Paweł Tatarzycki STATYSTYKA. Wybrane zagadnienia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Paweł Tatarzycki STATYSTYKA. Wybrane zagadnienia"

Transkrypt

1 Paweł Tatarzycki STATYSTYKA Wybrane zagadnienia

2 ELEMENTARNE ZAGADNIENIA STATYSTYKI Termin statystyka pochodzi od łacińskiego status, co oznacza stan rzeczy. W ujęciu historycznym terminem tym określano uporządkowany, tj. podany w tabelarycznej formie, zbiór danych liczbowych, dotyczących stanu państwa. Obecnie dyscyplinę naukową jaką jest statystyka można zdefiniować jako zbiór metod służących pozyskiwaniu, prezentacji i analizie danych 1. Przedmiotem statystyki jest badanie prawidłowości, jakie dają się zauważyć w tzw. zjawiskach masowych, tj. takich, które zachodzą dostatecznie dużo razy 2. Przykładowo, trudno określić jaki jest przeciętny dochód na osobę na podstawie wybranego gospodarstwa domowego. Rozkład dochodu poznamy analizując np. kilkaset gospodarstw domowych o różnym statusie materialnym i zlokalizowanych w różnych województwach. Zbiorowość statystyczna (populacja) to zbiór jednostek (osób, rzeczy lub zjawisk) objętych badaniem statystycznym. Jednostka statystyczna to najmniejszy element zbiorowości statystycznej. Będziemy go także określać mianem obserwacji. Liczba obserwacji stanowi wielkość populacji. Cecha statystyczna to pewna właściwość jednostki statystycznej. Cechy statystyczne mogą przyjmować różne stany (wartości) określane mianem wariantów 3. I. Cechy stałe służą jedynie do określenia zbiorowości statystycznej pod względem rzeczowym, czasowym i przestrzennym. II. Cechy zmienne przyjmują dwa lub więcej wariantów statystycznych i podlegają obserwacji statystycznej. Ze względu na rodzaj przyjmowanych wariantów wyróżnia się: 1. Jakościowe warianty można wyrazić jedynie za pomocą słów (liczby pełnią rolę etykiet i nie można na nich wykonywać działań matematycznych). Wyróżnia się: a) cechy nominalne (por. skala nominalna) warianty cechy są jednakowo ważne (np. nazwa województwa, nazwa składnika aktywów, płeć, nazwa produktu itp.), b) cechy porządkowe (por. skala porządkowa) warianty cechy można uporządkować, porządkując tym samym zbiorowość statystyczną (np. wykształcenie, skala Likerta, skala rang, klasy ryzyka funduszy inwestycyjnych od Funduszy Rynku Pieniężnego po Fundusze Akcji), 1 J. Jóźwiak, J. Podgórski: Statystyka od podstaw. Polskie Wyd. Ekonomiczne. Warszawa 2000, s Por. M. Sobczyk: Statystyka. Wyd. Naukowe PWN. Warszawa 1998, s Ibidem, s. 10.

