Okręgowa Komisja Egzaminacyjna w Gdańsku, listopad Matematyka w nowej formule egzaminacyjnej
|
|
- Franciszek Świderski
- 9 lat temu
- Przeglądów:
Transkrypt
1 , Matematyka w nowej formule egzaminacyjnej
2 Podstawa programowa z komentarzami Edukacja matematyczna i techniczna Podstawa programowa zawiera zakres wiadomości i umiejętności sprawdzanych na sprawdzianie. Zapisane w podstawie programowej cele kształcenie i treści nauczania są sformułowane w języku wymagań. Integralna częścią Podstawy są Komentarze do podstawy programowej przedmiotu matematyka zamieszczone na stronach
3 Podstawa programowa wymagania ogólne Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi wykorzystać te umiejętności w sytuacjach praktycznych. II. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i przetwarza informacje tekstowe, liczbowe, graficzne, rozumie i interpretuje odpowiednie pojęcia matematyczne, zna podstawową terminologię, formułuje odpowiedzi i prawidłowo zapisuje wyniki. III. Modelowanie matematyczne. Uczeń dobiera odpowiedni model matematyczny do prostej sytuacji, stosuje poznane wzory i zależności, przetwarza tekst zadania na działania arytmetyczne i proste równania. IV. Rozumowanie i tworzenie strategii. Uczeń prowadzi proste rozumowanie składające się z niewielkiej liczby kroków, ustala kolejność czynności (w tym obliczeń) prowadzących do rozwiązania problemu, potrafi wyciągnąć wnioski z kilku informacji podanych w różnej postaci. Podstawa programowa z komentarzami Edukacja matematyczna i techniczna, str Wymagania ogólne to synteza, na wyższym poziomie ogólności, najważniejszych celów kształcenia.
4 Podstawa programowa wymagania szczegółowe Treści nauczania wymagania szczegółowe 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby naturalne wielocyfrowe; 2) interpretuje liczby naturalne na osi liczbowej; 3) porównuje liczby naturalne; 4) zaokrągla liczby naturalne; 5) liczby w zakresie do 30 zapisane w systemie rzymskim przedstawia w systemie dziesiątkowym, a zapisane w systemie dziesiątkowym przedstawia w systemie rzymskim. 14. Zadania tekstowe. Uczeń: 1) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; 2) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody; [ ] Nie wymaga się stosowania równań do rozwiązywania trudnych zadań tekstowych, takich, których uczeń nie potrafi rozwiązać za pomocą rozumowania 4 arytmetycznego [ ]. 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. Wymagania szczegółowe to treści nauczania sformułowane jako oczekiwane umiejętności. Komentarz do podstawy programowej przedmiotu Matematyka, str. 67
5 Podstawa programowa wymagania szczegółowe Czytając wymagania szczegółowe należy zwrócić uwagę na zasady, które przyjęto przy ich redagowaniu. (I) Jeżeli jakieś wymaganie znajduje się w podstawie dla etapu n, to automatycznie jest też wymagane na etapie n + 1 i następnych. Zasada kumulatywności (II) Jeżeli jakieś wymaganie jest w podstawach dla etapu n + 1, to automatycznie wynika stąd, że nie jest to wymagane na etapie n. (III) Jeżeli w podstawie zapisane jest wymaganie A, to również wymaga się wszystkiego, co w oczywisty sposób jest niezbędne dla A. Uwaga! Nie obejmuje to jednak uogólnionych pojęć wykorzystywanych w A, ani bloku wiedzy teoretycznej z nimi związanej. Na przykład w wymaganiach po klasie VI czytamy: oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali. Sformułowane jest to w postaci czynności, której sensownego wykonania oczekuje się od ucznia. Ma on przy tym praktycznie rozumieć sens skali, ale bez jakiejś ogólnej teorii. 5 Podstawa programowa z komentarzami Edukacja matematyczna i techniczna, str. 54
