THICK SETS IN BANACH SPACES AND THEIR PROPERTIES
|
|
- Ewa Kaźmierczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Quaestiones Mathematicae 29(2005), c 2005 NISC Pty Ltd, THICK SETS IN BANACH SPACES AND THEIR PROPERTIES Olav Nygaard Department of Mathematics, Agder University College, Servicebox 422, 4604 Kristiansand, Norway. olav.nygaard@hia.no olavn/ Abstract. We make a survey over results involving the concepts thick and w -thick set and provide a lot of known such sets. We show that the long standing separable quotient problem and a problem from function theory are closely connected to thickness. Mathematics Subject Classification (2000): Primary: 46B20. Key words: Thick set, w -thick set. 1. Definitions and general results. Kadets and Fonf [KF] defined a set in a Banach space to be thin if it can be represented as a countable non-decreasing union of non-norming sets. (A set in a Banach space is said to be non-norming if its closed absolutely convex hull does not contain any ball centered at the origin.) As in [N1] and [N2], let us say that a set is thick if it is not thin. One has the following omnibus-theorem describing thick sets (here recall that T : Y X Tauberian means (T ) 1 (X) Y and note that for Tauberian operators TB Y is closed in X): Theorem 1.1. Let A be a subset of a Banach space X. The following assertions are equivalent. (a) The set A is thick. (b) Whenever a family of continuous linear operators from the space X to some Banach space is pointwise bounded on A, then this family is norm bounded. (c) Whenever a sequence of functionals in the dual space X is pointwise bounded on A, then this sequence is norm bounded. (d) Whenever Y is a Banach space and T : Y X is a continuous linear operator such that TY A, then TY = X. (e) Whenever Y is a Banach space and T : Y X is a continuous linear Tauberian injection with T also a Tauberian injection, such that TY A, then TY = X. (f) The span of A is dense and barrelled. 59
2 60 O. Nygaard (g) Whenever (Ω, Σ,µ) is a measure space and a w -measurable function g :Ω X is such that, for all x A, x g L 1 (µ), then g is w -integrable. Proof. Let us give the main ingredients of a proof. We first concentrate on (a) (b) (c) (a). Then we look at (a) (d) (e) (a). After that we explain (f) (b) and end the proof with (a) (g). But at the very start, observe that a set W X is non-norming if and only if its absolutely convex hull is non-norming if and only if inf x S X sup x W x (x) =0. First the chain (a) (b) (c) (a): Let Y be some Banach space and denote as usual by L(X, Y ) the space of bounded linear operators from X to Y. Assume the family Γ L(X, Y ) is pointwise bounded on A and put A n = {x A : Tx n for all T Γ}. By the pointwise boundedness A = n A n, an increasing, countable union. Since A is thick, for some m there is a δ>0 such that the absolute convex hull A m of A m contains δb X. In other words (1/δ)A m contains B X.Now sup x B X Tx 1 δ sup x A m Tx m δ, so Γ is bounded by m/δ. Note that this is more or less the same argument as the standard proof of the Banach-Steinhaus theorem. That (b) (c) is obvious so we turn to (c) (a). For this assume A is thin. Then we can find an increasing, countable family of non-norming sets (A n ) such that A = n A n. Since A 1 is nonnorming, we can find y1 with y1 = 1 but sup x A1 y1(x) < 2 1. Since A 2 is norming we pick y2 with y2 = 1 but sup x A2 y2(x) < 2 2. We construct in this manner a sequence (yn) in the dual unit sphere S X with sup x An yn(x) < 2 n. It remains to explain why the unbounded family (x n) given by x n =2 n yn is pointwise bounded on A. For this, let x be some point of A. We want to show that sup n x n(x) <. Find some k such that x A k and remember x A n whenever n k. There are two cases, n < k and n k. In the first case x n(x) x n x < 2 k x <. In the second case x n(x) < 2 n 2 n =1. (We will improve this simple technique in the proof of (g) (a).) Now we turn to (a) (d) (e) (a). First (a) (d): Let Y be a Banach space and assume A is thick and TY A. Clearly TY also contains the absolute convex hull of A so we may just as well assume A is absolutely convex. We have A = n (A n TB Y ), a countable, increasing union of absolutely convex sets. Since A is thick, there are an m and a δ>0 with (A mt B Y ) δtb X. In particular, TB Y (δ/m)tb X, and the result follows from a classical result due to Banach. That (d) (e) is clear, we look at (e) (a). We do this proof the following way: We prove how to obtain a Banach space Y and an injection T : Y X such that TB Y is closed, TY A but T is not onto X whenever A is thin. After this we explain how to obtain the remaining properties in (e). Assume A is thin. If A is not even norming, then take Y as the span of A B X with A B X as unit ball (the Banach disc of A B X ) and let T be the embedding of Y into X. If A is norming the idea is to find an absolutely convex, bounded, closed set à such that
3 Thick sets in Banach spaces and their properties 61 à is non-norming but has at least the same span as A. Then we use the technique from the non-norming case. We now construct Ã: Write A = na n, an increasing, countable union of non-norming sets. Note that, since n A n = n (A n nb X ) and since (A n nb X ) is just as non-norming as A n is, we may assume each A n to sit in nb X. Put B 1 = A 1, B n = A n \ A n 1, let B = n (1/n 2 )B n and denote by B the closed, absolute convex hull of B. We take à as B. Closedness, absolute convexity and boundedness of à is then clear, it is also clear that the span of à contains the span of A so we need only prove that it is non-norming as well. We will prove that à contains no set of type εb X, ε>0. To see this, pick an m such that 1/m<εand use the non-normingness of A m to find an x S X with sup x Am x (x) <ε/2. We want to show that sup x à x (x) <ε. To show this, by linearity and continuity, it is naturally enough to show that sup x B x (x) <ε/2. Take an arbitrary x B. There are two