3 2. Ilościowe warianty cech są liczbami na których można wykonywać już określone działania matematyczne jak np. obliczanie średniej arytmetycznej (zob. skale pomiarowe przedziałowe/ilorazowe). a) cecha skokowa warianty tej cechy wyrażone są za pomocą liczb należących do zbioru przeliczalnego lub skończonego: pomiędzy tymi liczbami nie ma wartości pośrednich (np. obecności w szkole albo jestem albo mnie nie ma, ewentualnie spóźniłem się), b) cecha ciągła cecha, której warianty wyrażone są za pomocą liczb rzeczywistych, gdzie pomiędzy dwiema dowolnymi wartościami liczbowymi danej cechy można teoretycznie zawsze znaleźć wartość pośrednią cechy (typowymi jednostkami miary cech ciągłych są m.in.: czas, metry, kilogramy, wiek). UWAGA! W praktyce do cech ciągłych zaliczamy też cechy takie, jak waluta (pomiar z dokładnością do 1 grosza sprawia, że cechę tę traktujemy jako ciągłą a nie skokową); kursy akcji w notowaniach ciągłych (nowy kurs ustalany jest często, ale nie co przysłowiową sekundę). Od rodzaju cechy zależy sposób grupowania danych (cechy ciągłe z definicji grupujemy w szereg rozdzielczy z przedziałami klasowymi, zaś cechy skokowe w zależności od liczby powtórzeń wariantów w punktowy lub właśnie z przedziałami klasowymi). Między wprowadzonymi pojęciami można przedstawić zależność: Zbiorowość statystyczna: spółki branży medialnej giełdy warszawskiej (stan na r.) Jednostka statystyczna: poszczególne spółki (wiersze tabeli), przykładowa obserwacja: WSiP. Cechy statystyczne: właściwości jednostek statystycznych (zmienne: nazwa spółki, kurs zamkn., obroty szt., obroty zł). Warianty cechy statystycznej: poszczególne wartości cechy (np. obroty szt. kolejnych spółek). Tabela 1. Wybrane dane finansowe obrazujące jednostki, cechy i warianty statystyczne. Sektor (cecha stała) Spółka Kurs zamkn. (zł) Zmiana (proc.) Obroty (szt.) Obroty (zł) MEDIA AGORA MEDIA ATMGRUPA MEDIA BANKIER.PL MEDIA INTERIA.PL MEDIA MNI MEDIA MUZA MEDIA NETMEDIA MEDIA PPWK MEDIA RMFFM MEDIA TVN MEDIA WSIP Źródło: Opracowanie na podstawie danych z Portalu Finansowego Money.Pl,

4 ETAPY BADANIA STATYSTYCZNEGO Badanie statystyczne to ogół czynności zmierzających do poznania określonej zbiorowości statystycznej ze względu na jedną lub więcej cech. Badanie statystyczne obejmuje cztery etapy 4 : I. PROJEKTOWANIE BADANIA: 1. Określenie celu diagnostycznego i praktycznego badania. 2. Określenie zbiorowości i jednostki statystycznej. 3. Określenie rodzaju cech statystycznych. 4. Wybór metody badania statystycznego. II. OBSERWACJA STATYSTYCZNA: 5. Wybór źródeł danych. 6. Opracowanie narzędzi pomiaru danych (kwestionariusz). 7. Kontrola formalna i merytoryczna zebranego materiału statystycznego. III.OPRACOWANIE I PREZENTACJA MATERIAŁU STATYSTYCZNEGO: 8. Kodowanie i grupowanie danych. 9. Zliczanie danych. 10. Tabelaryczna i graficzna prezentacja danych. IV. ANALIZA STATYSTYCZNA: 11. Opis statystyczny. 12. Wnioskowanie statystyczne (ten dział pomijamy). 4 Por. M. Piłatowska: Repetytorium ze statystyki. Wyd. Naukowe PWN. Warszawa 2006, s.11-21; M. Sobczyk: Statystyka. Wyd. Naukowe PWN. Warszawa 2002, s

5 KLASYFIKACJA METOD BADANIA STATYSTYCZNEGO Kryterium I. Ze względu na częstotliwość badania: 1. Badania doraźne(sporadyczne, jednorazowe, ad hoc) są prowadzone wówczas, gdy zapotrzebowanie na określony rodzaj informacji pojawia się sporadycznie. 2. Badania okresowe są badaniami powtarzalnymi, które przeprowadza się w określonych momentach czasu (np. raporty kwartalne spółek notowanych na Giełdzie Papierów Wartościowych). 3. Badania ciągłe polegają na tym, że obserwacja i rejestracja określonych zdarzeń i faktów odbywa się w sposób ciągły. Badania te dotyczą jednak tylko ściśle określonych aspektów (np. analiza jakości, notowania ciągłe na GPW). Kryterium II. Ze względu na liczbę jednostek objętych badaniem 5 1. BADANIA PEŁNE obejmuje wszystkie jednostki statystyczne wchodzące w skład zbiorowości statystycznej. 2. BADANIE CZĘŚCIOWE obejmuje wybrane jednostki zbiorowości statystycznej. Metody badania pełnego 1. Spis statystyczny polega na gromadzeniu informacji bezpośrednio od wszystkich jednostek tworzących zbiorowość statystyczną. Informacje te są zbierane przez rachmistrzów spisowych drogą bezpośredniej obserwacji statystycznej. Spisy statystyczne dostarczają szczegółowych informacji o badanej zbiorowości (np. Narodowy Spis Powszechny Ludności i Mieszkań z 2002 roku przeprowadzony przez Główny Urząd Statystyczny). 2. Rejestracja statystyczna polega na wpisywaniu zdarzeń i faktów do odpowiednich rejestrów. Rejestracja statystyczna ma węższy zakres tematyczny aniżeli spis statystyczny. Ponadto przy rejestracji statystycznej nie występuje bezpośrednia obserwacja statystyczna, lecz informacje będące przedmiotem rejestracji są zgłaszane w punktach rejestracyjnych. Wyróżnia się: doraźną rejestrację statystyczną polega ona na tym, że w wyznaczonym czasie określone osoby zgłaszają się w wyznaczonych miejscach i udzielają informacji objętej tematyką rejestracji (np. ewidencja pojazdu), bieżącą rejestrację statystyczną polega ona na ciągłym ewidencjonowaniu zdarzeń i faktów określonych przez instytucję prowadzącą rejestrację (np. ewidencja zdarzeń gospodarczych w przedsiębiorstwie). 5 Por. M. Piłatowska: Repetytorium ze statystyki. Wyd. Naukowe PWN. Warszawa 2006, s ; M. Sobczyk: Statystyka. Wyd. Naukowe PWN. Warszawa 2001, s

6 3. Sprawozdawczość statystyczna polega na przekazywaniu przez jednostki sprawozdawcze określonych informacji w postaci standardowych sprawozdań za pomocą odpowiednich formularzy statystycznych wraz z instrukcjami ich wypełniania. Ponadto należy określić termin ich przekazywania (np. formularze PIT do końca kwietnia, formularz GUS F-01). Metody badania częściowego 1. Metoda monograficzna polega na wszechstronnym opisie i szczegółowej analizie pojedynczej jednostki statystycznej lub niewielkiej liczby typowych jednostek badanej zbiorowości. Można tu uwzględnić stosunkowo dużą liczbę cech statystycznych. Podstawowe znaczenie w tej metodzie ma opis w oparciu o dane liczbowe. 2. Metoda ankietowa polega na skierowaniu ankiety do określonej grupy respondentów z zaproszeniem do dobrowolnego wypowiedzenia się w określonej sprawie. Ankieta może zostać skierowana do szerokiego grona osób lub do niewielkiej grupy respondentów (np. do Słuchaczy Studium). 3. Metoda reprezentacyjna opiera się na próbie pobranej ze zbiorowości generalnej w sposób losowy. Fakt ten sprawia, iż jest to szczególny rodzaj metody badania statystycznego, gdzie zastosowanie znajduje rachunek prawdopodobieństwa. Metody szacunkowe: interpolacja polega na znajdywaniu nieznanych wartości w dowolnym punkcie przedziału na podstawie dostępnych wartości należących do tego przedziału (np. ustalanie miejsc zerowych wielomianu). ekstrapolacja polega na ustaleniu nieznanych wartości w dowolnym punkcie leżącym poza przedziałem wartości posiadanych (np. prognozowanie). PRZYKŁADY ZAKRES BADANIA Badanie pełne Badanie częściowe CZĘSTOTLIWOŚĆ PRZEPROWADZANIA BADAŃ badanie doraźne badanie okresowe badanie ciągłe Narodowy Spis Powszechny Ludności i Mieszka 2002 Badanie popytu na nowy produkt zlecone firmie konsultingowej przez zainteresowane przedsiębiorstwo Publikowanie okresowych raportów finansowych przez spółki notowane na Giełdzie Papierów Wartościowych Sprawdzanie wiedzy nabywanej w trakcie nauczania statystyki (ewaluacja bieżąca) Ewidencja ludności Badanie jakości produkcji w oparciu o tzw. karty kontrolne (sygnałem ostrzegawczym jest przekroczenie dolnej lub górnej linii kontrolnej) Źródło: Opracowanie własne.

7 LOSOWY DOBÓR PRÓBY 6 Losowy dobór próby jest to taki sposób wyboru jednostek statystycznych, przy którym są spełnione następujące warunki: 1. Każda jednostka statystyczna (obserwacja) ma dodatnie znane prawdopodobieństwo znalezienia się w próbie. 2. Istnieje możliwość ustalenia prawdopodobieństwa znalezienia się w próbie dla każdego zespołu elementów populacji. Próbę otrzymaną w wyniku doboru losowego nazywamy próbą losową. Istnieje szereg sposobów doboru jednostek statystycznych do próby, określanych mianem schematów losowania. Podstawowym schematem losowania jest tzw. losowanie proste wszystkie obserwacje mają jednakowe prawdopodobieństwo znalezienia się w próbie, przy czym prawdopodobieństwo to nie zmienia się w trakcie losowania (mówimy tu o losowaniu niezależnym). Próbę losową uzyskaną w wyniku losowania prostego nazywamy próbą prostą. W praktyce pobieranie próby prostej z populacji skończonej odbywa się za pomocą tzw. tablic liczb losowych na podstawie pełnej listy ponumerowanych elementów populacji. PRZYKŁAD Krok 1. Określamy listę potencjalnych ponumerowanych jednostek statystycznych (np. listę znajomych, którzy wypełnią przygotowaną ankietę: 1. Kowalski; 2. Nowak,.). Jest to tzw. operat losowania. Załóżmy, że N = 100 osób. Krok 2. Określamy stałe prawdopodobieństwo pojawienia się danej osoby wśród respondentów: 1/N = 1/100 0,01 Krok 3. Następnie odcinek 0-1 dzielimy na 100 części (N = 100): [0-0,01), [0,01-0,02), [0,02-0,03). Krok 4. Zakładamy wielkość próby losowej: n = 10. Zamiast tablic liczb losowych generujemy liczby losowe z wykorzystaniem funkcji Excela: Funkcja ta generuje liczby w przedziale 0-1. =los() Krok 5. Sprawdzamy do jakiego przedziału (zob. krok 3) należy wygenerowana liczba i przypisujemy jej numer z listy potencjalnych respondentów. Jeśli się powtórzy nr obserwacji, to w jej miejsce musimy wygenerować kolejną inną. 6 J. Jóźwiak, J. Podgórski: Statystyka od podstaw. PWE. Warszawa 2000, s

8 SKALE POMIAROWE 7 Definicje Nominalna warianty cechy można porównywać na zasadzie relacji równe/różne (nie jesteśmy w stanie uszeregować wariantów cechy rosnąco bądź malejąco). Jest to skala charakterystyczna dla cech jakościowych nominalnych (np. płeć, pytania typu TAK/NIE, nazwa spółki, nazwa województwa itp.). W przypadku tych skal możemy obliczyć wskaźniki struktury, dominantę, współczynnik V-Cramera. Porządkowa wariant cechy można porównywać na zasadzie relacji mniejsze/większe. Na tym etapie nie możemy jednak stwierdzić o ile dany obiekt różni się od innego. Ten typ skali odpowiada cechom porządkowym (np. preferencje nabywcy: produkt bardzo zły, zły, dobry ; zyski: niskie, średnie, wysokie ). Dla skali porządkowej obliczymy już medianę (szereg szczegółowy uporządkowany rosnąco) oraz współczynnik korelacji rang. Przedziałowe skala ta zachowuje własności skali porządkowej, a ponadto możliwe jest określenie różnic pomiędzy wariantami cechy. W przypadku tego typu skal punkt zerowy nie jest naturalny ustala się go umownie (np. wys. n.p.m., temperatura w stopniach Celsjusza). W przypadku tych skal możemy obliczyć już średnią arytmetyczną, współczynnik korelacji liniowej Pearsona. Ilorazowa skala ta zachowuje własności skal słabszych, a ponadto umożliwia określenie relacji typu A większe od B trzy razy. Jest to najsilniejszy typ skali pomiarowej adekwatny dla cech ilościowych posiadających naturalny punkt zerowy (np. przychody, waga, wiek, liczba przedsiębiorstw, stopy zwrotu). Możliwe jest obliczenie także miar względnych (np. współczynnik zmienności). Adekwatną miarą korelacji jest współczynnik korelacji liniowej Pearsona. Uwaga! Należy podkreślić, iż możliwe jest zejście ze skal mocniejszych ku słabszym, co wiąże się z utratą informacji. w drugą stronę relacja ta nie zachodzi, stąd znaczenia nabiera umiejętne skalowanie np. pytań w kwestionariuszu ankietowym. 7 Por. A. D. Aczel: Statystyka w zarządzaniu. Wyd. Naukowe PWN. Warszawa 2000, s. 37.

9 Przykłady skal pomiarowych 1. Czy w Twojej szkole panuje przemoc? a) zdecydowanie tak b) raczej tak c) raczej nie d) zdecydowanie nie e) trudno powiedzieć Skala Likerta: Skala rang: 2. Uporządkuj preferowane przez Ciebie sposoby sprawdzania wiedzy (wpisz w kratkę odpowiednią literę): A odpowiedź ustna, B sprawdzian pisemny, C praca domowa sposób najbardziej korzystny Skala semantyczna: 3. Określ jak są najczęściej prowadzone lekcje w Twojej szkole: nudnie interesująco Skala Stapela: 4. Oceń ważność kryteriów przy wyborze kursu (-3 to ocena najniższa): Cena kursu Doświadczenie kadry dydaktycznej Dogodna lokalizacja Rangowa skala sumowanych ocen: 5. Ustal odpowiednie dla Ciebie proporcje kursu ze statystyki: Część teoretyczna: % Część praktyczna: % RAZEM: 100 %

10 PYTANIA KWESTIONARIUSZA - KLASYFIKACJA: 1) OTWARTE 2) PÓŁOTWARTE zawierają kafeterię półotwartą typu: inne (jakie?).. 3) ZAMKNIĘTE: A) Dychotomiczne możliwy wybór jednego z dwóch wariantów odpowiedzi. B) Kafeteria dysjunktywna możliwy wybór jednego z więcej niż dwóch wariantów odpowiedzi. C) Kafeteria koniunktywna możliwy wybór kilku wariantów odpowiedzi. 4) TABELE pozwalają na zaznaczenie szeregu odpowiedzi na danej skali. 5) FILTRUJĄCE odmiennie sformułowane w odległych miejscach kwestionariusza w celu wychwycenia nieścisłości w udzielaniu odpowiedzi. 6) METRYCZKOWE dotyczą płci respondenta, jego wieku, wykształcenia z reguły zadawane na końcu kwestionariusza.

11 Spis treści ELEMENTARNE ZAGADNIENIA STATYSTYKI...2 ETAPY BADANIA STATYSTYCZNEGO...4 KLASYFIKACJA METOD BADANIA STATYSTYCZNEGO...5 Kryterium I. Ze względu na częstotliwość badania:... 5 Kryterium II. Ze względu na liczbę jednostek objętych badaniem...5 LOSOWY DOBÓR PRÓBY... 7 SKALE POMIAROWE... 8 Definicje... 8 Przykłady skal pomiarowych... 9 PYTANIA KWESTIONARIUSZA - KLASYFIKACJA:...10

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

Rodzaje badań statystycznych

Rodzaje badań statystycznych Rodzaje badań statystycznych Zbieranie danych, które zostaną poddane analizie statystycznej nazywamy obserwacją statystyczną. Dane uzyskuje się na podstawie badania jednostek statystycznych. Badania statystyczne

Bardziej szczegółowo

STATYSTYKA. dr Agnieszka Figaj

STATYSTYKA. dr Agnieszka Figaj STATYSTYKA OPISOWA dr Agnieszka Figaj Literatura B. Pułaska Turyna: Statystyka dla ekonomistów. Difin, Warszawa 2011 M. Sobczyk: Statystyka aspekty praktyczne i teoretyczne, Wyd. UMCS, Lublin 2006 J. Jóźwiak,

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

BADANIE MARKETINGOWE

BADANIE MARKETINGOWE BADANIE MARKETINGOWE SIM System informacji marketingowej służy do zarządzania informacją marketingową. Są to trwałe, wzajemnie oddziałujące struktury ludzi, urządzeń i procedur do gromadzenia, sortowania,

Bardziej szczegółowo

Sprowadzenie rzeczywistości do pewnych jej elementów określanych jako zmienne i stałe, razem z relacjami, jakie między tymi elementami zachodzą.

Sprowadzenie rzeczywistości do pewnych jej elementów określanych jako zmienne i stałe, razem z relacjami, jakie między tymi elementami zachodzą. Model: Sprowadzenie rzeczywistości do pewnych jej elementów określanych jako zmienne i stałe, razem z relacjami, jakie między tymi elementami zachodzą. Odwzorowanie rzeczywistości poprzez definiowanie

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Rozdział 1. Analiza Struktury. Jan Żółtowski. Problem 1.1. Lp. Pytanie Odpowiedź

Rozdział 1. Analiza Struktury. Jan Żółtowski. Problem 1.1. Lp. Pytanie Odpowiedź Rozdział 1 Analiza Struktury Jan Żółtowski Problem 1.1 Kuratorium w Łodzi postanowiło ocenić wpływ warunków szkolnych i pozaszkolnych na wyniki uczniów piszących próbną EMaturę z matematyki 1. W badaniu

Bardziej szczegółowo

Po drugie jest to dyscyplina naukowa, traktująca o metodach liczbowego opisu i wnioskowania o prawidłowościach występujących w procesach masowych.

Po drugie jest to dyscyplina naukowa, traktująca o metodach liczbowego opisu i wnioskowania o prawidłowościach występujących w procesach masowych. PROJEKTOWANIE BADANIA STATYSTYCZNEGO Termin statystyka ma wiele znaczeń. Po pierwsze określa się nim zbiór informacji liczbowych, dotyczących celowo wybranej grupy zjawisk. W tym sensie mówi się np. o

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

Metodologia badań psychologicznych

Metodologia badań psychologicznych Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych.

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. Wykład 2. 1. Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. 3. Wykresy: histogram, diagram i ogiwa. Prezentacja materiału statystycznego Przy badaniu struktury zbiorowości punktem

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

Badania sondażowe. Wprowadzenie. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Wprowadzenie. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badania sondażowe Wprowadzenie Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa 1 Zasady zaliczenia części Badania sondażowe: 3 prace zaliczeniowe wysyłane

Bardziej szczegółowo

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Pojęcie i metody badań statystycznych PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY W LUBLINIE WYŻSZA

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Statystyka Wszystkie specjalności Data wydruku: 31.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane podstawowe

Bardziej szczegółowo

STATYSTYKA OPISOWA. Wykład 1

STATYSTYKA OPISOWA. Wykład 1 STATYSTYKA OPISOWA Wykład 1 LITERATURA Literatura podstawowa Literatura uzupełniająca 2 LITERATURA Literatura podstawowa: Zeliaś A., Pawełek B., Wanat S., Metody statystyczne. Zadania i sprawdziany, PWE,

Bardziej szczegółowo

Przyjmuje dowolne wartości z określonego przedziału (skończonego lub nie). Zmienne ciągłe: wzrost, czas rozwiązana testu, kwota dochodu

Przyjmuje dowolne wartości z określonego przedziału (skończonego lub nie). Zmienne ciągłe: wzrost, czas rozwiązana testu, kwota dochodu cecha (właściwość), którą posiadają jednostki badanej zbiorowości, przyjmującą co najmniej dwie wartości. Zmienna to właściwość pod względem której elementy zbioru różnią się między sobą Przyjmuje dowolne

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

A N K I E T A. Zalety i wady ankiety. wielka możliwość nieszczerych odpowiedzi przy posyłaniu ankiet pocztą wiele z nich nie wraca

A N K I E T A. Zalety i wady ankiety. wielka możliwość nieszczerych odpowiedzi przy posyłaniu ankiet pocztą wiele z nich nie wraca A N K I E T A 1 Badania ankietowe stosuje się najczęściej w celu szybkiego przebadania bardzo licznych populacji. Jest to najbardziej oszczędny sposób zbierania danych. 2 Zalety i wady ankiety zalety wady

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości)

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum/Liceum Handlowe dla Dorosłych Klasa I Wymiar godzin: 1 godz. w tygodniu w sem. I i II. (bloki tematyczne:

Bardziej szczegółowo

Wykład 3: Prezentacja danych statystycznych

Wykład 3: Prezentacja danych statystycznych Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,

Bardziej szczegółowo

Badanie opinii Omniwatch. Oferta badawcza

Badanie opinii Omniwatch. Oferta badawcza Badanie opinii Omniwatch Oferta badawcza Kim jesteśmy? SW Research Agencja badań rynku i opinii Rok założenia 2011 Wizerunek Firma oferująca profesjonalne rozwiązania badawcze, usługi analityczne i doradcze.

Bardziej szczegółowo

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne.

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne. Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne. Wydział Matematyki Politechniki Wrocławskiej Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę.

Bardziej szczegółowo

4.2. Statystyczne opracowanie zebranego materiału

4.2. Statystyczne opracowanie zebranego materiału 4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Badania marketingowe. Omówione zagadnienia. Społeczna Wyższa Szkoła Przedsiębiorczości i Zarządzania

Badania marketingowe. Omówione zagadnienia. Społeczna Wyższa Szkoła Przedsiębiorczości i Zarządzania Społeczna Wyższa Szkoła Przedsiębiorczości i Zarządzania kierunek: Zarządzanie Badania marketingowe Wykład 5 Opracowanie: dr Joanna Krygier 1 Omówione zagadnienia Ograniczenia wtórnych źródeł informacji

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA

STATYSTYKA EKONOMICZNA STATYSTYKA EKONOMICZNA Analiza statystyczna w ocenie działalności przedsiębiorstwa Opracowano na podstawie : E. Nowak, Metody statystyczne w analizie działalności przedsiębiorstwa, PWN, Warszawa 2001 Dr

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Badanie opinii Warsaw Watch. Oferta badawcza

Badanie opinii Warsaw Watch. Oferta badawcza Badanie opinii Warsaw Watch Oferta badawcza Kim jesteśmy? SW Research Agencja badań rynku i opinii Rok założenia 2011 Wizerunek Firma oferująca profesjonalne rozwiązania badawcze, usługi analityczne i

Bardziej szczegółowo

SYLABUS. Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii

SYLABUS. Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii Rzeszów, 1 październik 014 r. SYLABUS Nazwa przedmiotu Statystyka i demografia Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii Kod przedmiotu MK_8 Studia Kierunek

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Badania marketingowe. - Konspekt wykładowy

Badania marketingowe. - Konspekt wykładowy Badania marketingowe - Konspekt wykładowy Badania marketingowe w logistyce Zakres materiału do egzaminu: 1. Wprowadzenie do przedmiotu - istota, przesłanki oraz użyteczność badań marketingowych 2. Informacja

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

Wykład 1: O statystyce i analizie danych

Wykład 1: O statystyce i analizie danych Wykład 1: O statystyce i analizie danych wykładowca: dr Marek Sobolewski konsultacje: poniedziałek 10.30-12.00, czwartek 9.00-10.30 (p. L-400) strona internetowa: www.msobolew.sd.prz.edu.pl prowadzący

Bardziej szczegółowo

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIPN-004 Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 0/04 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 1 Statystyka Nazwa pochodząca o łac. słowa status stan, państwo i statisticus

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów

Bardziej szczegółowo

Statystyka opisowa. Wykład VI. Analiza danych jakośiowych

Statystyka opisowa. Wykład VI. Analiza danych jakośiowych Statystyka opisowa. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Rangowanie 1 Rangowanie 3 Rangowanie Badaniu statystycznemu czasami podlegają cechy niemierzalne jakościowe), np. kolor włosów, stopień

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH. 1.2.1. Faza identyfikacji problemów decyzyjnych lub okoliczności sprzyjających

CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH. 1.2.1. Faza identyfikacji problemów decyzyjnych lub okoliczności sprzyjających Badania marketingowe. Podstawy metodyczne Autor: Stanisław Kaczmarczyk Wstęp CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH Rozdział 1. Badania marketingowe a zarządzanie 1.1. Rozwój praktyki i teorii

Bardziej szczegółowo

Projekt WND-POKL /10 Transfer w przedsiębiorczość

Projekt WND-POKL /10 Transfer w przedsiębiorczość Prezentowany raport jest analizą wstępnej ankiety ewaluacyjnej przeprowadzonej w ramach projektu realizowanego w ramach Programu Operacyjnego Kapitał Ludzki 2007-2013 Priorytetu VIII. Regionalne kadry

Bardziej szczegółowo

Badania marketingowe. Podstawy metodyczne Stanisław Kaczmarczyk

Badania marketingowe. Podstawy metodyczne Stanisław Kaczmarczyk Badania marketingowe. Podstawy metodyczne Stanisław Kaczmarczyk Badania marketingowe stanowią jeden z najważniejszych elementów działań marketingowych w każdym przedsiębiorstwie. Dostarczają decydentom

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

SPIS TREŚCI CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17

SPIS TREŚCI CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17 SPIS TREŚCI WSTĘP..13 CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17 1. TREŚĆ, PRZEZNACZENIE I PROCES BADAŃ MARKETINGOWYCH....19 1.1. Dlaczego badania marketingowe

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Narodowego Banku go SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Narodowego Banku go Pojęcie i metody badań statystycznych Narodowego Banku go Bibliografia Materiały przygotowano na podstawie

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

G-11e Sprawozdanie o cenach energii elektrycznej według kategorii standardowych odbiorców końcowych

G-11e Sprawozdanie o cenach energii elektrycznej według kategorii standardowych odbiorców końcowych MINISTERSTWO GOSPODARKI, plac Trzech Krzyży 3/5, 00-5 Warszawa Nazwa i adres jednostki sprawozdawczej Numer identyfikacyjny - REGON G-e Sprawozdanie o cenach według kategorii standardowych odbiorców końcowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Plan wynikowy i przedmiotowy system oceniania

Plan wynikowy i przedmiotowy system oceniania Plan wynikowy i przedmiotowy system oceniania Przedmiot: Pracownia ekonomiczna Klasa II Technikum Ekonomiczne Nr programu nauczania: 341[02]/MEN/2008.05.20 (technik ekonomista) Podręcznik: R. Seidel, S.

Bardziej szczegółowo

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X) STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości

Bardziej szczegółowo

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista)

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24

Bardziej szczegółowo

Pisanie prace magisterskich SPIS ZAGADNIEŃ Więcej informacji i materiałów dydaktycznych na temat pisania prac magisterskich i

Pisanie prace magisterskich SPIS ZAGADNIEŃ Więcej informacji i materiałów dydaktycznych na temat pisania prac magisterskich i SPIS ZAGADNIEŃ 1. Podstawowe pojęcia dotyczące statystyki w kontekście badań statystycznych.2 3. Źródła danych statystycznych...4 4. Badanie częściowe...5 5. Organizacja badania statystycznego...10 6.

Bardziej szczegółowo

Badania marketingowe. Omówione zagadnienia

Badania marketingowe. Omówione zagadnienia Społeczna Wyższa Szkoła Przedsiębiorczości i Zarządzania kierunek: Zarządzanie Badania marketingowe Wykład 4 Opracowanie: dr Joanna Krygier 1 Omówione zagadnienia Informacje wtórne definicja Pojęcie wtórnych

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0 Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Ćwiczenia 1-2 Analiza rozkładu empirycznego Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu

Bardziej szczegółowo

Badania sondażowe. Schematy losowania. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Schematy losowania. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badania sondażowe Schematy losowania Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa 1 Próba jako miniatura populacji CELOWA subiektywny dobór jednostek

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Badania marketingowe 2016_12. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2016_12. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2016_12 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. Formułowanie oraz wyjaśnianie tematyki badań 2. Identyfikacja

Bardziej szczegółowo