EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION
|
|
- Dominik Szymański
- 5 lat temu
- Przeglądów:
Transkrypt
1 Glasgow Math. J.: page 1 of 12. C Glasgow Mathematical Journal Trust doi: /s EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION SEAN SATHER-WAGSTAFF Mathematics Department, NDSU, Dept # 2750,POBox6050,Fargo,ND USA Sean.Sather-Wagstaff@ndsu.edu (Received 26 July 2011; revised 14 January 2012; accepted 2 May 2012) Abstract. This paper builds on work of Hochster and Yao that provides nice embeddings for finitely generated modules of finite G-dimension, finite projective dimension or locally finite injective dimension. We extend these results by providing similar embeddings in the relative setting, that is, for certain modules of finite G C - dimension, finite P C -projective dimension, locally finite GI C -injective dimension or locally finite I C -injective dimension where C is a semidualizing module. Along the way, we extend some results for modules of finite homological dimension to modules of locally finite homological dimension in the relative setting Mathematics Subject Classification. 13D02, 13D05, 13D Introduction. Throughout this note, R is a commutative Noetherian ring with identity. The purpose of this note is to extend some results of Hochster and Yao, beginning with the following, wherein z [i] = z 1,...,z i and G-dim R (M) isthe G-dimension of Auslander and Bridger [1, 2]. 1 THEOREM 1.1 [14, Theorem 2.3]. Let M be a non-zero finitely generated R-module. Then (1) If G-dim R (M) = r <, then there are an R-regular sequence z = z 1,...,z r, integers n 0, n 1,...,n r 0 with n r 1, and an exact sequence 0 M Z N 0, with Z = r i=0 (R/(z [i] ))n i and G-dim R (N) r. (2) If pd R (M) = r <, then there exist an R-regular sequence z = z 1,...,z r, integers n 0, n 1,...,n r 0 with n r 1, and an exact sequence 0 M Z N 0, with Z = r i=0 (R/(z [i] ))n i and pd R (N) r. The point of Theorem 1.1, as Hochster and Yao indicate, is that the given module of finite G-dimension or projective dimension embeds in a module that obviously has 1 This is also now called Gorenstein projective dimension after the work of Enochs, Jenda and others. However, this is a generalisation of Auslander and Bridger s original notion for non-finitely-generated modules. Since we are focused on finitely generated modules here, we continue with Auslander and Bridger s terminology.
2 2 SEAN SATHER-WAGSTAFF finite projective dimension, with some extra control on the G-dimension or projective dimension of the co-kernel. The first of our results, stated next, is for modules of finite G C -dimension and modules of finite P C -projective dimension, where C is a semidualizing R-module, after Golod [12], Holm and Jørgensen [15] and White [21]. 2 (See Section 2 for definitions and background material.) On the one hand, this result is a corollary to Theorem 1.1. On the other hand, Theorem 1.1 is the special case C = R, so our result generalises this one. This result is proved in Proofs 2.8 and 2.13, which are similar to the proof of [14, Theorem 4.2]. THEOREM 1.2. Let M be a non-zero finitely generated R-module, and let C be a semidualizing R-module. Then (1) If G C -dim R (M) = r < and M is in the Bass class B C (R), then there exist an R-regular sequence z = z 1,...,z r, integers n 0, n 1,...,n r 0 with n r 1, and an exact sequence 0 M Z N 0, with Z = r i=0 (C/(z [i] )C)n i and G C -dim R (N) r and N B C (R). (2) If P C - pd R (M) = r <, then there exist an R-regular sequence z = z 1,...,z r, integers n 0, n 1,...,n r 0 with n r 1, and an exact sequence 0 M Z N 0, with Z = r i=0 (C/(z [i] )C)n i and P C - pd R (N) r. The next result we extend is the following: THEOREM 1.3 [14, Theorem 4.2]. Let R be a Cohen Macaulay ring with a pointwise dualizing module ω. Then, for any non-zero finitely generated R-module M with locally finite injective dimension, there exist an integer r = pd R (Hom R (ω,m)), an R-regular sequence z = z 1,...,z r, non-negative integers n 0, n 1,...,n r with n r 1 and an exact sequence with Z = r i=0 (ω/(z [i] )ω)n i pd R (Hom R (ω,n)) r. 0 M Z N 0, such that N has locally finite injective dimension and We extend this in two directions in Theorems 1.4 and 1.5. First, we have the version for G-injective dimension. Second, we give versions relative to a semidualizing module. These are proved in Proofs 3.5, 3.12 and THEOREM 1.4. Let R be a Cohen Macaulay ring with a pointwise dualizing module ω. For any non-zero finitely generated R-module M with locally finite G-injective dimension, there exist an integer r = G-dim R (Hom R (ω,m)), an R-regular sequence z = z 1,...,z r, non-negative integers n 0, n 1,...,n r with n r 1 and an exact sequence 0 M Z N 0, 2 It is worth noting that these notions appeared (more or less) implicitly in several places. However, to the best of our knowledge, these are the first places where G C -dimension and P C -projective dimension were studied explicitly.
3 EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION 3 with Z = r i=0 (ω/(z [i] )ω)n i such that N has locally finite G-injective dimension and G-dim R (Hom R (ω,n)) r. THEOREM 1.5. Let R be a Cohen Macaulay ring with a pointwise dualizing module ω. Let M a non-zero finitely generated R-module, and let C be a semidualizing R-module. Set C = Hom R (C,ω). Then (1) If M has locally finite GI C - id and M is in the Auslander class A C (R), then there exist an integer r = G-dim(Hom R (ω,c R M)), an R-regular sequence z = z 1,...,z r, non-negative integers n 0, n 1,...,n r with n r 1 and an exact sequence 0 M Z N 0 such that N has locally finite GI C - id, and Z = r i=0 (C /(z [i] )C ) n i,n A C (R) and G-dim(Hom R (ω,c R N)) r. (2) If M has locally finite I C - id, then there exist an integer r = pd R (Hom R (ω,c R M)), an R-regular sequence z = z 1,...,z r, non-negative integers n 0, n 1,...,n r with n r 1 and an exact sequence 0 M Z N 0 such that N has locally finite I C - id, and Z = r i=0 (C /(z [i] )C ) n i and pd R (Hom R (ω,c R N)) r. We summarise the organisation of this paper. Section 2 contains the proof of Theorem 1.2, along with the necessary background material. Section 3 similarly treats Theorems 1.4 and 1.5; this section also contains several lemmas about modules of locally finite G-injective dimension, locally finite G C -injective dimension and locally finite I C -injective dimension where C is a semidualizing module, as these notions have not been developed in the literature as best we know. 3 Note that we do not develop the background material in the most optimal manner, focusing instead on accessibility. To be specific, we present background material as it is needed in Sections 2 and 3 instead of putting it all in its own section. Also, we feel that the definition of locally finite GI C - id is a bit much to swallow on the first bite, so we first discuss the special case of G- id and work our way up. 2. Proof of Theorem 1.2. NOTATION 2.1. We let pd R ( ) and id R ( ) denote the classical projective dimension and the classical injective dimension, respectively. The study of semidualizing modules was initiated independently (with different names) by Foxby [9], Golod [12] and Vasconcelos [20]. For example, a finitely generated projective R-module of rank 1 is semidualizing. DEFINITION 2.2. A finitely generated R-module C is semidualizing if the natural map R Hom R (C, C) is an isomorphism, and Ext 1 R (C, C) = 0. An R-module C is 3 This can be partially explained by the fact that at the time of the writing of this paper, the localisation question for G-injective dimension is still not completely answered. See Remark 3.2.
4 4 SEAN SATHER-WAGSTAFF pointwise dualizing if it is semidualizing and id Rm (C m ) < for all maximal ideals m R. 4 An R-module C is dualizing if it is semidualizing and id R (C) <. FACT 2.3. (a) It is straightforward to show that the semidualizing property is local. That is, if C is a semidualizing R-module, then for each multiplicatively closed subset U R, the localisation U 1 C is a semidualizing U 1 R-module; and conversely, if M is a finitely generated R-module such that M m is a semidualizing R m -module for each maximal ideal m R, then M is a semidualizing R-module. Similarly, if C is a (pointwise) dualizing module for R, then for each multiplicatively closed subset U R, the localisation U 1 C is a (pointwise) dualizing module for U 1 R; and conversely, if M is a finitely generated R-module such that M m is a dualizing module for R m for each maximal ideal m R, then M is a pointwise dualizing module for R. Moreover, an R-module M is a dualizing module for R if and only if it is a pointwise dualizing module for R and the Krull dimension of R is finite. (b) Let C be a semidualizing R-module. The isomorphism R = Hom R (C, C) implies that Supp R (C) = Spec(R) and Ass R (C) = Ass(R). Thus, an element x R is C-regular if and only if it is R-regular. When x is R-regular, the quotient C/xC is a semidualizing R/xR-module. Thus, by induction, a sequence z = z 1,...,z r R is R- regular if and only if it is C-regular; see [11, Theorem 4.5]. Also, from [16, Proposition 3.1], we know that for all R-modules M 0, we have C R M 0 Hom R (C, M). The next categories were introduced by Foxby [10] when C is dualizing, and by Vasconcelos [20, Section 4.4] for arbitrary C, with different notation. DEFINITION 2.4. Let C be a semidualizing R-module. The Auslander class of C is the class A C (R) ofr-modules M such that Tor R 1 (C, M) = 0 = Ext 1 R (C, C R M), and the natural map M Hom R (C, C R M) is an isomorphism. The Bass class of C is the class B C (R) ofr-modules N such that Ext 1 R (C, M) = 0 = TorR 1 (C, Hom R(C, M)), and the natural evaluation map C R Hom R (C, N) N is an isomorphism. REMARK 2.5. It is straightforward to show that the Auslander and Bass classes for C = R are trivial: A R (R)andB R (R) both contain all R-modules. The following notion was introduced and studied by Holm and Jørgensen [15] and White [21]. Note that in the special case C = R, we recover the class of projective R-modules and the classical projective dimension. DEFINITION 2.6. Let C be a semidualizing R-module. Let P C (R) denote the class of modules M = P R C with P projective. Modules in P C (R) are called C-projective. We let P C -pd R ( ) denote the homological dimension obtained from resolutions in P C (R), with the convention that P C -pd R (0) =. 5 FACT 2.7. Let C be a semidualizing R-module. The Bass class B C (R) contains all R-modules of finite P C - pd; see [16, Lemmas 4.1 and 5.1 and Corollary 6.3]. Given an R-module M, one has P C -pd R (M) = pd R (Hom R (C, M)) and pd R (M) = P C -pd R (C R M)by[19, Theorem 2.11]. In particular, one has P C -pd R (M) < if and only if 4 In [14], the term global canonical module is used in place of pointwise dualizing module. Our choice follows the terminology of Grothendieck and Hartshorne [13]. 5 We observe the same convention for any homological dimension of the zero module.