possibilities, either x is in some (1/n 2 )B n for n m or it has to be that x sits in some (1/n 2 )B n for n>m. In the first case, remember how x was chosen, x (x) 1 n 2 sup x (y) < ε y A m 2n 2 ε 2. In the second case, remember A n nb X and x =1, { } { } 1 1 x (x) sup n>m n 2 sup x (y) sup y B n n>m n 2 n < 1 m < ε 2. Now it is clear how to obtain a Banach space Y and an injection T with TB Y closed which is onto A but not onto all of X. The additional properties in (e) are based on an application of the Davis-Figiel-Johnson-Pe lczyński procedure (see e.g. [D, p. 227]) on à and the observation that this very procedure results in an isomorphic version of X if and only if the set on which it is performed is norming (see [N2, Prop. 2.5] for details). We next explain that (f) (b). For this note that, since the span of A is dense, its dual is X. Since it is barrelled (b) follows. We use (a) and (b) to get (f). Denseness follows from (a). Barrelledness follows from (b) and the already established denseness. In both directions we used the standard result that a normed space is barrelled if and only if the uniform boundedness principle works on it. The proof why (a) (g) goes like this: Let A X be thick, let (Ω, Σ,µ) be a measure space, and let a w -measurable function f :Ω X be such that x f L 1 (µ) for all x A. Denote A j = {x A: xf dµ j}, j N. Then Ω A = j=1 A j, and the thickness of A implies the existence of some m N and δ>0 such that A m δb X. Thus it clearly suffices to show that x f L 1 (µ) for all x A m. But this follows from a standard convexity and limit argument. (Note the importance that norm-closure goes via limits of sequences). We now end the proof by using thinness to produce a function on the natural numbers N, with values in X, A-scalarly integrable but still not X-scalarly integrable. Denoting f(j) =x j the point is to obtain j x j (x) < for all x A but the existence of y X such that j x j (y) diverges. Pick an increasing family of non-norming sets (A j ) such that the union is A. We use thinness analogously to
4 62 O. Nygaard the construction in (c) (a) to obtain a sequence (x j ) X with x j =2j but sup x Aj x j (x) < 2 j. Note that whenever x A, then there is some m N such that x A j for all j m, and thus x j (x) = j m 1 j=1 x j (x) + x j (x) j=m m 1 j=1 x j (x) + j=m 1 2 j <. The same holds for any subseries. What misses now is to find a y X \ A together with a subseries, still denoted by same index, such that j x j (y) =. Wenow start that construction: Recall that x j =2j. Thus, we can pick a sequence (y j ) X with y j =2 j and 1 x j (y j) > 1 1/4. Note that, by completeness of X, since j=1 y j is absolutely convergent, j=1 y j and all its subseries converges in X. Our y will either be some x i0 or be the sum of some subseries of j=1 y j depending on which of the following two situations that occur: 1) lim j x j (y i 0 ) = 0 for some i 0 N; 2) lim j x j (y i) = 0 for all i N. In the case 1), choose an increasing sequence of indices (ν j ) such that, for some δ>0, one has x ν j (x i0 ) >δfor all j N, and put y = x i0. In case 2), put ν 1 =1 and proceed as follows. Given indices ν 1 <ν 2 <...<ν j 1 (j N, j 2), pick an index ν j >ν j 1 such that j 1 x ν j (x νi ) < 1 4 i=1 and 2 ν j 1 2 ν j 1 2 j+1. Denoting y = i=1 x ν i (remember this series converges), it remains to observe that, whenever j N and i>j, one has and thus, for all j N, x ν j (x νi ) x ν j x νi 2ν i j 1 x ν j (y) x ν j (x νj ) x ν j (x νi ) ( 1 1 ) 4 i=1 1 4 i=j+1 2 ν j 2νi 1 2 νi 1 2 i+1, i=j i x ν j (x νi ) This clearly shows that we may choose f(j) =x ν j and the proof is complete. Remark 1.2. The equivalences (a) (b) (c) (d) (e) is in [N2]. The proofs in [N2] are again mostly slight adjustments of arguments from [KF]. In
5 Thick sets in Banach spaces and their properties 63 [BK] we find the equivalences (b) (c) (d) (f). That (a) (g) is first proved in [ANP], but the result is perhaps implicit in [Fo1]. Concerning (g) (a) an adjustment of the proof (done in [ANP]) shows that when A is thin a scalarly A-integrable but not scalarly integrable f into X can be found for all σ-finite measure spaces. Remark 1.3. The technique of proving (g) (a) in Theorem 1.1 gives the following result, which seems to be of its own interest (see [ANP]): Lemma 1.4. Let a subset A X be thin, and let α j R, α j > 0, j N. Then there are x j X, j N, z X \ A, an increasing sequence of indices (ν j ) j=1, and a real number δ>0 such that α j x j (x) < for all x A, j=1 but α νj x ν j (z) >δfor all j N. Let us look at a notion dual to thickness by calling a set in the dual space of a Banach space Xw -non-norming if its w -closed absolutely convex hull does not contain any ball centered at the origin, and defining a set A X to be w -thin [resp. w -thick] if it can be represented as a countable non-decreasing union of w -non-norming sets [resp. if it is not thin]. From [Fo2], [N2], [ANP], [AN] and [N3] one also has an omnibus-theorem for w -thickness: Theorem 1.5. Let X be a Banach space and let A be a subset of the dual space X. The following assertions are equivalent. (a) The set A is w -thick in X. (b) Whenever a family of dual continuous linear operators from X to some dual Banach space Y is pointwise bounded on A, then this family is norm bounded. (c) Whenever a sequence of elements of the space X is pointwise bounded on A, then this sequence is norm bounded. (d) Whenever Y is a Banach space and T : X Y is a continuous linear operator such that T Y A, then T Y = X. (e) Whenever Y is a Banach space and T : Y X is a continuous linear dual Tauberian operator such that T is also a Tauberian injection and such that T Y A, then T Y = X. (f) Whenever (Ω, Σ,µ) is a measure space and a measurable function g :Ω X is such that, for all x A, x g L 1 (µ), then g is weakly integrable. (g) Whenever a series j=1 x j is such that j=1 x x j < for every x A, then the series is weakly unconditionally convergent, that is j=1 x x j < for every x X.