6 Zadania egzaminacyjne a podstawa programowa (1) Zadanie 1. (0-1) Informator o sprawdzianie od roku szkolnego 2014/2015 W tabeli przedstawiono lata panowania czterech królów Polski. Król Lata panowania Kazimierz Wielki od 1333 roku do 1370 roku Władysław Jagiełło od 1386 roku do 1434 roku Jan Olbracht od 1492 roku do 1501 roku Zygmunt Stary od 1506 roku do 1548 roku Źródło: Encyklopedia szkolna. Historia, Warszawa Który z wymienionych w tabeli królów Polski panował najdłużej? Wybierz odpowiedź spośród podanych. A. Kazimierz Wielki B. Władysław Jagiełło C. Jan Olbracht D. Zygmunt Stary Wymaganie ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, [ ] zna i stosuje algorytmy działań pisemnych [ ]. Wymaganie szczegółowe 2.2. Uczeń dodaje i odejmuje liczby naturalne wielocyfrowe [ ]. 6
7 Zadania egzaminacyjne a podstawa programowa (2) Zadanie 14. (0-1) Informator o sprawdzianie od roku szkolnego 2014/2015 Z zestawu liczb: 765, 663, 568 i 477 Asia wykreśliła wszystkie te, które są podzielne przez 2, a następnie wszystkie, które są podzielne przez 9. Pozostała jedna liczba. Która liczba pozostała? Wybierz odpowiedź spośród podanych. A. 765 B. 663 C. 568 D. 477 Wymaganie ogólne II. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i przetwarza informacje tekstowe, liczbowe [ ], rozumie i interpretuje odpowiednie pojęcia matematyczne, zna podstawową terminologię [ ]. Wymaganie szczegółowe 2.7. Uczeń rozpoznaje liczby naturalne podzielne przez 2, 3, 5, 9, 10,
8 Zadania egzaminacyjne a podstawa programowa (3) Zadanie 9. (0 1) Informator o sprawdzianie od roku szkolnego 2014/2015 Pociąg przebył 40 km, jadąc z jednakową prędkością 160 km h. Ile czasu potrzebował na pokonanie tej odległości? Wybierz odpowiedź spośród podanych. A. 4 minuty. B. 15 minut. C. 25 minut. D. 40 minut. Wymaganie ogólne III. Modelowanie matematyczne. Uczeń dobiera odpowiedni model matematyczny do prostej sytuacji, stosuje poznane [ ] zależności, przetwarza tekst zadania na działania arytmetyczne [ ]. Wymaganie szczegółowe Uczeń w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie, prędkość przy danej drodze i danym czasie, czas przy danej drodze i danej prędkości; stosuje jednostki prędkości: km/h, m/s. 8
9 Zadania egzaminacyjne a podstawa programowa (4) Zadanie 8. (0 1) Informator o sprawdzianie od roku szkolnego 2014/2015 Na rysunku przedstawiono dwa trójkąty: KLM i PRS. Trójkąty te mają taką samą wysokość i po dwa równe boki. Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Trójkąty KLM i PRS mają równe pola. P F Trójkąty KLM i PRS mają równe obwody. P F Wymaganie ogólne III. Modelowanie matematyczne. Uczeń dobiera odpowiedni model matematyczny do prostej sytuacji, stosuje poznane wzory i zależności [ ]. Wymagania szczegółowe Uczeń oblicza pola: kwadratu, prostokąta, rombu, równoległoboku, trójkąta [ ]. Klasa III. Edukacja matematyczna p. 16. Uczeń [ ] oblicza obwody trójkątów [ ]. Klasa I. Edukacja matematyczna p. 3a. Uczeń w zakresie pomiaru [ ] porównuje długości obiektów. 9
10 Zadania egzaminacyjne a podstawa programowa (5) Zadanie 23. (0 3) Informator o sprawdzianie od roku szkolnego 2014/2015 Pan Kowalski parkował samochód na płatnym parkingu od godziny 13:25 do 15:50. WYSOKOŚĆ OPŁAT ZA PARKOWANIE Za pierwszą godzinę: 3,50 zł Za każdą następną rozpoczętą godzinę: 4,00 zł Ile, zgodnie z cennikiem opłat, powinien zapłacić za parkowanie? Wymaganie ogólne IV. Rozumowanie i tworzenie strategii. Uczeń prowadzi proste rozumowanie składające się z niewielkiej liczby kroków, ustala kolejność czynności (w tym obliczeń) prowadzących do rozwiązania problemu, potrafi wyciągnąć wnioski z kilku informacji podanych w różnej postaci. Wymagania szczegółowe Uczeń dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania Uczeń do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki oraz nabyte umiejętności rachunkowe, a także własne poprawne metody Uczeń wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach. listopad Uczeń 2013 szacuje wyniki działań. 10
11 Typy zadań egzaminacyjnych zamkniętych przykłady (1) Zadania w Informatorze nie wyczerpują wszystkich typów zadań, które mogą wystąpić w zestawie egzaminacyjnym. Informator o sprawdzianie, str. 57 Zadanie 3. (0 1) Informator o sprawdzianie od roku szkolnego 2014/2015 Wiadomo, że = Podaj poprawne wartości poniższych iloczynów. Wybierz odpowiedzi spośród A lub B oraz C lub D. 45 2,4 = A. 108 B. 10,8 4,5 0,24 = C. 1,08 D. 0,108 I. Sprawność rachunkowa Uczeń wykonuje działania na ułamkach dziesiętnych [ ]. 11
12 Typy zadań egzaminacyjnych zamkniętych przykłady (2) Zadanie 7. (0 1) Informator o sprawdzianie od roku szkolnego 2014/2015 Diagram przedstawia wyniki pomiarów temperatury powietrza między godziną 6:00 a 20:00. II. Wykorzystanie i tworzenie informacji Uczeń odczytuje i interpretuje dane przedstawione w tekstach, tabelach, diagramach i na wykresach. Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Najniższą temperaturę zanotowano o godzinie 6:00. P F Od godziny 14:00 do godziny 16:00 temperatura 12 obniżyła się o 3 C. P F
13 Typy zadań egzaminacyjnych zamkniętych przykłady (3) Zadanie 6. (0 2) Informator o sprawdzianie od roku szkolnego 2014/2015 Na każdym z poniższych rysunków prostokąt podzielono na jednakowe części. Odpowiedz na pytania zamieszczone w tabeli. Przy każdym z nich zaznacz właściwą literę Na którym rysunku szarym kolorem zaznaczono 4 5 pola prostokąta? A B C D 6.2. Na którym rysunku szarym kolorem zaznaczono dokładnie 30% pola prostokąta? A B C D II. Wykorzystanie i tworzenie informacji Uczeń opisuje część danej całości za pomocą ułamka Uczeń interpretuje 100% danej wielkości jako całość [ ], 10% jako jedną dziesiątą [ ] część danej wielkości. 13
14 Typy zadań egzaminacyjnych zamkniętych przykłady (4) Zadanie 4. (0 2) Informator o sprawdzianie od roku szkolnego 2014/2015 Szklanka ma pojemność 1 4 litra Dokończ zdanie. Wybierz odpowiedź spośród podanych. Pojemność szklanki to A. 0,2 litra. B. 0,25 litra. C. 0,4 litra. D. 0,5 litra Dokończ zdanie. Wybierz odpowiedź spośród podanych. Jeżeli woda wypełnia 25% pojemności tej szklanki, to znaczy, że w szklance jest A litra wody. B. 1 4 litra wody. C. 1 2 litra wody. D. 1 8 litra wody. III. Modelowanie matematyczne Uczeń zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na ułamki dziesiętne skończone dowolną metodą [ ] Uczeń interpretuje 100% danej wielkości jako całość, 50% jako połowę, 25% jako jedną czwartą część [ ] danej wielkości liczbowej Uczeń [ ] mnoży ułamki zwykłe o mianownikach jednocyfrowych [ ]. 14
15 Ocenianie zadań otwartych (1) Za poprawne rozwiązanie zadania otwartego będzie można otrzymać maksymalnie 1 punkt, 2 punkty, 3 punkty lub 4 punkty. Ocena rozwiązania zadania otwartego zależy od tego, jak daleko uczeń dotarł w drodze do całkowitego rozwiązania. Główne etapy rozwiązania zadania 15
16 Ocenianie zadań otwartych (2) Schemat punktowania zadania, za rozwiązanie którego można otrzymać maksymalnie 4 punkty 4 pkt Rozwiązanie bezbłędne. 3 pkt Rozwiązanie, w którym zostały pokonane zasadnicze trudności zadania, rozwiązanie zostało doprowadzone do końca, ale zawierało błędy rachunkowe, usterki. 2 pkt Rozwiązanie, w którym zostały pokonane zasadnicze trudności zadania, ale rozwiązanie nie było kontynuowane lub było kontynuowane błędnie. 1 pkt Rozwiązanie, w którym dokonany został istotny postęp, ale nie zostały pokonane zasadnicze trudności zadania lub rozwiązanie, w którym zostały pokonane zasadnicze trudności zadania, ale rozwiązanie nie zostało doprowadzone do końca, a w trakcie pokonywania zasadniczych trudności zadania wystąpiły błędy rachunkowe, usterki. 0 pkt Rozwiązanie, w którym nie było istotnego postępu. 16
17 Ocenianie zadań otwartych (3) Zadanie 22. (0 4) Informator o sprawdzianie od roku szkolnego 2014/2015 W szkole przeznaczono 500 zł na zakup piłek do koszykówki i piłek do siatkówki. Kupiono 3 piłki do koszykówki, za które zapłacono 282 zł. Piłka do siatkówki jest o 14 zł tańsza od piłki do koszykówki. Ile piłek do siatkówki można kupić za pozostałą kwotę? Przykładowe rozwiązanie uczniowskie = 218 tyle pieniędzy zostało na piłki do siatkówki istotny postęp 282 : 3 = 94 tyle kosztowała piłka do koszykówki lub istotny postęp = 80 tyle kosztowała piłka do siatkówki 2 80 = 160 na 2 piłki wystarczy pieniędzy 3 80 = 240 na 3 piłki zabraknie dokończenie zadania Odpowiedź: Można kupić dwie piłki do siatkówki. zasadnicza trudność zadania Zasady oceniania rozwiązania Istotnym postępem w rozwiązaniu tego zadania jest ustalenie sposobu obliczenia ceny piłki do siatkówki lub przedstawienie metod: wyznaczenia ceny piłki do koszykówki i kwoty pozostałej na zakup piłek do siatkówki. Pokonaniem zasadniczych trudności jest ustalenie metody obliczenia ceny piłki do siatkówki i metody wyznaczenia kwoty przeznaczonej na zakup piłek do siatkówki. 17
18 Ocenianie zadań otwartych (4) Schemat punktowania zadania pkt za przedstawienie bezbłędnego rozwiązania zadania. 3 pkt w przypadku gdy uczeń doprowadził rozwiązanie do końca, ale rozwiązanie zawiera błędy rachunkowe, usterki lub w przypadku gdy uczeń przedstawił metodę ustalenia liczby piłek do siatkówki, które można kupić, ale nie sformułował wniosku o liczbie piłek. 2 pkt w przypadku gdy uczeń przedstawił metodę wyznaczenia kwoty pozostałej na zakup piłek do siatkówki oraz sposób obliczenia ceny piłki do siatkówki, ale nie doprowadził rozumowania do końca lub popełnił błędy w dalszym rozumowaniu. 1 pkt w przypadku gdy uczeń przedstawił metodę wyznaczenia ceny piłki do siatkówki, ale nie zaprezentował kolejnych etapów rozwiązania lub w przypadku gdy uczeń przedstawił metodę wyznaczenia ceny piłki do koszykówki oraz sposób obliczenia kwoty pozostałej na zakup piłek do siatkówki, ale nie zaprezentował dalszych etapów rozwiązania. 0 pkt w przypadku gdy uczeń nie przedstawił sposobu obliczenia ceny piłki do siatkówki ani nie przedstawił metod wyznaczenia ceny piłki do koszykówki i kwoty przeznaczonej na zakup piłek do siatkówki lub opuścił zadanie 18
19 Ocenianie zadań otwartych (5) Schemat punktowania zadania, za rozwiązanie którego można otrzymać maksymalnie 3 punkty 3 pkt Rozwiązanie bezbłędne. 2 pkt Rozwiązanie, w którym zostały pokonane zasadnicze trudności zadania, rozwiązanie zostało doprowadzone do końca, ale zawierało błędy rachunkowe, usterki lub rozwiązanie, w którym zostały pokonane zasadnicze trudności zadania, ale rozwiązanie nie zostało doprowadzone do końca. 1 pkt Rozwiązanie, w którym dokonany został istotny postęp, ale nie zostały pokonane zasadnicze trudności zadania lub rozwiązanie, w którym zostały pokonane zasadnicze trudności zadania, ale rozwiązanie nie zostało doprowadzone do końca, a w trakcie pokonywania zasadniczych trudności zadania wystąpiły błędy, usterki. 0 pkt Rozwiązanie, w którym nie było istotnego postępu. 19
20 Ocenianie zadań otwartych (6) Zadanie 25. (0 3) Informator o sprawdzianie od roku szkolnego 2014/2015 W szkolnych rozgrywkach piłkarskich każda drużyna mogła otrzymać 3 punkty za zwycięstwo, 2 punkty za remis i 1 punkt za przegrany mecz; 0 punktów oznaczało nieprzystąpienie do meczu. Drużyna Orłów uzyskała w turnieju 40 punktów, przy czym pięć meczów wygrała, a jedenaście przegrała. Ile razy Orły zremisowały? Przykładowe rozwiązanie uczniowskie 5 3 = 15 punkty za zwycięstwa istotny postęp = 26 punkty za zwycięstwa i przegrane = 14 punkty za remisy 14 : 2 = 7 dokończenie zadania Odpowiedź: Drużyna Orłów zremisowała 7 razy. zasadnicza trudność zadania Zasady oceniania rozwiązania Istotnym postępem w rozwiązaniu tego zadania jest ustalenie sposobu wyznaczenia liczby punktów, które drużyna zdobyła w meczach wygranych i przegranych. Pokonaniem zasadniczych trudności jest przedstawienie poprawnej zależności pozwalającej wyznaczyć liczbę punktów zdobytych za zremisowane mecze. 20
21 Ocenianie zadań otwartych (7) Schemat punktowania zadania pkt za przedstawienie bezbłędnego rozwiązania zadania. 2 pkt w przypadku gdy uczeń przedstawił poprawną metodę wyznaczenia liczby punktów zdobytych w meczach zremisowanych, ale nie doprowadził rozwiązania do końca lub w skończonym rozwiązaniu popełnił błędy rachunkowe. 1 pkt w przypadku gdy uczeń przedstawił sposób obliczenia, ile punktów drużyna zdobyła w meczach wygranych i przegranych, ale nie przedstawił dalszej części rozwiązania lub dalsza część rozwiązania jest niepoprawna. 0 pkt w przypadku gdy uczeń nie przedstawił sposobu wyznaczenia liczby punktów, które drużyna zdobyła w meczach wygranych i przegranych, ani nie wykonał żadnego znaczącego działania przybliżającego do znalezienia rozwiązania lub opuścił zadanie. 21
22 Ocenianie zadań otwartych (8) Schemat rozwiązania zadania, za rozwiązanie którego można otrzymać maksymalnie 2 punkty 2 pkt Rozwiązanie bezbłędne. 1 pkt Rozwiązanie, w którym dokonano istotnego postępu, ale rozwiązanie zawierało błędy lub nie zostało doprowadzone do końca. 0 pkt Rozwiązanie, w którym nie było istotnego postępu. Schemat rozwiązania zadania, za rozwiązanie którego można otrzymać maksymalnie 1 punkt 1 pkt Rozwiązanie, w którym podano poprawną odpowiedź. 0 pkt Rozwiązanie, w którym podano błędną odpowiedź lub nie podano odpowiedzi. 22
23 Ocenianie zadań otwartych (9) Zadanie 27. (0 2) Informator o sprawdzianie od roku szkolnego 2014/2015 Na rysunku przedstawiono w tej samej skali prostokątne podłogi dwóch sal. Pierwsza z nich ma w rzeczywistości wymiary 8 m i 12 m. Jakie są rzeczywiste wymiary podłogi drugiej sali? Przykładowe rozwiązania uczniowskie 1 kratka 2 metry istotny postęp I sala krótszy bok 8 : 4 = 2 dokończenie zadania 2 5 = 10 Odpowiedź: Rzeczywiste wymiary podłogi drugiej sali to 12 m i 10 m. Zasady oceniania rozwiązania Istotnym postępem w rozwiązaniu tego zadania jest przedstawienie sposobu obliczenia, ile razy długość rzeczywista jest większa od długości na rysunku. Schemat punktowania zadania pkt za przedstawienie bezbłędnego rozwiązania zadania. 1 pkt w przypadku gdy uczeń podał, że jedna kratka na rysunku odpowiada 2 m w rzeczywistości, ale popełnił błędy rachunkowe w trakcie rozwiązania lub nie doprowadził rozwiązania do końca. 0 pkt w przypadku braku istotnego postępu lub opuszczenia zadania. 23
24 Dziękuję za uwagę. Opracowanie: Dorota Palczewska-Groth 24
Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4
Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Anna Konstantynowicz, Adam Konstantynowicz, Bożena Kiljańska, Małgorzata Pająk, Grażyna Ukleja [ ] 2. Szczegółowe cele kształcenia
MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas
22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb
KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ
KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KOD UCZNIA PESEL Nr zad. MATEMATYKA Odpowiedzi 1 AC. AD. BC. BD. 2 AC. AD. BC. BD. 3 A. B. C. D. 4 AC. AD. BC. BD. 5 A. B. C. D. 6 PP. PF. FP. FF. 7 A. B. C. D. 8 PP. PF.
MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
Wymagania na poszczególne oceny szkolne KLASA VI
Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.
Wymagania na poszczególne oceny szkolne Klasa VI - matematyka
Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Dział 1. Działania na ułamkach zwykłych i dziesiętnych wykonuje działania na ułamkach dziesiętnych z pomocą kalkulatora; mnoży ułamki zwykłe
Rozkład materiału nauczania. Klasa 5
1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste
MATEMATYKA na sprawdzianie od 2015 roku KONFERENCJA DLA NAUCZYCIELI MATEMATYKI W SZKOLE PODSTAWOWEJ
MATEMATYKA na sprawdzianie od 2015 roku KONFERENCJA DLA NAUCZYCIELI MATEMATYKI W SZKOLE PODSTAWOWEJ 1 Treść Formuła sprawdzianu od 2015 r. Wymagania egzaminacyjne z zakresu matematyki Typy zadań Kryteria
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:
Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne KLASA V
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr
Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr Opracowały: Grala Ewa Sylwia Filipkowska Jadwiga Potaś Janina Rydzewska Agnieszka Sienkiewicz Bożena Sprawdzian wiadomości
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile
Wymagania na poszczególne oceny szkolne w klasie V
Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę
Wymagania edukacyjne z matematyki w klasie piątej
Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
LICZBA GODZIN TEMAT LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (11 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ WYMAGANIA SZCZEGÓŁOWE
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym
LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_8) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 2) II. Wykorzystanie
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności.
Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Liczby naturalne. Działania na liczbach naturalnych. Proste i odcinki. Kąty. Koła i okręgi. Działania pisemne na liczbach
Wymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające
I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ
I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych, zna i stosuje algorytmy działań pisemnych
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,
Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka
Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej z przedmiotu matematyka 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń 1) odczytuje i zapisuje liczby naturalne
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby naturalne wielocyfrowe układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby
Numer lekcji Temat lekcji Zagadnienia wg podstawy programowej DZIAŁANIA NA LICZBACH 3 NATURALNYCH, SYSTEM DZIESIĄTKOWY Wędrówka po liczbach. Własności liczb w zakresie 00.. Liczby naturalne w dziesiątkowym
Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi
Rozkład materiału nauczania. Matematyka wokół nas Klasa 4 DZIAŁANIA NA LICZBACH NATURALNYCH (22 h) 1 Liczby naturalne. Oś liczbowa 1. 1 ) odczytuje i zapisuje liczby naturalne wielocyfrowe 1. 2 ) interpretuje
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII
PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ
PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
TEMAT ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (12 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE
Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA PRZYKŁADOWY ZESTAW ZADAŃ DLA UCZNIÓW Z UPOŚLEDZENIEM UMYSŁOWYM W STOPNIU LEKKIM (S8) GRUDZIEŃ
MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne
Ogólnopolski Sprawdzian Szóstoklasisty 2018 z OPERONEM. Kartoteka testu. Wymagania szczegółowe
Kartoteka testu 1. I. Odbiór wypowiedzi 2. I. Odbiór wypowiedzi 3. II. Analiza i interpretacja 4. I. Odbiór wypowiedzi 5. I. Odbiór wypowiedzi 6.a) 6.b) I. Odbiór wypowiedzi I. Odbiór wypowiedzi 7. I.
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:
MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych
7. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. I
7. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. I 37 Mirosław Dąbrowski 7. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. I Cele ogólne w szkole podstawowej: zdobycie przez
Wymagania edukacyjne na poszczególne oceny
Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy 4 Szkoły Podstawowej poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: Matematyka
PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r.
PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ W DNIU 27 SIERPNIA 2012 r. (ze zmianami) Cele kształcenia wymagania ogólne I. Sprawność rachunkowa.
Nowy Sprawdzian Szóstoklasisty 2017 z OPERONEM i Gazetą Wyborczą. Kartoteka testu
Kartoteka testu * 1. identyfikuje wypowiedź jako tekst informacyjny I.1.4. 2. odbiera teksty kultury na poziomie dosłownym II.3.1. i przenośnym 3. wyszukuje informacje wyrażone wprost i pośrednio (ukryte)
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Zasady oceniania rozwiązań zadań z arkusza egzaminacyjnego OMAP-500-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0
Zadania w których wskaźnik łatwości był niż 0.5. Zadanie 15. (0 1) wskaźnik łatwości 0.37 dla szkoły
Pierwszego kwietnia 2015 roku szóstoklasiści przystąpili do sprawdzianu opracowanego zgodnie z zapowiedzią CKE według nowej formuły. Sprawdzian miał, tak jak dotychczas, formę pisemną. Składał się z dwóch
Wyniki procentowe poszczególnych uczniów
K la s a 6 c Próbny sprawdzian w szóstej klasie Klasa 6c Wyniki procentowe poszczególnych uczniów 70% 60% 50% Polska (52%) 40% 30% 20% 10% 0% nr ucznia 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 wynik w % 51
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile
odczytuje z diagramów dane, zapisane za pomocą ułamków zwykłych, ułamków dziesiętnych lub liczb całkowitych odczytuje dane z procentowych diagramów:
Matematyka Klasa V Wymagania programowe podstawowe Uczeń : zapisuje słownie i czyta duże liczby zapisane w systemie dziesiątkowym porównuje liczby naturalne i porządkuje je rosnąco lub malejąco, używa
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Zasady oceniania rozwiązań zadań z arkusza egzaminacyjnego OMAP-700-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0
MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa.
MATEMATYKA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA
Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
Wymagania edukacyjne z matematyki- klasa 4
Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające
Wymagania programowe z matematyki w klasie V.
Wymagania programowe z matematyki w klasie V. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: zapisuje i odczytuje liczby naturalne wielocyfrowe; interpretuje liczby naturalne na osi liczbowej;
MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBY NATURALNE I UŁAMKI 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Wymagania z matematyki dla klasy IV na poszczególne oceny
Wymagania z matematyki dla klasy IV na poszczególne oceny Treści nauczania w klasie IV na podstawie podstawy programowej I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. 1) zapisuje i doczytuje
MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS
UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS Po co OBUT Cele OBUT dostarczenie szkołom: profesjonalnych narzędzi badania umiejętności językowych i matematycznych trzecioklasistów danych pozwalających
9. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. III
46 Mirosław Dąbrowski 9. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. III Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości podczas
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Przewodnik po typach zadań
8 Przewodnik po typach zadań Jedna ze zmian wprowadzonych do sprawdzianu w szóstej klasie szkoły podstawowej dotyczy typów zadań, które mogą się znaleźć w arkuszu egzaminacyjnym. Do tej pory na sprawdzianie
Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV
i ponadpodstawowe z matematyki w SP9 Klasa IV Rozdział DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM 1. Zbieranie i prezentowanie danych 2. Rzymski system zapisu liczb 3. Obliczenia kalendarzowe
WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV:
WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV: Na każdym poziomie obowiązują także wszystkie wymagania z poziomów niższych.
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe.
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 4. II. 07.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.
16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II
80 Mirosław Dąbrowski 16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione