 1 2 )p(x 1 2 x 1 )p(x 1 )dx 1 dx 1 2. IS = E x1 p(x 1)[E x1 2 p(x 2 1 x 1)[KL(p(y 2 x 1 2 ) p(y 2 ))]] (8) To obtain a high CIS/IS score, a model needs to generate samples that are both high-quality and diverse. While IS measures diversity of all output images, CIS measures diversity of outputs conditioned on a single input image. A model that deterministically generates a single output given an input image will receive a zero CIS score, though it might still get a high score under IS. We use the Inception-v3 [79] fine-tuned on our specific datasets as the classifier and estimate Eq. (7) and Eq. (8) using 100 input images and 100 samples per input. 5.3 Baselines UNIT [15]. The UNIT model consists of two VAE-GANs with a fully shared latent space. The stochasticity of the translation comes from the Gaussian encoders as well as the dropout layers in the VAEs.
10 10 Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz CycleGAN [8]. CycleGAN consists of two residual translation networks trained with adversarial loss and cycle reconstruction loss. We use Dropout during both training and testing to encourage diversity, as suggested in Isola et al. [6]. CycleGAN* [8] with noise. To test whether we can generate multimodal outputs within the CycleGAN framework, we additionally inject noise vectors to both translation networks. We use the U-net architecture[11] with noise added to input, since we find the noise vectors are ignored by the residual architecture in CycleGAN [8]. Dropout is also utilized during both training and testing. BicycleGAN [11]. BicycleGAN is the only existing image-to-image translation model we are aware of that can generate continuous and multimodal output distributions. However, it requires paired training data. We compare our model with BicycleGAN when the dataset contains pair information. 5.4 Datasets Edges shoes/handbags. We use the datasets provided by Isola et al. [6], Yu et al. [80], and Zhu et al. [81], which contain images of shoes and handbags with edge maps generated by HED [82]. We train one model for edges shoes and another for edges handbags without using paired information. Animal image translation. We collect images from 3 categories/domains, including house cats, big cats, and dogs. Each domain contains 4 modes which are fine-grained categories belonging to the same parent category. Note that the modes of the images are not known during learning the translation model. We learn a separate model for each pair of domains. Street scene images. We experiment with two street scene translation tasks: Synthetic real. We perform translation between synthetic images in the SYNTHIA dataset [83] and real-world images in the Cityscape dataset [84]. For the SYNTHIA dataset, we use the SYNTHIA-Seqs subset which contains images in different seasons, weather, and illumination conditions. Summer winter. We use the dataset from Liu et al. [15], which contains summer and winter street images extracted from real-world driving videos. Yosemite summer winter (HD). We collect a new high-resolution dataset containing 3253 summer photos and 2385 winter photos of Yosemite. The images are downsampled such that the shortest side of each image is 1024 pixels. 5.5 Results First, we qualitatively compare MUNIT with the four baselines above, and three variants of MUNIT that ablate L x recon, L c recon, L s recon respectively. Fig. 4 shows example results on edges shoes. Both UNIT and CycleGAN (with or without noise) fail to generate diverse outputs, despite the injected randomness. Without L x recon or L c recon, the image quality of MUNIT is unsatisfactory. Without L s recon, the model suffers from partial mode collapse, with many outputs being almost identical (e.g., the first two rows). Our full model produces images that are both diverse and realistic, similar to BicycleGAN but does not need supervision.
11 Multimodal Unsupervised Image-to-Image Translation 11 Input UNIT CycleGAN & GT CycleGAN* MUNIT with noise w/o L x recon MUNIT w/o L c recon MUNIT w/o L s recon MUNIT (ours) Bicycle- GAN Fig.4. Qualitative comparison on edges shoes. The first column shows the input and ground truth output. Each following column shows 3 random outputs from a method. Table 1. Quantitative evaluation on edges shoes/handbags. The diversity score is the average LPIPS distance [77]. The quality score is the human preference score, the percentage a method is preferred over MUNIT. For both metrics, the higher the better. edges shoes edges handbags Quality Diversity Quality Diversity UNIT [15] 37.4% % CycleGAN [8] 36.0% % CycleGAN* [8] with noise 29.5% % MUNIT w/o L x recon 6.0% % MUNIT w/o L c recon 20.7% % MUNIT w/o L s recon 28.6% % MUNIT 50.0% % BicycleGAN [11] 56.7% % Real data N/A N/A Trained with paired supervision. The qualitative observations above are confirmed by quantitative evaluations. We use human preference to measure quality and LPIPS distance to evaluate diversity, as described in Sec We conduct this experiment on the task of edges shoes/handbags. As shown in Table 1, UNIT and CycleGAN produce very little diversity according to LPIPS distance. Removing L x recon or L c recon from MUNIT leads to significantly worse quality. Without L s recon, both quality and diversity deteriorate. The full model obtains quality and diversity comparable to the fully supervised BicycleGAN, and significantly better than all unsupervised baselines. In Fig. 5, we show more example results on edges shoes/handbags. We proceed to perform experiments on the animal image translation dataset. As shown in Fig. 6, our model successfully translate one kind of animal to an-
12 12 Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz Input GT Sample translations Input GT Sample translations (a) edges shoes (b) edges handbags Fig.5. Example results of (a) edges shoes and (b) edges handbags. Input Sample translations Input Sample translations (a) house cats big cats (b) big cats house cats (c) house cats dogs (d) dogs house cats (e) big cats dogs (f) dogs big cats Fig. 6. Example results of animal image translation. other. Given an input image, the translation outputs cover multiple modes, i.e., multiple fine-grained animal categories in the target domain. The shape of an animal has undergone significant transformations, but the pose is overall preserved. As shown in Table 2, our model obtains the highest scores according to both CIS and IS. In particular, the baselines all obtain a very low CIS, indicating their failure to generate multimodal outputs from a given input. As the IS has been shown to correlate well to image quality [34], the higher IS of our method suggests that it also generates images of high quality than baseline approaches. Fig. 7 shows results on street scene datasets. Our model is able to generate SYNTHIA images with diverse renderings (e.g., rainy, snowy, sunset) from a given Cityscape image, and generate Cityscape images with different lighting, shadow, and road textures from a given SYNTHIA image. Similarly, it generates winter images with different amount of snow from a given summer image, and summer images with different amount of leafs from a given winter image.
13 Multimodal Unsupervised Image-to-Image Translation Input 13 Sample translations (a) Cityscape SYNTHIA (b) SYNTHIA Cityscape (c) summer winter (d) winter summer Fig. 7. Example results on street scene translations. Input Sample translations (a) Yosemite summer winter (b) Yosemite winter summer Fig. 8. Example results on Yosemite summer winter (HD resolution). Fig. 8 shows example results of summer winter transfer on the high-resolution Yosemite dataset. Our algorithm generates output images with different lighting. Example-guided Image Translation. Instead of sampling the style code from the prior, it is also possible to extract the style code from a reference image. Specifically, given a content image x1 X1 and a style image x2 X2, our
14 14 Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz Style Content Style Content (a) edges shoes (b) big cats house cats Fig.9. image translation. Each row has the same content while each column has the same style. The color of the generated shoes and the appearance of the generated cats can be specified by providing example style images. Table 2. Quantitative evaluation on animal image translation. This dataset contains 3 domains. We perform bidirectional translation for each domain pair, resulting in 6 translation tasks. We use CIS and IS to measure the performance on each task. To obtain a high CIS/IS score, a model needs to generate samples that are both highquality and diverse. While IS measures diversity of all output images, CIS measures diversity of outputs conditioned on a single input image. CycleGAN CycleGAN* with noise UNIT MUNIT CIS IS CIS IS CIS IS CIS IS house cats big cats big cats house cats house cats dogs dogs house cats big cats dogs dogs big cats Average model produces an image x 1 2 that recombines the content of the former and the style latter by x 1 2 = G 2 (E c 1(x 1 ),E s 2(x 2 )). Examples are shown in Fig Conclusions We presented a framework for multimodal unsupervised image-to-image translation. Our model achieves quality and diversity superior to existing unsupervised methods and comparable to state-of-the-art supervised approach.
Multimodal Unsupervised Image-to-Image Translation
Multimodal Unsupervised Image-to-Image Translation Xun Huang 1, Ming-Yu Liu 2, Serge Belongie 1, Jan Kautz 2 Cornell University 1 NVIDIA 2 Abstract. Unsupervised image-to-image translation is an important
Multimodal Unsupervised Image-to-Image Translation
Multimodal Unsupervised Image-to-Image Translation Xun Huang 1, Ming-Yu Liu 2, Serge Belongie 1, Jan Kautz 2 Cornell University 1 NVIDIA 2 Abstract. Unsupervised image-to-image translation is an important
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Label-Noise Robust Generative Adversarial Networks
Label-Noise Robust Generative Adversarial Networks Training data rcgan Noisy labeled Conditioned on clean labels Takuhiro Kaneko1 Yoshitaka Ushiku1 Tatsuya Harada1, 2 1The University of Tokyo 2RIKEN Talk
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Compressing the information contained in the different indexes is crucial for performance when implementing an IR system
4.2 Compression Compressing the information contained in the different indexes is crucial for performance when implementing an IR system on current hardware it is typically much faster to read compressed
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neurons http://biomedicalengineering.yolasite.com/neurons.php Networks https://en.wikipedia.org/wiki/network_theory#/media/file:social_network_analysis_visualization.png
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Click here if your download doesn"t start automatically
European Crime Prevention Award (ECPA) Annex I - new version 2014
European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA
MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller
MoA-Net: Self-supervised Motion Segmentation Pia Bideau, Rakesh R Menon, Erik Learned-Miller University of Massachusetts Amherst College of Information and Computer Science Motion Segmentation P Bideau,
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Paweł Lula Cracow University of Economics, Poland pawel.lula@uek.krakow.pl Latent Dirichlet Allocation (LDA) Documents Latent
Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University
Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University Chunting Zhou Junxian He Di Wang, Xuezhe Ma, Daniel Spokoyny, Taylor Berg-Kirkpatrick
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and
Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
POLITYKA PRYWATNOŚCI / PRIVACY POLICY
POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka
Learning to find good correspondences
Learning to find good correspondences K.M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua CVPR 2018 (Salt Lake City, UT, USA) Local features matter Keypoints provide us with a robust way to match
Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards
INSPIRE Conference 2010 INSPIRE as a Framework for Cooperation Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards Elżbieta Bielecka Agnieszka Zwirowicz
Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)
MODULE DESCRIPTION Module code Module name Metody probabilistyczne i statystyka Module name in English Probabilistic Methods and Statistics Valid from academic year 2012/2013 MODULE PLACEMENT IN THE SYLLABUS
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
Bayesian graph convolutional neural networks
Bayesian graph convolutional neural networks Mark Coates Collaborators: Soumyasundar Pal, Yingxue Zhang, Deniz Üstebay McGill University, Huawei Noah s Ark Lab February 13, 2019 Montreal 2 / 36 Introduction
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
What does it mean to learn in deep networks? And, how does one detect adversarial attacks?
What does it mean to learn in deep networks? And, how does one detect adversarial attacks? Ciprian A. Corneanu Univ. Barcelona Meysam Madadi CVC, UAB Sergio Escalera Univ. Barcelona Aleix M. Martinez OSU
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES
KATY MCKEOUGH XIAO-LI MENG, VINAY KASHYAP, ANETA SIEMIGINOWSKA, DAVID VAN DYK, SHIHAO YANG, LUIS CAMPOS, DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES INTRODUCTION SCIENTIFIC MOTIVATION
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
January 1st, Canvas Prints including Stretching. What We Use
Canvas Prints including Stretching Square PRCE 10 x10 21.00 12 x12 30.00 18 x18 68.00 24 x24 120.00 32 x32 215.00 34 x34 240.00 36 x36 270.00 44 x44 405.00 Rectangle 12 x18 50.00 12 x24 60.00 18 x24 90.00
Cracow University of Economics Poland
Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta www.michalbereta.pl 1. Przekształcenia atrybutów (ang. attribute reduction / transformation, feature extraction). Zamiast wybierad częśd atrybutów
Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji
Systemy wbudowane Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Poziomy abstrakcji projektowania systemów HW/SW 12/17/2011 S.Deniziak:Systemy wbudowane 2 1 Model czasu 12/17/2011 S.Deniziak:Systemy
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 http://www.junit.org/ Zofia Kruczkiewicz 1. Aby utworzyć test dla jednej klasy, należy kliknąć prawym przyciskiem myszy w oknie Projects na wybraną
Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005
Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe
OSI Physical Layer. Network Fundamentals Chapter 8. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Physical Layer Network Fundamentals Chapter 8 Version 4.0 1 Warstwa fizyczna modelu OSI Network Fundamentals Rozdział 8 Version 4.0 2 Objectives Explain the role of Physical layer protocols and services
Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta
Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta www.michalbereta.pl Modele liniowe W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
The Overview of Civilian Applications of Airborne SAR Systems
The Overview of Civilian Applications of Airborne SAR Systems Maciej Smolarczyk, Piotr Samczyński Andrzej Gadoś, Maj Mordzonek Research and Development Department of PIT S.A. PART I WHAT DOES SAR MEAN?
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is
1. Introduction Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is made of aluminum and steel mesh as one of the coolest enclosures available. It s also small
Agnostic Learning and VC dimension
Agnostic Learning and VC dimension Machine Learning Spring 2019 The slides are based on Vivek Srikumar s 1 This Lecture Agnostic Learning What if I cannot guarantee zero training error? Can we still get
Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav
Supervised Hierarchical Clustering with Exponential Linage Nishant Yadav Ari Kobren Nicholas Monath Andrew McCallum At train time, learn A :2 X! Y Supervised Clustering aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically
Suwalski Park Krajobrazowy i okolice 1:50 000, mapa turystyczno-krajoznawcza =: Suwalki Landscape Park, tourist map = Suwalki Naturpark,... narodowe i krajobrazowe) (Polish Edition) Click here if your
Nonlinear data assimilation for ocean applications
Nonlinear data assimilation for ocean applications Peter Jan van Leeuwen, Manuel Pulido, Jacob Skauvold, Javier Amezcua, Polly Smith, Met Ades, Mengbin Zhu Comparing observations and models Ensure they
Has the heat wave frequency or intensity changed in Poland since 1950?
Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures
Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)
Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?
GREAT BARRIERS IN PLANET FORMATION, PALM COVE 26/07/2019 HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS? CAN ALL THESE STRUCTURES TELL US SOMETHING ABOUT THE (GAS) DISC MASS? BENEDETTA
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
Evaluation of the main goal and specific objectives of the Human Capital Operational Programme
Pracownia Naukowo-Edukacyjna Evaluation of the main goal and specific objectives of the Human Capital Operational Programme and the contribution by ESF funds towards the results achieved within specific
Leba, Rowy, Ustka, Slowinski Park Narodowy, plany miast, mapa turystyczna =: Tourist map = Touristenkarte (Polish Edition)
Leba, Rowy, Ustka, Slowinski Park Narodowy, plany miast, mapa turystyczna =: Tourist map = Touristenkarte (Polish Edition) FotKart s.c Click here if your download doesn"t start automatically Leba, Rowy,
Anonymous Authentication Using Electronic Identity Documents
Department of Computer Science Faculty of Fundamental Problems of Technology Wroclaw University of Technology Anonymous Authentication Using Electronic Identity Documents by Kamil Kluczniak A thesis submitted
Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading)
Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading) ROGER sp.j. Gościszewo 59 82-416 Gościszewo Poland tel. 055 2720132 fax 055 2720133 www.roger.pl
No matter how much you have, it matters how much you need
CSR STRATEGY KANCELARIA FINANSOWA TRITUM GROUP SP. Z O.O. No matter how much you have, it matters how much you need Kancelaria Finansowa Tritum Group Sp. z o.o. was established in 2007 we build trust among
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS Temat: Funkcja logarytmiczna (i wykładnicza)/ Logarithmic (and exponential) function Typ lekcji: Lekcja ćwiczeniowa/training
Internet of Things Devices
Internet of Things Devices } Internet of Things (IoT) devices } Have access to an abundance of raw data } In home, work, or vehicle IoT: Raw Data & Processing } IoT is gaining ground with the widespread
JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE
MACIEJ MATASEK JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE 1 Copyright by Wydawnictwo HANDYBOOKS Poznań 2014 Wszelkie prawa zastrzeżone. Każda reprodukcja lub adaptacja całości bądź części
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
Planning and Cabling Networks
Planning and Cabling Networks Network Fundamentals Chapter 10 Version 4.0 1 Projektowanie okablowania i sieci Podstawy sieci Rozdział 10 Version 4.0 2 Objectives Identify the basic network media required
User s manual for icarwash
User s manual for icarwash BKF Myjnie Bezdotykowe Sp. z o.o. Skarbimierzyce 22 72 002 Dołuje (k. Szczecina) Skarbimierzyce, 2014.11.14 Version v0.2 Table of Contents Table of Contents Settings Login Navigation
Inverse problems - Introduction - Probabilistic approach
Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk
Presented by. Dr. Morten Middelfart, CTO
Meeting Big Data challenges in Leadership with Human-Computer Synergy. Presented by Dr. Morten Middelfart, CTO Big Data Data that exists in such large amounts or in such unstructured form that it is difficult
Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH
Kierunek Elektronika i Telekomunikacja, Studia II stopnia Specjalność: Systemy wbudowane Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH Zagadnienia
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT
TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::
TYRE PYROLYSIS Installation for rubber waste pyrolysis designed for processing of used tyres and plastic waste (polyethylene, polypropylene, polystyrene), where the final product could be electricity,