6 64 O. Nygaard (h) Whenever F is an algebra of subsets of a set Ω and F :Ω X is a vector measure such that x F is of bounded variation for every x A, then F is bounded. (i) Whenever Ω C is open and f :Ω X is such that x f is holomorphic for every x A, then f is holomorphic. Proof. Much is similar to the proof of Theorem 1.1, however some modifications have to be made. In (a) (b), denote the family of operators by Γ and put A n = {x A : T x nfor all T Γ}. For some m the w -closed absolute convex hull A m of A m contains some δb X. We obtain for T Γ and w -continuity of T now gives sup T x 1 sup T x, x B X δ x A m sup T x m x B X δ. (b) (c) is as obvious as can be and (c) (a) is completely analogous to the corresponding part in the proof of Theorem 1.1. For (a) (d) without loss of generality assume A is absolutely convex, put A n = A T (nb Y ) and observe that by thickness, for some m the w -closure of A m contains some δb X. In particular, the w -closure of T (mb Y ) contains δb X. By w -continuity of T and Alaoglu s theorem used on B Y, T (mb Y ) itself contains δb X and so T (B Y ) (δ/m)b X. Concerning (e) (a) the technique that was done in the proof of Theorem 1.1 of transferring a norming thin set into a non-norming set with at least the same span works completely analogously for w -norming w -thin sets, but the situation when the w -thin set A is not even w -norming needs a comment. We may again form the Banach disc of the w -closed absolute convex hull A of A, but we don t know whether this becomes a dual space and the embedding is a dual operator. However, using the relatively simple observation that the Davis-Figiel-Johnson-Pe lczyński procedure performed on a w -closed absolutely convex set results in a dual space with the embedding a dual operator (see [N3, Proposition 2.1] for a proof of this) solves the problem, and we arrive at a proof of (e) (a). (a) (f) comes from an argument similar to the corresponding part of the proof of Theorem 1.1, but there is an important difference. The w -closure is not necessarily sequential, but now the measurability of g takes over; by Pettis measurability theorem (see e.g. [DU, Theorem 2 p. 42]) g is essentially separable-valued. After these remarks, let us now give all the details: Let A X be weak -thick, let (Ω, Σ,µ) be a measure space, and let a measurable function f :Ω X be such that x f L 1 (µ) for all x A. Denote A j = {x A: Ω x f dµ j}, j N. Then A = j=1 A j, and the w -thickness of A implies the existence of some m N and δ>0such that A m δb X. So it clearly suffices to show that x f L 1 (µ) for all x A m. Fix an arbitrary x A m. Since f is essentially separable valued,
7 Thick sets in Banach spaces and their properties 65 there is a sequence (yn) absconv(a m ) such that ynf x f µ-almost every- on Ω; hence x f is measurable. Since, for any y absconv(a m ), one has where Ω y f dµ m, by Fatou s lemma also Ω x f dµ m and thus x f L 1 (µ). (f) of course implies (g) and the argument that (g) (a) is completely analogous to the corresponding part of the proof of Theorem 1.1. The proof that (a) (h) is easy: Put A j = {x A: x F (Ω) j}, j N. Then A = j=1 A j, and the weak -thickness of A implies that there are some m N and δ>0 such that A m δb X. Thus it clearly suffices to show that, for all x A m, one has x F (Ω) m. Observing that the last inequality holds for all x absconv(a m ), it can be easily seen to hold also for all x A m. For the converse, that is the implication (h) (a), let a subset A X be weak -thin. We will construct an unbounded X-valued vector measure F on the algebra F N of finite and co-finite subsets of N such that x F (N) < for every x A. We can obtain a w -version of Lemma 1.4 by the same argument as in the proof of (g) (a) in Theorem 1.1: Lemma 1.6. Let a subset A X be weak -thin, and let α j R, α j > 0, j N. Then there are x j X, j N, z X \ A, an increasing sequence of indices (ν j ) j=1, and a real number δ>0 such that α j x (x j ) < for all x A, j=1 but α νj z (x νj ) >δfor all j N. Applying Lemma 1.6 for α j =1,j N, produces some z j X, j N, z X, and δ>0 such that j=1 x (z j ) < for all x A, but Re z (z j ) >δfor all j N (just take z j = z (x νj ) z (x νj ) x ν j in Lemma 1.6). It remains to define the vector measure F : F N X by 0, if E = or E = N, z j, if 0 < E <, F (E) = j E z j, if 0 < E c <. j E c The implication (c) (i) is just a sharper version of Dunford s classical theorem (weakly holomorphic functions are strongly holomorphic) and the proof is verbatim except one uses (c) instead of the Banach-Steinhaus theorem at the end (a proof of Dunford s theorem can be found in [Y, p. 128]). For (g) (c) we follow [AN]: For each k, look at the segment L k = {re iπ/2k 1 : r 1}, k =1, 2,... 2k Put open disjoint neighborhoods V k around L k such that V j V k =,j k and such that C\(L k (D\V k )) is connected, where D is the open unit disc. (The picture