5 EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION 5 pd R (Hom R (C, M)) <, and one has pd R (M) < if and only if P C -pd R (C R M) <. Proof 2.8 (Proof of Theorem 1.2(2)). Assume that M is a non-zero finitely generated R-module such that P C -pd R (M) = r <. Then Fact 2.7 implies that pd R (Hom R (C, M)) = r <. Since M 0, we have Hom R (C, M) 0, by Fact 2.3(b), so Theorem 1.1(2) provides an R-regular sequence z = z 1,...,z r, integers n 0, n 1,...,n r 0 with n r 1, and an exact sequence 0 Hom R (C, M) Z N 0, (2.8.1) with Z = r i=0 (R/(z [i] ))n i and pd R (N ) r. In particular, we have N A C (R) which implies that Tor R 1 (C, N ) = 0. Thus, an application of C R to the sequence (2.8.1) yields the next exact sequence: 0 C R Hom R (C, M) C R Z C R N 0. (2.8.2) Fact 2.7 implies that M B C (R), so we have C R Hom R (C, M) = M. The equality Z = r i=0 (R/(z [i] ))n i implies that Z := C R Z = r i=0 (C/(z [i] )C)n i. Because of Fact 2.7, the condition pd R (N ) r implies that P C -pd R (C R N ) r. Thus, with N := C R N, the sequence (2.8.2) satisfies the conclusion of Theorem 1.2(2). The remainder of the proof of Theorem 1.2 is similar to the above proof, but it requires a bit more technology. FACT 2.9. Let C be a semidualizing R-module. (a) The Auslander class A C (R) contains all R-modules of finite projective dimension, and the Bass class B C (R) contains all R-modules of finite injective dimension; see [16, Lemmas 4.1 and 5.1 and Corollary 6.3]. Moreover, it is straightforward to show that the Bass class satisfies the following local-global principal: For an R-module M, the following conditions are equivalent: (i) M B C (R); (ii) U 1 M B U 1 C(U 1 R) for each multiplicatively closed subset U R; (iii) M p B Cp (R p ) for each p Spec(R); and (iv) M m B Cm (R m ) for each maximal ideal m Supp R (M). It follows that B C (R) contains every R-module of locally finite injective dimension. The Auslander class satisfies an analogous local-global principal. (b) The Auslander and Bass classes also satisfy the two-of-three property by [16, Corollary 6.3]. That is, given a short exact sequence 0 M M M 0of R-module homomorphisms, if two of the modules in the sequence are in A C (R), then so is the third module, and similarly for B C (R). (c) From [19, Theorem 2.8], we know that an R-module M is in B C (R) if and only if Hom R (C, M) A C (R), and that M A C (R) if and only if C R M B C (R). This is known as Foxby equivalence. DEFINITION Let C be a semidualizing R-module. A finitely generated R- module G is totally C-reflexive if the natural map G Hom R (Hom R (G, C), C) isan isomorphism, and Ext 1 R (G, C) = 0 = Ext 1 R (Hom R(G, C), C). Let G C (R) denote the class of totally C-reflexive R-modules, and set G(C) = G C (R) B C (R). In the case C = R, we use the more common terminology totally reflexive and the notation
6 6 SEAN SATHER-WAGSTAFF G(R) = G R (R) = G(R) B R (R). We abbreviate as follows: G C -dim R ( ) = the homological dimension obtained from resolutions in G C (R), G(C)- pd R ( ) = the homological dimension obtained from resolutions in G(C), G-dim R ( ) = the homological dimension obtained from resolutions in G(R). The following facts are included for perspective. FACT Let C be a semidualizing R-module, and let M be a finitely generated R- module. Because of the containments P C (R) G(C) G C (R), one has G C -dim R (M) G(C)- pd R (M) P C -pd R (M) with equality to the left of any finite quantity. In particular, the case C = R says that G-dim R (M) = G(R)- pd R (M) pd R (M) since G(R) = G R (R), with equality holding when pd R (M) <. The next lemma explains how these homological dimensions are connected. LEMMA 2.12 [18, Lemma 2.9]. Let C be a semidualizing R-module. For a finitely generated R-module M, the following conditions are equivalent: (i) G(C)- pd R (M) < ; (ii) G C -dim R (M) < and M B C (R); and (iii) G-dim R (Hom R (C, M)) < and M B C (R). When these conditions are satisfied, we have G(C)- pd R (M) = G C -dim R (M) = G-dim R (Hom R (C, M)). Now we are in position to complete the proof of Theorem 1.2. Proof 2.13 (Proof of Theorem 1.2(1)). Assume that M is a non-zero finitely generated R-module such that G C -dim R (M) = r < and M B C (R). Then Lemma 2.12 implies that G-dim R (Hom R (C, M)) = r <. Since M 0, we have Hom R (C, M) 0, by Fact 2.3(b), so Theorem 1.1(1) provides an R-regular sequence z = z 1,...,z r, integers n 0, n 1,...,n r 0 such that n 1, and an exact sequence 0 Hom R (C, M) Z N 0, (2.13.1) with Z = r i=0 (R/(z [i] ))n i and G-dim R (N ) r. The condition M B C (R) implies that Hom R (C, M) A C (R) by Fact 2.9(c), and Fact 2.9(a) implies that Z A C (R). Also, from Fact 2.9(a) (b), we conclude that N A C (R), which implies that Tor R 1 (C, N ) = 0. Thus, an application of C R to the sequence (2.13.1) yields the next exact sequence: 0 C R Hom R (C, M) C R Z C R N 0. (2.13.2) The assumption M B C (R) gives an isomorphism C R Hom R (C, M) = M. The equality Z = r i=0 (R/(z [i] ))n i implies that Z := C R Z = r i=0 (C/(z [i] )C)n i. The condition N A C (R) implies that N := C R N B C (R) byfact2.9(c), and N = HomR (C, N) by the definition of what it means for N to be in A C (R). Thus, because of Lemma 2.12, we have G C -dim R (N) = G-dim(Hom R (C, N)) = G-dim R (N ) r. Thus, the sequence (2.13.2) satisfies the conclusion of Theorem 1.2(1).
7 EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION 7 3. Proofs of Theorems 1.4 and 1.5. We continue with a definition due to Enochs and Jenda [7]. DEFINITION 3.1. A complete injective resolution is an exact complex Y of injective R-modules such that Hom R (J, Y) is exact for each injective R-module J. AnRmodule N is G-injective if there exists a complete injective resolution Y such that N = Ker( 0 Y ), and Y is a complete injective resolution of N.LetGI(R) denote the class of G-injective R-modules, and let Gid R ( ) denote the homological dimension obtained from co-resolutionsingi(r). Wesay that anr-module M has locally finite G-injective dimension, provided that Gid Rm (M m ) < for each maximal ideal m R. REMARK 3.2. Using existing technology, the modules of finite G-injective dimension behave best when R is Cohen Macaulay with a dualizing module. 6 For instance, in general, it is not known whether the G-injective dimension localises; but it is known to localise when R has a dualizing module. This is due to the following connection with Bass classes, the local case of which is from [8]. 7 LEMMA 3.3. Assume that R is Cohen Macaulay with a pointwise dualizing module. Let M be an R-module. Then an R-module M has locally finite G-injective dimension if and only if M B ω (R). Proof. If R is local, then the result follows from [8, Proposition 1.4 and Theorems 1.6 and 2.5]. By definition, the condition M has locally finite G-injective dimension is a local condition. Fact 2.9(b) shows that the condition M B ω (R) is also a local condition. Note that Fact 2.3(a) implies that for each maximal ideal m R, the localisation ω m is a dualizing module for the Cohen Macaulay local ring R m. Thus, the general result follows from the local case. The next result shows that the G-dimension of a finitely generated module behaves like its projective dimension. LEMMA 3.4. Let M be a finitely generated R-module. The following conditions are equivalent: (i) G-dim R (M) < ; (ii) G-dim Rm (M m ) < for each maximal ideal m R. When R is Cohen Macaulay with a pointwise dualizing module ω, these conditions are equivalent to the following: (iii) M A ω (R). Proof. The implication (i) = (ii) follows from the inequality G-dim Rm (M m ) G-dim R (M), which is straightforward to verify. The implication (ii) = (i) is from [4, Theorem 3.3]. When R is Cohen Macaulay with a pointwise dualizing module ω, the equivalence (ii) (iii) follows from the local results [8, Proposition 1.3 and Theorems 1.6 and 2.1] as in the proof of Lemma Most good behaviour is also known when R has a dualizing complex, but we restrict our attention to the Cohen Macaulay case. For instance, the conclusion of Lemma 3.3 holds when R is only assumed to have a pointwise dualizing complex; the proof is the same, using results from [6] in place of the results from [8]. 7 It is worth noting that the results in [8] assume that R is local, hence with finite Krull dimension; also, the results of [6] assume implicitly that R has finite Krull dimension since the definition of a dualizing complex used there includes an assumption of finite injective dimension. Contrast this with our definition of pointwise dualizing module, and with Grothendieck s definition of a pointwise dualizing complex from [13]. 8 Note that this uses the characterisation of totally reflexive modules in terms of complete resolutions found in [3, (4.4.4)]; see also [5, Theorem 3.1]. Specifically, an R-module M is totally reflexive if and only if there
8 8 SEAN SATHER-WAGSTAFF Proof 3.5 (Proof of Theorem 1.4). Assume that R is Cohen Macaulay with a pointwise dualizing module ω and M is a non-zero finitely generated R-module with locally finite G-injective dimension. Lemma 3.3 implies that M B ω (R). Using Foxby equivalence (from Fact 2.9(c)), we conclude that Hom R (ω,m) A ω (R), so Lemma 3.4 implies that r := G-dim R (Hom R (ω,m)) <. The fact that R is Noetherian implies that Hom R (ω,m) is finitely generated. (The proof concludes as in Proof We include the details for the sake of thoroughness.) Since M 0, we have Hom R (ω,m) 0, by Fact 2.3(b), so Theorem 1.1(1) implies that there are an R-regular sequence z = z 1,...,z r, integers n 0, n 1,...,n r 0 with n r 1, and an exact sequence 0 Hom R (ω,m) Z N 0, (3.5.1) with Z = r i=0 (R/(z [i] ))n i and G-dim R (N ) r. Fact 2.9(a) implies that Z A ω (R). From Fact 2.9(b), we conclude that N A ω (R), which implies that Tor R 1 (ω,n ) = 0. Thus, an application of ω R to the sequence (3.5.1) yields the next exact sequence: 0 ω R Hom R (ω,m) ω R Z ω R N 0. (3.5.2) The assumption M B ω (R) gives an isomorphism ω R Hom R (ω,m) = M. The equality Z = r i=0 (R/(z [i] ))n i implies that Z := ω R Z = r i=0 (ω/(z [i] )ω)n i. The condition N A ω (R) implies that N := ω R N B ω (R) by Fact 2.9(c), and N = HomR (ω,n) by the definition of what it means for N to be in A ω (R). Thus, we have G-dim(Hom R (ω,n)) = G-dim R (N ) r. So, the sequence (3.5.2) satisfies the conclusion of Theorem 1.4. For our next results, we need a better understanding of the relationship between semidualizing modules and a pointwise dualizing module. LEMMA 3.6. Assume that R is Cohen Macaulay with a pointwise dualizing module ω. If C is a semidualizing R-module, then so is Hom R (C,ω). Proof. In the local case, this result is standard; see, e.g. [17, Facts ]. Since the semidualizing and (pointwise) dualizing conditions are local by Fact 2.3(a), the general case of the result follows. The next two lemmas elaborate on the local-global behavior for our invariants. LEMMA 3.7. Let M be a finitely generated R-module, and let C be a semidualizing R-module. Then P C - pd R (M) < if and only if P Cm - pd Rm (M m ) < for each maximal ideal m R. Proof. The forward implication follows from the inequality P Cm - dim Rm (M m ) P C -pd R (M), which is straightforward to verify. For the converse, assume that P Cm -pd Rm (M m ) < for each maximal ideal m R. It follows that the module Hom R (C, M) m = HomRm (C m, M m ) has finite projective dimension over R m for all m. Hence, the finitely generated R-module Hom R (C, M) has finite projective dimension, so Fact 2.7 implies that P C -pd R (M) is finite. is an exact complex F = F 1 F 0 1 F F 0 F 1 such that Hom R (F, R) is exact and M = Im( F 0 ). Note that the local result was also announced in [10, Corollary 3.3].
9 EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION 9 The next lemma is a souped-up version of a special case of a result of Takahashi and White that is documented in [18]. LEMMA 3.8. Assume that R is Cohen Macaulay with a pointwise dualizing module ω. For each finitely generated R-module M, one has P ω - pd R (M) < if and only if M has locally finite injective dimension. Proof. When ω is a dualizing module for R, i.e. when R has finite Krull dimension, this result is from [18, Lemma 2.7]. In particular, this takes care of the local case. The general case follows from the local case, by Lemma 3.7. Here are some more notions from [15]. DEFINITION 3.9. Let C be a semidualizing R-module, and let I C (R) denote the class of modules N = Hom R (C, I) with I injective. Modules in I C (R) are called C- injective. WeletI C -id R ( ) denote the homological dimension obtained from coresolutions in I C (R). We say that an R-module M has locally finite I C - id, provided that I Cm -id Rm (M m ) < for each maximal ideal m R. FACT Let C be a semidualizing R-module. The Auslander class A C (R) contains every R-module of finite I C -injective dimension; see [16, Lemmas 4.1 and 5.1]. Given an R-module M, one has I C -id R (M) = id R (C R M) and id R (M) = I C -id R (Hom R (C, M)) by [19, Theorem 2.11]. In particular, one has I C -id R (M) < if and only if id R (C R M) <, and one has id R (M) < if and only if I C -id R (Hom R (C, M)) <. It follows that M has locally finite I C - id if and only if C R M has locally finite injective dimension, and M has locally finite injective dimension if and only if Hom R (C, M) has locally finite I C - id. LEMMA Assume that R is Cohen Macaulay with a pointwise dualizing module ω. Let C be a semidualizing R-module, and let x = x 1,...,x i R be an R-regular sequence. Then Hom R (C,ω/(x)ω) = C /(x)c,wherec = Hom R (C,ω). Proof. Let K be the Koszul complex K R (x), and let K + denote the augmented Koszul complex K + = (0 R R R/(x) 0). }{{} deg. 1 Since x is R-regular, K + is an exact sequence of R-modules of finite projective dimension. Thus, each module K + j is in A ω (R), so the induced complex ω R K + = (0 ω ω ω/(x)ω 0) }{{} deg. 1 is an exact sequence of R-modules locally of finite injective dimension. In particular, the modules in this exact sequence are in B C (R), so the next sequence is also exact: Hom R (C,ω R K + ) = (0 Hom R (C,ω) Hom R (C,ω) Hom R (C,ω/(x)ω) 0). }{{} deg. 1
10 10 SEAN SATHER-WAGSTAFF It is straightforward to show that the differential on this sequence in positive degrees is the same as the differential on C R K. It follows that Hom R (C,ω/(x)ω) = H 0 (C R K) = C /(x)c, as desired. Proof 3.12 (Proof of Theorem 1.5(2)). Assume that R is Cohen Macaulay with a pointwise dualizing module ω and M is a non-zero finitely generated R-module with locally finite I C - id. Fact 3.10 implies that C R M has locally finite injective dimension. Since M 0, we have C R M 0, by Fact 2.3(b), so Theorem 1.3 provides an integer r = pd R (Hom R (ω,c R M)), a proper R-regular sequence z = z 1,...,z r, non-negative integers n 0, n 1,...,n r with n r 1, and an exact sequence 0 C R M Z N 0, (3.12.1) with Z = r i=0 (ω/(z [i] )ω)n i, where N has locally finite injective dimension and pd R (Hom R (ω,n )) r. As C R M has locally finite injective dimension, we have C R M B C (R) by Fact 2.9(b), so Ext 1 R (C, C R M) = 0 and Hom R (C, C R M) = M. Thus, an application of Hom R (C, ) to the sequence (3.12.1) yields the next exact sequence: 0 M Hom R (C, Z ) Hom R (C, N ) 0. (3.12.2) Since N has locally finite injective dimension, Fact 3.10 implies that the R-module N := Hom R (C, N ) has locally finite I C - id. With Z := Hom R (C, Z ), it remains to show that Z = r i=0 (C /(z [i] )C ) n i and pd R (Hom R (ω,c R N)) r. The first of these follows from the next sequence of isomorphisms Z = Hom R (C, r i=0 (ω/(z [i] )ω)n i ) = r i=0 Hom R(C,ω R (R/(z [i] )) n i = r i=0 (C /(z [i] )C ) n i, where the last isomorphism is from Lemma To complete the proof, observe that since N has locally finite injective dimension, it is in B C (R), so we have N = C R N. This implies that pd R (Hom R (ω,c R N)) = pd R (Hom R (ω,n )) r, as desired. In the next definition, the special case C = R recovers the complete injective resolutions and Gorenstein injective modules. DEFINITION Let C be a semidualizing R-module. A complete I C I-co-resolution is a complex Y of R-modules such that Y is exact and Hom R (U, Y) is exact for each U I C (R), Y i is injective for i 0andY i is C-injective for i > 0. An R-module N is G C -injective if there exists a complete I C I-co-resolution Y such that N = Ker( Y 0 ), and Y is a complete I C I-co-resolution of N.LetGI C (R) denote the class of G C -injective R-modules, and set G(I C ) = GI C (R) A C (R). We let GI C -id R ( ) andg(i C )- id R ( ) denote the homological dimensions obtained from co-resolutions in GI C (R)andG(I C ), respectively. An R-module M has locally finite G(I C )- id, provided that G(I Cm )- id Rm (M m ) < for each maximal ideal m R. AnR-module M has locally finite GI C - id, provided that GI Cm -id Rm (M m ) < for each maximal ideal m R.
11 EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION 11 The next lemma explains the relation between the different Gorenstein injective dimensions. LEMMA 3.14 [18, Lemma 2.10]. Let C be a semidualizing R-module. For an R- module M, the following conditions are equivalent: (i) G(I C )- id R (M) < ; (ii) GI C - id R (M) < and M A C (R); and (iii) Gid R (C R M) < and M A C (R). When these conditions are satisfied, we have G(I C )- id R (M) = GI C - id R (M) = Gid R (C R M). We actually need the following corollary of the previous result. LEMMA Let C be a semidualizing R-module. For an R-module M, the following conditions are equivalent: (i) M has locally finite G(I C )- id; (ii) M has locally finite GI C - id and M A C (R); and (iii) C R M has locally finite Gid and M A C (R). Proof. This follows from the definitions of the locally finite Gorenstein injective dimensions and the local-global principal for Auslander classes from Fact 2.9(b). Proof 3.16 (Proof of Theorem 1.5(1)). Assume that R is Cohen Macaulay with a pointwise dualizing module ω and M is a non-zero finitely generated R-module in A C (R) with locally finite GI C - id. Lemma 3.15 implies that C R M has locally finite G-injective dimension. Since M 0, we have C R M 0, by Fact 2.3(b), so Theorem 1.4 provides an integer r = G-dim R (Hom R (ω,c R M)), a proper R-regular sequence z = z 1,...,z r, non-negative integers n 0, n 1,...,n r with n r 1, and an exact sequence 0 C R M Z N 0 (3.16.1) such that Z = r i=0 (ω/(z [i] )ω)n i, N B ω (R), and G-dim R (Hom R (ω,n )) r. Since M is in A C (R), we have Ext 1 R (C, C R M) = 0 and Hom R (C, C R M) = M. Thus, an application of Hom R (C, ) to the sequence (3.16.1) yields the next exact sequence: 0 M Hom R (C, Z ) Hom R (C, N ) 0. (3.16.2) Note that Z has locally finite injective dimension, so we have Z B C (R), which implies that Hom R (C, Z ) and Hom R (C, N )areina C (R) by Fact 2.9(b) (c). With Z := Hom R (C, Z ), we have G-dim R (Hom R (ω,c R N)) r and Z = r i=0 (C /(z [i] )C ) n i, as in Proof ACKNOWLEDGEMENTS. The author is grateful to the referee for her/his thoughtful comments. This material is based on work supported by North Dakota EPSCoR and National Science Foundation Grant EPS He was supported in part by a grant from the NSA.
12 12 SEAN SATHER-WAGSTAFF REFERENCES 1. M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, in Séminaire d algèbre commutative dirigé par pierre samuel, vol. 1966/67 (Secrétariat mathématique, Paris, 1967), MR 37 # M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94 (Amer. Math. Soc., Providence, RI, 1969), MR 42 # L. L. Avramov and R.-O. Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142(2) (2000), MR (2001j:13017). 4. L. L. Avramov, S. B. Iyengar and J. Lipman, Reflexivity and rigidity for complexes. I. Commutative rings, Algebra Number Theory 4(1) (2010), MR L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85(3) (2002), MR 2003g: L. W. Christensen, A. Frankild and H. Holm, On Gorenstein projective, injective and flat dimensions A functorial description with applications, J. Algebra 302(1) (2006), MR E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220(4) (1995), MR (97c:16011). 8. E. E. Enochs, O. M. G. Jenda and J. Z. Xu, Foxby duality and Gorenstein injective and projectivemodules,trans. Amer. Math. Soc. 348(8) (1996), MR (96k:13010). 9. H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), MR 48 # H.-B. Foxby, Gorenstein dimensions over Cohen-Macaulay rings, in Proceedings of the international conference on commutative algebra (Bruns W., Editor) (Universität Osnabrück, Osnabrück, Germany, 1994), A. Frankild and S. Sather-Wagstaff, Reflexivity and ring homomorphisms of finite flat dimension, Commun. Algebra 35(2) (2007), MR E. S. Golod, G-dimension and generalized perfect ideals, in Algebraic geometry and its applications, vol. 165 (Trudy Mat. Inst. Steklova, 1984), 62 66, MR 85m: R. Hartshorne, Residues and duality, Lecture Notes in Mathematics, vol. 20 (Springer- Verlag, Berlin, 1966). MR 36 # M. Hochster and Y. Yao, An embedding theorem for modules of finite (G-)projective dimension, preprint (2009). 15. H. Holm and P. Jørgensen, Semidualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205(2) (2006), MR H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47(4) (2007), MR S. Sather-Wagstaff, Bass numbers and semidualizing complexes, in Commutative algebra and its applications (Walter de Gruyter, Berlin, 2009), MR S. Sather-Wagstaff, T. Sharif and D. White, Tate cohomology with respect to semidualizing modules, J. Algebra 324(9) (2010), MR R. Takahashi and D. White, Homological aspects of semidualizing modules, Math. Scand. 106(1) (2010), MR W. V. Vasconcelos, Divisor theory in module categories (North-Holland Publishing Co., Amsterdam, 1974), North-Holland Mathematics Studies, No. 14, Notas de Matemática No. 53. [Notes on Mathematics, No. 53]. MR (58 #16637). 21. D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2(1) (2010), MR
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA
Steeple #3: Gödel s Silver Blaze Theorem Selmer Bringsjord Are Humans Rational? Dec 6 2018 RPI Troy NY USA Gödels Great Theorems (OUP) by Selmer Bringsjord Introduction ( The Wager ) Brief Preliminaries
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
Roland HINNION. Introduction
REPORTS ON MATHEMATICAL LOGIC 47 (2012), 115 124 DOI:10.4467/20842589RM.12.005.0686 Roland HINNION ULTRAFILTERS (WITH DENSE ELEMENTS) OVER CLOSURE SPACES A b s t r a c t. Several notions and results that
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Title: On the curl of singular completely continous vector fields in Banach spaces
Title: On the curl of singular completely continous vector fields in Banach spaces Author: Adam Bielecki, Tadeusz Dłotko Citation style: Bielecki Adam, Dłotko Tadeusz. (1973). On the curl of singular completely
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
O przecinkach i nie tylko
O przecinkach i nie tylko Jerzy Trzeciak Dział Wydawnictw IMPAN publ@impan.pl https://www.impan.pl/pl/wydawnictwa/dla-autorow 7 sierpnia 2018 Przecinek Sformułuję najpierw kilka zasad, którymi warto się
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
!850016! www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C,
Mixed-integer Convex Representability
Mixed-integer Convex Representability Juan Pablo Vielma Massachuse=s Ins?tute of Technology Joint work with Miles Lubin and Ilias Zadik INFORMS Annual Mee?ng, Phoenix, AZ, November, 2018. Mixed-Integer
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to
Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature
A Surname _ Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature Polish Unit 1 PLSH1 General Certificate of Education Advanced Subsidiary Examination June 2014 Reading and
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)
Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin
Stability of Tikhonov Regularization 9.520 Class 07, March 2003 Alex Rakhlin Plan Review of Stability Bounds Stability of Tikhonov Regularization Algorithms Uniform Stability Review notation: S = {z 1,...,
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June 2014. Reading and Writing TOTAL
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Section Mark Polish Unit 1 Reading and Writing General Certificate of Education Advanced Subsidiary
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
DODATKOWE ĆWICZENIA EGZAMINACYJNE
I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What
Zbigniew Błaszczyk. Properly discontinuous actions on homotopy surfaces. Uniwersytet M. Kopernika w Toruniu
Zbigniew Błaszczyk Uniwersytet M. Kopernika w Toruniu Properly discontinuous actions on homotopy surfaces Praca semestralna nr 3 (semestr letni 2010/11) Opiekun pracy: Marek Golasiński Term paper #3: Properly
Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4
Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4 Strona 1 z 23 Andrzej Sładek, Instytut Matematyki UŚl sladek@math.us.edu.pl Letnia Szkoła Instytutu Matematyki 20-23 września
R E P R E S E N T A T I O N S
Z E S Z Y T Y N A U K O W E A K A D E M I I M A R Y N A R K I W O J E N N E J S C I E N T I F I C J O U R N A L O F P O L I S H N A V A L A C A D E M Y 2017 (LVIII) 4 (211) DOI: 10.5604/01.3001.0010.6752
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
Permutability Class of a Semigroup
Journal of Algebra 226, 295 310 (2000) doi:10.1006/jabr.1999.8174, available online at http://www.idealibrary.com on Permutability Class of a Semigroup Andrzej Kisielewicz 1 Mathematical Institute, University
Jak zasada Pareto może pomóc Ci w nauce języków obcych?
Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o
FORMULARZ REKLAMACJI Complaint Form
FORMULARZ REKLAMACJI Complaint Form *CZ. I PROSIMY WYPEŁNIAĆ DRUKOWANYMI LITERAMI PLEASE USE CAPITAL LETTERS I. DANE OSOBY SKŁADAJĄCEJ REKLAMACJĘ: *DANE OBOWIĄZKOWE I. COMPLAINANT S PERSONAL DATA: *MANDATORY
Weak Fraïssé categories
Weak Fraïssé categories Wies law Kubiś arxiv:1712.03300v2 [math.ct] 4 Jul 2019 Institute of Mathematics, Czech Academy of Sciences (CZECHIA) ν July 5, 2019 Abstract We develop the theory of weak Fraïssé
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku
Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku Juliusz and Maciej Zalewski eds. and A. D. Coleman et
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL Formanminsidemlookmatmpoliticsxmculturexmsocietymandm economyminmthemregionmofmcentralmandmeasternm EuropexmtheremismnomothermsourcemlikemNew Eastern EuropeImSincemitsmlaunchminmPw--xmthemmagazinemhasm
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
European Crime Prevention Award (ECPA) Annex I - new version 2014
European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Angielski Biznes Ciekawie
Angielski Biznes Ciekawie Conditional sentences (type 2) 1. Discuss these two types of mindsets. 2. Decide how each type would act. 3. How would you act? Czy nauka gramatyki języka angielskiego jest trudna?
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)
112 Informator o egzaminie maturalnym z języka angielskiego od roku szkolnego 2014/2015 2.6.4. Część ustna. Przykładowe zestawy zadań Przykładowe pytania do rozmowy wstępnej Rozmowa wstępna (wyłącznie
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)
Czy mobilność pracowników uczelni jest gwarancją poprawnej realizacji mobilności studentów? Jak polskie uczelnie wykorzystują mobilność pracowników w programie Erasmus+ do poprawiania stopnia umiędzynarodowienia
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
SNP SNP Business Partner Data Checker. Prezentacja produktu
SNP SNP Business Partner Data Checker Prezentacja produktu Istota rozwiązania SNP SNP Business Partner Data Checker Celem produktu SNP SNP Business Partner Data Checker jest umożliwienie sprawdzania nazwy
Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc
Raport bieżący: 44/2018 Data: 2018-05-23 g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Zawiadomienie o zmianie udziału w ogólnej liczbie głosów w Serinus Energy plc Podstawa prawna: Inne
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs
Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form
Formularz recenzji magazynu Review Form Identyfikator magazynu/ Journal identification number: Tytuł artykułu/ Paper title: Recenzent/ Reviewer: (imię i nazwisko, stopień naukowy/name and surname, academic
Algebraic geometry and algebraic topology
Algebraic geometry and algebraic topology voevodsky connecting two worlds of math bringing intuitions from each area to the other coding and frobenius quantum information theory and quantum mechanics joint
SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES
KATALOG 2016 CATALOGUE 2016 SPIS TREŚCI / INDEX WYPOSAŻENIE DOMU HOUSEHOLD OGRÓD GARDEN PRZECHOWYWANIE WINA WINE STORAGE 31-38 21-30 4-20 SKRZYNKI BOXES 39-65 3 WYPOSAŻENIE DOMU HOUSEHOLD 4 WYPOSAŻENIE
DEGENERATE SINGULARITIES AND THEIR MILNOR NUMBERS
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA doi: 10.4467/20843828AM.12.002.0454 FASCICULUS XLIX, 2011 DEGENERATE SINGULARITIES AND THEIR MILNOR NUMBERS by Szymon Brzostowski Abstract. We give an example
Counting quadrant walks via Tutte s invariant method
Counting quadrant walks via Tutte s invariant method Olivier Bernardi - Brandeis University Mireille Bousquet-Mélou - CNRS, Université de Bordeaux Kilian Raschel - CNRS, Université de Tours Vancouver,
Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska
- Wstęp Dear Mr. President, Dear Mr. President, Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska Dear Sir, Dear Sir, Formalny, odbiorcą jest mężczyzna, którego nazwiska
www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes,"
Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically
Suwalski Park Krajobrazowy i okolice 1:50 000, mapa turystyczno-krajoznawcza =: Suwalki Landscape Park, tourist map = Suwalki Naturpark,... narodowe i krajobrazowe) (Polish Edition) Click here if your
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS Temat: Funkcja logarytmiczna (i wykładnicza)/ Logarithmic (and exponential) function Typ lekcji: Lekcja ćwiczeniowa/training
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
1 HAPPY ANIMALS B09 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z T G1 17 szt. / pcs 13 szt. / pcs B1 13 szt. / pcs W4 13 szt. / pcs W6 14 szt. / pcs U1 1 szt. / pcs U N1
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and
Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment
CPX Cisco Partner Excellence CSPP program partnerski
CPX Cisco Partner Excellence CSPP program partnerski Hotel Double Tree by Hilton Łukasz Wilkowski Distributor Service Development Manager lwilkows@cisco.com Łódź 14 maja 2015 - Cisco Service Partner Program
Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature
A Surname Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature Polish General Certificate of Secondary Education June 2015 Unit 4 46854 Writing Tuesday 16 June 2015 9.00 am
Has the heat wave frequency or intensity changed in Poland since 1950?
Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures
EPS. Erasmus Policy Statement
Wyższa Szkoła Biznesu i Przedsiębiorczości Ostrowiec Świętokrzyski College of Business and Entrepreneurship EPS Erasmus Policy Statement Deklaracja Polityki Erasmusa 2014-2020 EN The institution is located
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards
INSPIRE Conference 2010 INSPIRE as a Framework for Cooperation Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards Elżbieta Bielecka Agnieszka Zwirowicz