8 66 O. Nygaard is that V k is some tiny ellipsis containing L k with some space also at the endpoints of the segment.) Now L k (D \ V k ) is a compact subset of the plane and by an application of Runge s theorem we can now find a polynomial f k such that f k k on L k and f k 2 k on D \ V k. (Put an open set U 1 around L k inside V k and an open set U 2 around D\V k not intersecting U 1. Define a holomorphic function g k on the open set U 1 U 2 by letting g k be some constant higher than k on U 1 and some constant lower than 2 k on U 2. Now apply Runge s theorem ([R1, 13.7 Theorem]) to obtain the polynomial f k.) If (c) fails we can pick a sequence (x n ) X which is pointwise bounded on A, but lim n x n =. Let b n = sup z 1 f n (z). We may (by possibly passing to a subsequence) assume n b n/ x n <. Define f : D X by f(z) = x n f n (z) x n n. We will show that f contradicts (i). To see that x f is holomorphic for every x A we observe that on D f n(z) x (x n ) x n b n x n sup x (x n ). k N Hence the series n f(z) x (x n ) x n converges uniformly on D and so the limit x f is holomorphic. However, if we choose z n L n such that z n 0, then f(z n ) f n (z n ) k n f k (z n ) x k x k n k 2 k = n 1. Hence f is discontinuous at 0. Remark 1.7. The equivalences (a) (b) (c) (d) is in [N2], again mostly slight adjustments of arguments from [KF] (see also [Fo2, Proposition 1] and the sentence introducing it). That (a) (e) is the main result of [N3]. In [ANP] we find the equivalences (a) (f) (g) (h). Again, note that the equivalences (a) (f) (g) are more or less known from [Fo1]. That (c) (i) is in [AN, p ] but for separable spaces the result can be found as [Fo1, Theorem 4]. On the contrary to Theorem 1.1, Theorem 1.5 has nothing to do with results from the theory of barrelled spaces: it does not say anything about the equicontinuity of w -continuous linear functionals. Note that, in the theory of analytic functions (see [FHS]), a set A satisfying condition (c) of Theorem 1.5 is called a uniform boundedness deciding set (UBDset). In [AN] the expression determines boundedness is used. Of course no countable set can be thick or w -thick, just by definition. Also, every set of second Baire category is thick. In some sense the interest in thickness is that one is allowed to test on sets which are smaller than second category for a lot of purposes.
9 Thick sets in Banach spaces and their properties 67 For our intuition, let us take a moment to mention two examples. First, note that the sequences on the unit ball in l, where the entries are 0 or 1, form a thick but nowhere dense set. This, and much more general results are concluded from the Nikodým boundedness theorem (see e.g. [DU, p. 14]). To find a w -thick set which is not thick, take X in X for any non-reflexive space X. In Section 2 we give a survey over results on w -thick subsets of duals of Banach spaces. In Section 3 and 4 we use the general results from Section 1 to give equivalent reformulations of two longstanding problems, namely the separable quotient problem and a problem of strengthening Marshall s theorem on Blaschke products in the space of bounded holomorphic functions on the unit disc. 2. Thickness results for concrete sets. We now make a survey of known results, but let us start with a remark that might be helpful. Proposition 2.1. A Banach space X is reflexive if and only if every w -thick subset of X is thick. Proof. If X is reflexive, then clearly every w -thick subset of X is thick. Assume X is not reflexive, take any x X \ X and put E =kerx. Then it is elementary and well-known that E is norm-closed and that E B X is w -norming, in particular E is w -dense. We now show that E is w -thick. To see this we use the test given in Theorem 1.5 (e). Thus, let Y be any Banach space and T : X Y such that T Y E. Since E has co-dimension 1 in X either T Y = E or T Y = X. But the first case is impossible since a norm-closed subspace of X which is the image of an adjoint is automatically w -closed and since E is w -dense in X. Corollary 2.2. If x X \ X then ker x S X is a w -thick subset of X w -thickness of boundaries and extreme sets. Recall that a set J B X is called a James boundary if every x X attains its norm on J. As an example, the set of extreme points of the dual unit ball is always a James boundary for X. We now present a beautiful result of V. P. Fonf: Theorem 2.3. If a Banach space X admits a w -thin James boundary J, then X contains a copy of c 0. So if X does not contain a copy of c 0, then any James boundary is w -thick. Proof. We explain how the theorem can be proved with help of different papers. (i) Note that the restriction of a James boundary to a subspace Y is a James boundary for Y. (ii) Put J = n A n. By Simons generalization of the Rainwater lemma [S], there is a sequence (x n )ons X which converges weakly to 0. By the Bessaga- Pe lzcynski selection principle (see e.g. [D, p. 42]) (x n ) can be assumed to be a basic sequence. Let Y =[x n ]. We look for c 0 inside Y.
10 68 O. Nygaard (iii) Let T be the natural embedding of Y into X. Put B n = T (A n ). Then show that J = B n is a James boundary for Y. (iv) Show that each B n is relatively norm-compact as done on page 489 in [Fo1]. Thus Y has a σ-compact James boundary J. (v) Use Lemma 27 in [FZ] to renorm Y equivalently to have a countable James boundary J. (vi) Follow the proof of [FZ, Theorem 23] to construct a copy of c 0 inside a once more equivalently renormed version of Y. This copy is also a copy in X. It is not essential that the set be a James boundary, as was shown by Fonf in [Fo2]. Theorem 2.4. If a Banach space X contains no copy of c 0, then the w -exposed points of B X is w -thick. Remark 2.5. The above theorem may be true even if there is a copy of c 0 inside X. If X = K(l 2 ), the compact operators on l 2, then X is separable, contains a copy of c 0 and the w -exposed points of B X is w -thick. The proof of this goes the following way: First, it is an easy application of Theorem 1.5 (c) to se that if A and B are w -thick subsets of X and Y, respectively, then A B is a w -thick subset of L(X, Y ), the dual of the bounded operators from X into Y. From a theorem of Ruess and Stegall, see [Ru], for any pair of Banach spaces X and Y, w -exp B K(X,Y ) = w -exp B X w -exp B Y. Now the result follows from Theorem 2.3. However, any separable Banach space with a copy of c 0 inside may be renormed so that w -expb X is w -thin (see [Fo1]) Massiveness of norm-attaining functionals. The set of norm-attaining functionals on the unit ball B X of a Banach space X is, by the Bishop-Phelps theorem, always a norm-dense subset of X and is, by the famous theorem of R.C. James, all of X exactly when X is reflexive. Let us denote the set Σ(B X ). It is a dense G δ if X has the Radon-Nikodým property and if X is separable and Σ(B X ) is of second category for each equivalent norm on X, then X has the Radon-Nikodým property. From [KMS] we see that for X = C[0, 1], Σ(B X )isof first category in X. We want to remark that it may be even w -thin. Namely, let X = c 0, then S =Σ(B c0 ) consists of the vectors in l 1 where only finitely many entries are nonzero. To see that S is w -thin, look at the sequence in c 0 defined this way: a 1 = (1, 0, 0, 0),a 2 =(1, 2, 0, 0),a 3 =(1, 2, 3, 0) and so on. This unbounded sequence is pointwise bounded on S, and by Theorem 1.5 (c) S is w -thin. The above remark and results should be compared with the following result of Fonf ([Fo1]):
11 Thick sets in Banach spaces and their properties 69 Theorem 2.6. If the real Banach space X does not contain a copy of c 0, then Σ(B X ) is a w -thick set. If X is separable and contains a copy of c 0, it can be equivalently renormed so that Σ(B X ) is w -thin. The complement of the functionals that attain their norm has a clear tendency of being big, however. The following result of Fonf and Lindenstrauss ([FL, Thm. 4.3]) is impressing: Theorem 2.7. Let X be a separable, non-reflexive space. Then the set of functionals in X which do not attain their maximum on B X is a thick set. 3. Thickness and the separable quotient problem. The following problem is longstanding: Let X be a Fréchet space. Does X have a subspace Y such that the quotient X/Y is infinite-dimensional and separable? A survey of the story of the separable quotient problem for Banach spaces can be found in [Mu]. It turns out that the answer is yes for Fréchet spaces which are not Banach spaces. It was shown by Saxon and Wilansky [SW] that the separable quotient problem has the following equivalent formulation: A Banach space X has a separable infinite-dimensional quotient if and only if it contains a dense non-barrelled subspace. We now combine with Theorem 1.1 to obtain the following equivalent formulations of the separable quotient problem. Problem 3.1. The following questions are equivalent and open: (a) Every Banach space has a separable infinite-dimensional quotient. (b) Every Banach space contains a dense non-barrelled subspace. (c) For every Banach space X there exist a Banach space Y and a Tauberian injection T from Y into X such that T has dense image but is not onto. (d) For every Banach space X there exists a set A in X and an unbounded sequence (x n) in X such that the span of A is dense in X and (x n) is pointwise bounded on A. (e) For every Banach space X there exist a set A in X, a measure space (Ω, Σ,µ) and a w -measurable function g :Ω X such that the span of A is dense, x g L 1 (µ) for every x A, but g is not w -integrable. Remark 3.2. Equivalences (a)-(d) are well-known (perhaps except the fact that we may choose the operator Tauberian). (e) is new as far as I know. The separable quotient problem is extremely difficult as is illustrated by the following result (see [Mu]): A real Banach space has a separable infinite-dimensional quotient whenever its dual has an infinite-dimensional subspace which is either reflexive or isomorphic to c 0 or l 1.
12 70 O. Nygaard 4. Thickness and a problem from function theory. Recall Marshall s theorem: The norm-closed convex hull of the Blaschke products is the unit ball of H (D) (Here D is the open unit disk in the complex plane). See [Gar] for definitions of the terms we use here as well as for a proof of Marshall s theorem. It is well-known that H (D) may be realized as the dual of L 1 (D)/H0 1 (D). From results of Fernandez, Hui and Shapiro (see [FHS] and [Sh]) we know that the set of Blaschke products are of first Baire category in H (D) and fulfills property (c) of Theorem 1.5. All that is written above is also true with inner functions instead of Blaschke products. Note that the inner functions is not a James boundary, they form a small part of the w -exposed points of B H (D). This can be seen from a paper of R.P. Phelps ([Ph]), where it is shown that in H (D) every exposed point of the unit ball is w -exposed and that the set of exposed points is the set of norm one functions f for which {t D : f(e it ) =1} has positive Lebesgue measure. Thus, the result of Fernandez, Hui and Shapiro does not follow from Theorem 2.3 nor Theorem 2.4. The open problem, posed in [FHS] is whether the inner products or the Blaschke products fulfills property (c) of Theorem 1.1. This would, if it is true, be a considerable strengthening of Marshall s theorem. By Theorem 1.1 we now give equivalent formulations of the open problem: Problem 4.1. Let A be the set of inner functions or the Blaschke products in H (D). The following questions are open and equivalent: (a) The set A is thick. (b) Whenever a sequence of functionals in H (D) is pointwise bounded on A, it is bounded in norm. (c) Whenever a continuous linear Tauberian injection from a Banach space X is onto A, then this operator is onto H (D). (d) The span of A is barrelled (it is dense by Marshall s theorem). (e) Whenever (Ω, Σ,µ) is a measure space and a w -measurable function g :Ω H (D) is such that, for all x A, x g L 1 (µ), then g is w -integrable. Deep results on H (D) are given in [B]. References [ANP] T.A. Abrahamsen, M. Põldvere and O. Nygaard, On weak integrability and boundedness in Banach spaces, J. Math. Anal. Appl. 314 (2006), [AN] W. Arendt and N. Nikolski, Vector-valued holomorphic functions revisited, Math. Zeitschrift 234 (2000), [BK] G. Bennett and N.J. Kalton, Inclusion theorems for K-spaces, Canad. J. Math. 25 (1973), [B] J. Bourgain, New Banach space properties of the disc algebra and H, Acta. Math. 152 (1984), 1 48.
13 Thick sets in Banach spaces and their properties 71 [D] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Mathematics Vol. 92, Springer-Verlag, Berlin - Heidelberg - New York, [DU] J. Diestel and J.J. Uhl, jr., Vector Measures, Math. Surveys, Vol. 15, Amer. Math. Soc., [FHS] J. Fernandez, S. Hui, and H. Shapiro, Unimodular functions and uniform boundedness, Publ. Mat. 33 (1989), [FZ] M. Fabian and V. Zizler, Introduction to Banach spaces III, Charles Univerity, Prague, [Fo1] V.P. Fonf, Weakly extremal properties of Banach spaces, Mat. Zametki 45(6) (1989), 83 92; English translation in: Math. Notes 45 (1989), [Fo2], On exposed and smooth points of convex bodies in Banach spaces, Bull. London Math. Soc. 28 (1996), [FL] V.P. Fonf and J. Lindenstrauss, Boundaries and generation of convex sets, Israel. J. Math. 136 (2003), [Gar] J. Garnett, Bounded analytic functions, Academic Press, New Jersey, [KF] M.I. Kadets and V.P. Fonf, Two theorems on massiveness of a boundary in reflexive Banach space, Funct. Anal. Appl. 17 (1983), [KMS] P.S. Kenderov, W.B. Moors and Scott Sciffer, Norm attaining functionals on C(T ), Proc. Amer. Math. Soc. 126(1) (1998), [Mu] J. Mujica, Separable quotients of Banach spaces, Rev. Mat. Comp. Madrid 10 (1996), [N1] O. Nygaard, A strong Uniform Boundedness Principle in Banach spaces, Proc. Amer. Math. Soc. 129 (2001), [N2], Boundedness and surjectivity in normed spaces, Int. J. Math. Math. Sci. 32 (2002), [N3], Some dual Tauberian embeddings, Acta Comment. Univ. Tartu. Math. 5 (2001), [Ph] R.P. Phelps, Extreme points in function algebras, Duke. Math. J. 32 (1965), [R2] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill International Book Company, New York - London - Toronto, [R1], Real and Complex Analysis, 3rd ed., McGraw-Hill International Book Company, New York - London - Toronto, [Ru] W. Ruess, Duality and geometry of spaces of compact operators, Proc. 3rd Paderborn Conf. Funct. Analysis, North-Holland Math. Studies Vol. 90, (1984) [SW] S. Saxon and A. Wilansky, The equivalence of some Banach space problems, Colloq. Math. 37 (1977), [Sh] H.S. Shapiro, A uniform boundedness principle concerning inner functions, J. Analyse Mat. 50 (1988), [S] S. Simons, An Eigenvector Proof of Fatou s Lemma for Continuous Functions, The Math. Int. 17(3) (1995),
14 72 O. Nygaard [Y] K. Yosida, Functional Analysis, 6th ed., Springer Verlag, Berlin - Heidelberg - New York, Received 17 February, 2005 and in revised form 25 August, 2005.
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Roland HINNION. Introduction
REPORTS ON MATHEMATICAL LOGIC 47 (2012), 115 124 DOI:10.4467/20842589RM.12.005.0686 Roland HINNION ULTRAFILTERS (WITH DENSE ELEMENTS) OVER CLOSURE SPACES A b s t r a c t. Several notions and results that
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA
Steeple #3: Gödel s Silver Blaze Theorem Selmer Bringsjord Are Humans Rational? Dec 6 2018 RPI Troy NY USA Gödels Great Theorems (OUP) by Selmer Bringsjord Introduction ( The Wager ) Brief Preliminaries
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin
Stability of Tikhonov Regularization 9.520 Class 07, March 2003 Alex Rakhlin Plan Review of Stability Bounds Stability of Tikhonov Regularization Algorithms Uniform Stability Review notation: S = {z 1,...,
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
O przecinkach i nie tylko
O przecinkach i nie tylko Jerzy Trzeciak Dział Wydawnictw IMPAN publ@impan.pl https://www.impan.pl/pl/wydawnictwa/dla-autorow 7 sierpnia 2018 Przecinek Sformułuję najpierw kilka zasad, którymi warto się
DESCRIPTIVE SET THEORETIC METHODS APPLIED TO STRICTLY SINGULAR AND STRICTLY COSINGULAR OPERATORS
Quaestiones Mathematicae 31(2008), 151 161. c 2008 NISC Pty Ltd, www.nisc.co.za DESCRIPTIVE SET THEORETIC METHODS APPLIED TO STRICTLY SINGULAR AND STRICTLY COSINGULAR OPERATORS George Androulakis Department
Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4
Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4 Strona 1 z 23 Andrzej Sładek, Instytut Matematyki UŚl sladek@math.us.edu.pl Letnia Szkoła Instytutu Matematyki 20-23 września
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)
Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa
Title: On the curl of singular completely continous vector fields in Banach spaces
Title: On the curl of singular completely continous vector fields in Banach spaces Author: Adam Bielecki, Tadeusz Dłotko Citation style: Bielecki Adam, Dłotko Tadeusz. (1973). On the curl of singular completely
Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)
Dolny Slask 1:300 000, mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition) Click here if your download doesn"t start automatically Dolny Slask 1:300 000, mapa turystyczno-samochodowa: Plan Wroclawia
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
DODATKOWE ĆWICZENIA EGZAMINACYJNE
I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Click here if your download doesn"t start automatically
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)
112 Informator o egzaminie maturalnym z języka angielskiego od roku szkolnego 2014/2015 2.6.4. Część ustna. Przykładowe zestawy zadań Przykładowe pytania do rozmowy wstępnej Rozmowa wstępna (wyłącznie
Jak zasada Pareto może pomóc Ci w nauce języków obcych?
Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o
Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)
Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Click here if your download doesn"t start automatically Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Emilka szuka swojej gwiazdy / Emily
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Bergman Kernel and Kobayashi Pseudodistance in Convex Domains
Bergman Kernel and Kobayashi Pseudodistance in Convex Domains Zbigniew B locki Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/ blocki (Joint work with W lodzimierz Zwonek) NORDAN Reykjavík,
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku
Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku Juliusz and Maciej Zalewski eds. and A. D. Coleman et
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
PSB dla masazystow. Praca Zbiorowa. Click here if your download doesn"t start automatically
PSB dla masazystow Praca Zbiorowa Click here if your download doesn"t start automatically PSB dla masazystow Praca Zbiorowa PSB dla masazystow Praca Zbiorowa Podrecznik wydany w formie kieszonkowego przewodnika,
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature
A Surname _ Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature Polish Unit 1 PLSH1 General Certificate of Education Advanced Subsidiary Examination June 2014 Reading and
Agnostic Learning and VC dimension
Agnostic Learning and VC dimension Machine Learning Spring 2019 The slides are based on Vivek Srikumar s 1 This Lecture Agnostic Learning What if I cannot guarantee zero training error? Can we still get
Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically
Suwalski Park Krajobrazowy i okolice 1:50 000, mapa turystyczno-krajoznawcza =: Suwalki Landscape Park, tourist map = Suwalki Naturpark,... narodowe i krajobrazowe) (Polish Edition) Click here if your
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego
18. Przydatne zwroty podczas egzaminu ustnego I m sorry, could you repeat that, please? - Przepraszam, czy mo na prosiæ o powtórzenie? I m sorry, I don t understand. - Przepraszam, nie rozumiem. Did you
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
How to translate Polygons
How to translate Polygons Translation procedure. 1) Open polygons.img in Imagine 2) Press F4 to open Memory Window 3) Find and edit tlumacz class, edit all the procedures (listed below) 4) Invent a new
CS 6170: Computational Topology, Spring 2019 Lecture 09
CS 6170: Computtionl Topology, Spring 2019 Lecture 09 Topologicl Dt Anlysis for Dt Scientists Dr. Bei Wng School of Computing Scientific Computing nd Imging Institute (SCI) University of Uth www.sci.uth.edu/~beiwng
O zbiorach małych w polskich grupach abelowych
O zbiorach małych w polskich grupach abelowych Eliza Jabłońska Katedra Matematyki Politechniki Rzeszowskiej Warsztaty z Analizy Rzeczywistej, Konopnica 2016 E. Jabłońska (KM PRz) O zbiorach małych Konopnica
PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June 2014. Reading and Writing TOTAL
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Section Mark Polish Unit 1 Reading and Writing General Certificate of Education Advanced Subsidiary
Unitary representations of SL(2, R)
Unitary representations of SL(, R) Katarzyna Budzik 8 czerwca 018 1/6 Plan 1 Schroedinger operators with inverse square potential Universal cover of SL(, R) x + (m 1 4) 1 x 3 Integrating sl(, R) representations
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Wroclaw, plan nowy: Nowe ulice, 1:22500, sygnalizacja swietlna, wysokosc wiaduktow : Debica = City plan (Polish Edition)
Wroclaw, plan nowy: Nowe ulice, 1:22500, sygnalizacja swietlna, wysokosc wiaduktow : Debica = City plan (Polish Edition) Wydawnictwo "Demart" s.c Click here if your download doesn"t start automatically
Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)
Dolny Slask 1:300 000, mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition) Click here if your download doesn"t start automatically Dolny Slask 1:300 000, mapa turystyczno-samochodowa: Plan Wroclawia
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION
Glasgow Math. J.: page 1 of 12. C Glasgow Mathematical Journal Trust 2012. doi:10.1017/s0017089512000353. EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION SEAN SATHER-WAGSTAFF Mathematics Department,
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
Zdecyduj: Czy to jest rzeczywiście prześladowanie? Czasem coś WYDAJE SIĘ złośliwe, ale wcale takie nie jest.
Zdecyduj: Czy to jest rzeczywiście prześladowanie? Czasem coś WYDAJE SIĘ złośliwe, ale wcale takie nie jest. Miłe przezwiska? Nie wszystkie przezwiska są obraźliwe. Wiele przezwisk świadczy o tym, że osoba,
Counting quadrant walks via Tutte s invariant method
Counting quadrant walks via Tutte s invariant method Olivier Bernardi - Brandeis University Mireille Bousquet-Mélou - CNRS, Université de Bordeaux Kilian Raschel - CNRS, Université de Tours Vancouver,
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
January 1st, Canvas Prints including Stretching. What We Use
Canvas Prints including Stretching Square PRCE 10 x10 21.00 12 x12 30.00 18 x18 68.00 24 x24 120.00 32 x32 215.00 34 x34 240.00 36 x36 270.00 44 x44 405.00 Rectangle 12 x18 50.00 12 x24 60.00 18 x24 90.00
Complex Analysis Theorems
Complex Analysis Theorems Chapter : Complex Numbers Proposition. (Basic Identities and Inequalities). Let z, z, z 2, z 3 C. Let z = x + iy = r(cos θ + i sin θ) and z k = x k + iy k = r k (cos θ k + i sin
Leba, Rowy, Ustka, Slowinski Park Narodowy, plany miast, mapa turystyczna =: Tourist map = Touristenkarte (Polish Edition)
Leba, Rowy, Ustka, Slowinski Park Narodowy, plany miast, mapa turystyczna =: Tourist map = Touristenkarte (Polish Edition) FotKart s.c Click here if your download doesn"t start automatically Leba, Rowy,
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION Kiedy otrzymana przez Ciebie z Jeunesse, karta płatnicza została zarejestrowana i aktywowana w Joffice, możesz przejść do aktywacji swojego konta płatniczego
Rev Źródło:
KamPROG for AVR Rev. 20190119192125 Źródło: http://wiki.kamamilabs.com/index.php/kamprog_for_avr Spis treści Introdcution... 1 Features... 2 Standard equipment... 4 Installation... 5 Software... 6 AVR
European Crime Prevention Award (ECPA) Annex I - new version 2014
European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL Formanminsidemlookmatmpoliticsxmculturexmsocietymandm economyminmthemregionmofmcentralmandmeasternm EuropexmtheremismnomothermsourcemlikemNew Eastern EuropeImSincemitsmlaunchminmPw--xmthemmagazinemhasm
Zestawienie czasów angielskich
Zestawienie czasów angielskich Present Continuous I am, You are, She/ He/ It is, We/ You/ They are podmiot + operator + (czasownik główny + ing) + reszta I' m driving. operator + podmiot + (czasownik główny
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
n [2, 11] 1.5 ( G. Pick 1899).
1. / / 2. R 4k 3. 4. 5. 6. / 7. /n 8. n 1 / / Z d ( R d ) d P Z d R d R d? n > 0 n 1.1. R 2 6 n 5 n [Scherrer 1946] d 3 R 3 6 1.2 (Schoenberg 1937). d 3 R d n n = 3, 4, 6 1.1. d 3 R d 1.3. θ θ/π 1.4. 0
Aerodynamics I Compressible flow past an airfoil
Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 ) Potential equation in compressible flows Full potential theory Let us introduce
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS Temat: Funkcja logarytmiczna (i wykładnicza)/ Logarithmic (and exponential) function Typ lekcji: Lekcja ćwiczeniowa/training
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
Homogeneous probability measures on the Cantor set
Homogeneous probability measures on the Cantor set arxiv:1812.09565v2 [math.pr] 13 Jul 2019 Wojciech Bielas Institute of Mathematics, Czech Academy of Sciences, Czechia Institute of Mathematics, University
Proponowane tematy prac magisterskich (wersja polskojęzyczna): Tytuł: Operacje Kuratowskiego w zakresie skończenie wielu topologii na jednym
Proponowane tematy prac magisterskich (wersja polskojęzyczna): Tytuł: Operacje Kuratowskiego w zakresie skończenie wielu topologii na jednym zbiorze. [1] T. Banakh, O. Chervak, T. Martynyuk, M. Pylypovych,
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Weak Fraïssé categories
Weak Fraïssé categories Wies law Kubiś arxiv:1712.03300v2 [math.ct] 4 Jul 2019 Institute of Mathematics, Czech Academy of Sciences (CZECHIA) ν July 5, 2019 Abstract We develop the theory of weak Fraïssé
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
Polish (JUN ) General Certificate of Secondary Education June 2014 TOTAL. Time allowed 1 hour
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark General Certificate of Secondary Education June 2014 Polish 46854 Unit 4 Writing
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN