Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego."

Transkrypt

1 Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania Programu Operacyjnego Kapitał Ludzki

2 In memoriam prof. dr hab. Tomasz Schreiber ( ) Wikipedia: Tomasz Schreiber Wspomnienie o Tomku Schreiberze

3 Podziękowania Podziękowania dla Jarosława Piersy i Mai Czoków, którzy są autorami większości materiałów do poniższego wykładu.

4 1 Organizacja przedmiotu Organizacja przedmiotu 2 Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja Organizacja przedmiotu 3 Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady 4

5 Zaliczenie Organizacja przedmiotu Organizacja przedmiotu Zaliczenie wykładu: egzamin pisemny wymagane jest zaliczenie laboratoriów przed podejściem do egzaminu

6 Zaliczenie Organizacja przedmiotu Organizacja przedmiotu Zaliczenie laboratoriów: implementacja programów (3 6 programów) ocena BDB+ z laboratorium zwalnia z egzaminu

7 Program przedmiotu Organizacja przedmiotu 1 Biologiczny model neuronu 2 Model perceptronu prostego 3 Inne modele pojedynczego neuronu: maszyna liniowa, Adaline 4 Sieci skierowane, algorytm wstecznej propagacji błędu (BEP) 5 Uczenie bez nauczyciela, samoorganizacja topologiczna 6 Analiza składowych głównych (PCA) 7 Sieci rekurencyjne, Sieć Hopfielda, Maszyny Boltzmanna i symulowane wyżarzanie 8 Splotowe sieci neuronowe (CNN) 9 Przegląd oprogramowania 10 Maszyny Wektorów Nośnych (SVM Support Vektor Machines)

8 Literatura Organizacja przedmiotu Organizacja przedmiotu R. Rojas Neural Networks, A Systematic Introduction, Springer 1996, P. Peretto, Introduction to Modeling Neural Networks, Cambridge University Press 1994, S. I. Gallant Neural Network Learning and Expert Systems, The MIT Press, 1993, L. Rutkowski, Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe PWN 2005,

9 Literatura Organizacja przedmiotu Organizacja przedmiotu T. Schreiber, Notatki do wykładu WSN, Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning (on-line), J. Żurada, M. Barski, W. Jędruch, Sztuczne sieci neuronowe, Wydawnictwo Naukowe PWN 1996, E. Izhikevich, Dynamical Systems in Neuroscience, MIT 2007, C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press 1995.

10 Literatura Organizacja przedmiotu Organizacja przedmiotu Słowa kluczowe: Artificial Nneural Network (ANN), Machine Learning (ML) Scholarpedia: Computational Neuroscience

11 1 Organizacja przedmiotu Organizacja przedmiotu 2 Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja 3 Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady 4

12 Mózg Organizacja przedmiotu Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja Płat czołowy (Frontal lobe) Płat ciemieniowy (Parietal lobe) Płat potyliczny (Occipal lobe) Płat skroniowy (Temporal lobe) Rdzeń kręgowy (Spinal cord) Móżdżek (Cerebellum) Rysunek za autor Henry Gray, public domain.

13 Mózg Organizacja przedmiotu Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja Płat czołowy (Frontal lobe) Płat ciemieniowy (Parietal lobe) Płat potyliczny (Occipal lobe) Płat skroniowy (Temporal lobe) Rdzeń kręgowy (Spinal cord) Móżdżek (Cerebellum) Rysunek za autor Henry Gray, public domain.

14 Komórka neuronowa Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja Dendryty Jądro neuronu Ciało komórki Przewężenie Ranviera Komórka Schwanna Otoczka mielinowa Akson Zakończenia aksonów Rysunek za Nicolas Rougier, 2007.

15 Możliwości obliczeniowe Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja komputer grid 1 mózg człowieka CPU 1 64 CPU neuronów Pojemność B RAM, B RAM neuronów B HDD B?? synaps Czas 1 cyklu 10 9 s 10 9 s 10 3 s FLOPS 10 12(13) ?? moc 1kW 15371kW < 0.1kW

16 Notatka historyczna Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja 1949, D. Hebb, postulat Hebba, 1958, F. Rosenblatt, model perceptronu, 1969, M. Minksky i S. Papert, sformułowanie ograniczeń perceptronu zob.: AI winter (wikipedia), 1974, P. Werbos et al., algorytm propagacji wstecznej, 1980, K. Fukushima, neocognitron - inspiracja dla splotowych sieci neuronowych 1982, J. Hopfield, sieci asocjacyjne, 1986, D. Rumelhart et al., zastosowanie BEP (ang. back error propagation) do uczenia sieci warstwowych, , G. Hinton, T. Sejnowski, maszyny Boltzmanna,

17 2016 Organizacja przedmiotu Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja

18 AI i CI Organizacja przedmiotu Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja Zob.:

19 1 Organizacja przedmiotu Organizacja przedmiotu 2 Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady 3 Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady 4

20 Model perceptronu Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady

21 Model perceptronu Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady out

22 Model perceptronu Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Perceptron research mp4 (YouTube)

23 Model perceptronu Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Perceptron układ składający się z n wejść x 1,..., x n (argumenty do funkcji) n wag stowarzyszonych z wejściami w 1,..., w n R funkcji aktywacji f : R R.

24 Dynamika perceptronu Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Na wejściu x = (x 1,..., x n ) perceptron zwróci wartość: n O(x 1,..., x n ) = f ( w i x i ) = f (w t x) i=1

25 Postacie funkcji aktywującej Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Funkcja progowa f (x) = { 1 x < θ +1 x θ

26 Dynamika perceptronu progowego Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Na wejściu x = (x 1,.., x n ) perceptron progowy zwróci wartość: { 1 n O(x 1,..., x n ) = i=1 w ix i < θ +1 n i=1 w ix i θ

27 Postacie funkcji aktywującej Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Funkcja znakowa f (x) = { 1 x < 0 +1 x

28 Postacie funkcji aktywującej Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Funkcja bipolarna (binarna) f (x) = { 0 x < 0 +1 x

29 Postacie funkcji aktywującej Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Sigmoida f (x) = σ(x) = exp( βx) 1.5 =1 =2 =5 =

30 y Organizacja przedmiotu Postacie funkcji aktywującej Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady tangens hiperboliczny (symetryczna sigmoida) f (x) = tanh( 1 1 exp( βx) βx) = exp( βx) 1.5 beta = 1 beta = 3 beta = x

31 Postacie funkcji aktywującej Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Funkcja identycznościowa f (x) = x

32 Postacie funkcji aktywującej Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Funkcja afiniczna f (x) = ax + b

33 Perceptron z biasem (obciążeniem) Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady n wejść x 1,..., x n, n + 1 wag w 0, w 1,..., x n, przyjmuje się dodatkowe, zawsze włączone wejście x 0 = +1 zwracana wartość { 1; n O(x 1,..., x n ) = i=0 w ix i < 0 +1; n i=0 w ix i 0, perceptron z biasem jest równoważny jednostce z progową funkcją aktywującą demo: Blender

34 Perceptron z biasem (obciążeniem) Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady out

35 Dynamika perceptronu Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady plik YouTube

36 Przykład Organizacja przedmiotu Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Rozpoznawanie znaku: Każdy piksel jest jednym wejściem, Perceptron rozpoznaje czy piksele układają się w symbol. click

37 geometryczna Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Rozważamy jednostkę z funkcją progową tj. { 1 n O(x 1,..., x n ) = i=1 w ix i < θ +1 n i=1 w ix i θ Jak wygląda brzeg rozdzielający obszary o różnych aktywacjach?

38 geometryczna Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Prosty przypadek 1d jedno wejście x 1, jedna waga w 1 i próg θ { 1 w1 x O(x 1 ) = 1 < θ x 1 < θ/w 1 +1 w 1 x 1 θ x 1 θ/w 1 Brzeg rozdzielający jest punktem, który dzieli prostą rzeczywistą na dwie półproste.

39 geometryczna Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady W przypadku 1d brzeg rozdzielający jest punktem dzielącym prostą

40 geometryczna Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Prosty przypadek 2d dwa wejścia x 1, x 2, dwie wagi w 1, w 2 i próg θ O(x 1 ) = Wygląda znajomo? 1 w 1 x 1 + w 2 x 2 < θ x 2 < w 1 w 2 x 1 + θ w 2 +1 w 1 x 1 + w 2 x 2 θ x 2 w 1 w 2 x 1 + θ w 2

41 geometryczna Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Prosty przypadek 2d dwa wejścia x 1, x 2, dwie wagi w 1, w 2 i próg θ O(x 1 ) = Wygląda znajomo? 1 w 1 x 1 + w 2 x 2 < θ x 2 < w 1 w 2 x 1 + θ w 2 +1 w 1 x 1 + w 2 x 2 θ x 2 w 1 w 2 x 1 + θ w 2 A teraz? ax + by = c y = a b x + c b

42 geometryczna Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady W przypadku 2d brzeg rozdzielający jest prostą dzielącą płaszczyznę

43 geometryczna Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady W przypadku 3d trzy wejścia x 1, x 2, x 3, trzy wagi w 1, w 2, w 3 i próg θ { 1 w1 x O(x 1 ) = 1 + w 2 x 2 + w 3 x 3 < θ +1 w 1 x 1 + w 2 x 2 + w 3 x 3 θ Równanie ogólne płaszczyzny ax + by + cz + d = 0 Równanie kierunkowe z = a c x b c y d c

44 geometryczna Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady W przypadku 3d jest to płaszczyzna rozdzielająca przestrzeń

45 Problem XOR Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady Prosty przykład dla którego pojedynczy perceptron nie będzie wstanie zwrócić stuprocentowej klasyfikacji

46 1 Organizacja przedmiotu Organizacja przedmiotu 2 Neuron biologiczny Sztuczne sieci neuronowe Sztuczna inteligencja 3 Model perceptronu prostego Postacie funkcji aktywującej geometryczna Przykłady 4

47 Problem uczenia perceptronu Daną mamy reprezentatywną próbkę danych z odpowiadającymi im klasami (binarnymi: tak lub nie) Chcemy znaleźć nieskomplikowaną regułę klasyfikacyjną, według której dane zostały poprzydzielane do klas Dodatkowo chcemy aby reguła sensownie działała na danych podobnych do próbki uczącej, ale których w trakcie uczenia nie widziała

48 Problem uczenia perceptronu Bardziej formalnie: Dane: Cel: perceptron progowy o n wejściach, n nieznanych wagach w 1,.., w n i progu θ, zbiór k przykładów uczących E i = (E (i) (i) 1,...,.E N ), i = 1..k, poprawne odpowiedzi (+1, 1) odpowiadające przykładom uczącym T (1),..., T (k), znaleźć zestaw wag w 1,.., w n i próg θ takie aby perceptron klasyfikował poprawnie wszystkie przykłady uczące (możliwie najwięcej)

49 Simple Perceptron Learning Algorithm (SPLA) Podstawowy algorytm uczenia: 1 Losujemy wagi w i małe, blisko 0. 2 Wybieramy kolejny (lub losowy zalecane) przykład E j i odpowiadającą mu poprawną odpowiedź T j, 3 Obliczamy O wynik działania sieci na E j 4 Obliczamy ERR = T j O 5 Jeżeli ERR = 0 (klasyfikacja jest poprawna), to wróć do 2, 6 W przeciwnym wypadku uaktualniamy wszystkie wagi zgodnie ze wzorem w i = w i + η ERR E j i θ = θ η ERR η > 0 jest stałą uczenia. 7 Jeżeli sieć klasyfikuje poprawnie wszystkie przykłady, to kończymy, wpw wracamy do 2.

50 Simple Perceptron Learning Algorithm (SPLA) Uwagi do algorytmu: dla nieseparowalnych danych zapętla się, wymuszenie zakończenia nie daje żadnej gwarancji jakości zwracanych wag.

51 Pocket Learning Algorithm (PLA) Algorytm uczenia z kieszonką Idea: Z każdym poprawnie klasyfikowanym przykładem zwiększamy wagom czas życia, Najlepszy (tj. najbardziej żywotny) zestaw wag przechowywany jest w kieszonce, aby nie został nadpisany przez przypadkowe zmiany, Po zakończeniu algorytmu zwracany jest rekordowy zestaw, Przy odpowiednio długim działaniu prawdopodobieństwo, że nieoptymalny zestaw przeżyje najdłużej zanika do zera.

52 Pocket Learning Algorithm (PLA) 1 Losujemy wagi i próg wokół 0, przypisujemy układowi wag zerowy czas życia i zapisujemy go w kieszonce jako rekordzistę, 2 Przebiegamy przykłady losując z listy, 3 Dla wybranego przykładu E j sprawdzamy, czy E j jest dobrze klasyfikowany (ERR = T j O = 0), Jeśli tak, zwiększamy mu czas życia o jeden. Jeżeli jest to wynik lepszy niż u rekordzisty, zapominamy starego rekordzistę i zapisujemy w kieszonce nowy układ wag. Wracamy do 2. Jeśli nie, to korygujemy wagi i próg: w i = w i + η ERR E j i θ = θ η ERR Nowemu układowi wag przypisujemy zerowy czas życia. Wracamy do 2. 4 Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Zwracamy najbardziej żywotny zestaw wag.

53 Pocket Learning Algorithm with Ratchet Algorytm uczenia z zapadką Idea: Podobnie jak w algorytmie kieszonkowym zapamiętujemy rekordowe wagi, Przed zapomnieniem poprzedniego zestawu wag upewniamy się, czy nowy zestaw klasyfikuje poprawnie więcej przykładów Po zakończeniu algorytmu zwracany jest rekordowy zestaw, Każdorazowe sprawdzanie wymaga więcej obliczeń, ale zmniejsza prawdopodobieństwo zwrócenia nieoptymalnego wyniku,

54 Pocket Learning Algorithm with Ratchet 1 Losujemy wagi i próg wokół 0, przypisujemy układowi wag zerowy czas życia i zapisujemy go jako rekordzistę, 2 Przebiegamy przykłady losując z listy, oznaczmy go E j, 3 Sprawdzamy czy E j jest dobrze klasyfikowany (ERR = T j O), Jeśli tak, zwiększamy mu czas życia o jeden. Jeżeli jest to wynik lepszy niż u rekordzisty i klasyfikuje on więcej przykładów niż rekordzista, to zapominamy starego rekordzistę i zapisujemy nowy układ wag. Wracamy do 2. Jeśli nie, to korygujemy wagi i próg: w i := w i + η ERR E j i θ := θ η ERR Nowemu układowi wag przypisujemy zerowy czas życia. Wracamy do 2. 4 Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Zwracamy najbardziej żywotny zestaw wag.

55 Wstęp do twierdzenia Rozważamy separowalny zbiór (E i, T i ), Zamiast progu θ, użyjemy równoważny perceptron z biasem. Dla każdego k przyjmujemy E0 k = 1, wówczas perceptron zwraca: { O(E k 1; n ) = i=0 w iei k = w E k < 0 +1; n i=0 w iei k = w E k 0, Wektor wag w = [w 0, w 1,..., w n ], opisuje stan perceptronu

56 Podstawowy algorytm uczenia perceptronów 1 Ustawiamy w := [0,..., 0], 2 Wybieramy kolejny przykład uczący (E k, T k ) 3 Obliczamy O(E k ) = sgn(w E k ). Jeżeli otrzymana liczba jest różna od T k to: Uaktualniamy wagi: w := w + T k E k, 4 Jeżeli perceptron nie klasyfikuje dobrze wszystkich przykładów, to wracamy do punktu 2. Algorytm jest analogiczny do SPLA, ale nie ma losowości; stała uczenia ustawiona na η = 0.5.

57 Wstęp do twierdzenia - przygotowanie przykładów W każdym kroku algorytmu sprwadzamy, czy T k == sgn(w E k ), Zauważmy, że jest to równoważne sprawdzeniu: T k == sgn(w ( E k )), Dlatego można podmienić (E i, T i ) przykładem ( E i, T i ) w zbiorze uczącym, bez wpływu na przebieg algorytmu (znajdziemy taki sam perceptron),

58 Wstęp do twierdzenia - przygotowanie przykładów W każdym kroku algorytmu sprwadzamy, czy T k == sgn(w E k ), Zauważmy, że jest to równoważne sprawdzeniu: T k == sgn(w ( E k )), Dlatego można podmienić (E i, T i ) przykładem ( E i, T i ) w zbiorze uczącym, bez wpływu na przebieg algorytmu (znajdziemy taki sam perceptron), Możemy zatem przygotować zbiór uczący w ten sposób, że podmienimy wszystkie (E i, T i ), dla których T i == 1, przykładami ( E i, 1)

59 Wstęp do twierdzenia - przygotowanie przykładów W każdym kroku algorytmu sprwadzamy, czy T k == sgn(w E k ), Zauważmy, że jest to równoważne sprawdzeniu: T k == sgn(w ( E k )), Dlatego można podmienić (E i, T i ) przykładem ( E i, T i ) w zbiorze uczącym, bez wpływu na przebieg algorytmu (znajdziemy taki sam perceptron), Możemy zatem przygotować zbiór uczący w ten sposób, że podmienimy wszystkie (E i, T i ), dla których T i == 1, przykładami ( E i, 1) Dzięki temu krok uaktualnienia wag w := w + T k E k upraszcza się do: w := w + E k

60 Twierdzenie Rozważmy separowalny zbiór przykładów uczących E = (E i, T i ) (przygotowany jak wyżej). Wybieramy K takie, że wszystkie E i K, Bierzemy wektor wag w i liczbę δ > 0 takie, że w E i > δ, dla każdego E i ze zbioru E (bo jest separowalny), Wówczas podstawowy algorytm uczenia perceptronów zakończy się po mniej niż K 2 ( w 2 )/δ 2 krokach. Wniosek: Algorytm zatrzyma się po skończonej liczbie kroków i dostaniemy perceptron w separujący zbiór E.

61 Dowód Organizacja przedmiotu Przez w t oznaczamy stan wektora wag w po kroku t, t = 0, 1,.... Przyjmujemy w 0 = [0,..., 0] T. Porównajmy w t+1 z wektorem w.

62 Dowód Organizacja przedmiotu Przez w t oznaczamy stan wektora wag w po kroku t, t = 0, 1,.... Przyjmujemy w 0 = [0,..., 0] T. Porównajmy w t+1 z wektorem w. Sytuacja: w kroku t + 1 perceptron w t źle separuje pewien przykład E k. w w t+1 = w (w t + E k ) = w w t + w E k w w t + δ,

63 Dowód Organizacja przedmiotu Przez w t oznaczamy stan wektora wag w po kroku t, t = 0, 1,.... Przyjmujemy w 0 = [0,..., 0] T. Porównajmy w t+1 z wektorem w. Sytuacja: w kroku t + 1 perceptron w t źle separuje pewien przykład E k. w w t+1 = w (w t + E k ) = w w t + w E k w w t + δ, w w 0 = 0, w w 1 w w 0 + δ,... Przez indukcję dostajemy: w w t tδ. (*)

64 Dowód Organizacja przedmiotu Zbadajmy teraz jak w kolejnych krokach zmienia się długość wektora w t :

65 Dowód Organizacja przedmiotu Zbadajmy teraz jak w kolejnych krokach zmienia się długość wektora w t : w t+1 2 = w t+1 w t+1 = (w t + E k ) (w t + E k ) = w t w t + 2w t E k + E k E k w t 2 + K 2 (2w t E k 0, bo przykład E k jest źle klasyfikowany)

66 Dowód Organizacja przedmiotu Zbadajmy teraz jak w kolejnych krokach zmienia się długość wektora w t : w t+1 2 = w t+1 w t+1 = (w t + E k ) (w t + E k ) = w t w t + 2w t E k + E k E k w t 2 + K 2 (2w t E k 0, bo przykład E k jest źle klasyfikowany) w 0 2 = 0 Stąd, przez indukcję dostajemy: w t 2 tk 2. (**)

67 Dowód Organizacja przedmiotu Przywołujemy (*) i (**) (*): w w t tδ, (**): w t 2 tk 2,

68 Dowód Organizacja przedmiotu Przywołujemy (*) i (**) (*): w w t tδ, (**): w t 2 tk 2, stąd: tδ w w t = w w t cos(α), gdzie α to kąt między w i w t,

69 Dowód Organizacja przedmiotu Przywołujemy (*) i (**) (*): w w t tδ, (**): w t 2 tk 2, stąd: tδ w w t = w w t cos(α), gdzie α to kąt między w i w t, ale cos(α) 1, więc tδ w w t w K (t), dzięki (**),

70 Dowód Organizacja przedmiotu Przywołujemy (*) i (**) (*): w w t tδ, (**): w t 2 tk 2, stąd: tδ w w t = w w t cos(α), gdzie α to kąt między w i w t, ale cos(α) 1, więc tδ w w t w K (t), dzięki (**), po elementarnych przekształceniach dostajemy: t K 2 ( w 2 )/δ 2, co kończy uzasadnienie.

71 Zbiory nieseparowalne Okazuje się, że dla dowolnego (skończonego) E istnieje M takie, że w t w 0 + M. (dowód długi)

72 Zbiory nieseparowalne Okazuje się, że dla dowolnego (skończonego) E istnieje M takie, że w t w 0 + M. (dowód długi) Wniosek: jeżeli współrzędne wszystkich E k są całkowite, to zbiór wartości przyjmowanych przez w t w przebiegu algorytmu uczącego jest skończony (nawet jeżeli algorytm się zapętli)

73 Zbiory nieseparowalne Okazuje się, że dla dowolnego (skończonego) E istnieje M takie, że w t w 0 + M. (dowód długi) Wniosek: jeżeli współrzędne wszystkich E k są całkowite, to zbiór wartości przyjmowanych przez w t w przebiegu algorytmu uczącego jest skończony (nawet jeżeli algorytm się zapętli) Obserwując powtarzanie się w t dałoby się wykryć nieseparowalność w skończonym czasie. Nie jest to praktyczne; skończony czas niewiele nam mówi. Jeżeli dane są nieseparowalne, to wynik jest bezużyteczny

74 Zbiory nieseparowalne Okazuje się, że dla dowolnego (skończonego) E istnieje M takie, że w t w 0 + M. (dowód długi) Wniosek: jeżeli współrzędne wszystkich E k są całkowite, to zbiór wartości przyjmowanych przez w t w przebiegu algorytmu uczącego jest skończony (nawet jeżeli algorytm się zapętli) Obserwując powtarzanie się w t dałoby się wykryć nieseparowalność w skończonym czasie. Nie jest to praktyczne; skończony czas niewiele nam mówi. Jeżeli dane są nieseparowalne, to wynik jest bezużyteczny Algorytm kieszonkowy ma lepsze gwarancje i szybciej zbiega do optymalnego rozwiązania.

75 wektora wag Prosta oddzielająca jest prostopadła do wektora wag i przesunięta o θ w

76 Zdefiniujmy funkcję błędu: ERR(w, θ) := {E j : O w,θ (E j ) T j } = liczba błędnie sklasyfikowanych przykładów W tej sytuacji uczenie jest zagadnieniem minimalizacji błędu na przestrzeni wag i progu

77 Organizacja przedmiotu Problem OR: theta = ERR w w1

78 Problem OR: click

79 Organizacja przedmiotu Problem AND: theta = ERR w2 w

80 Problem AND: click

81 Organizacja przedmiotu Problem XOR: theta = ERR w2 w

82 Problem XOR: click

83 Po zajęciach powinienem umieć / wiedzieć: podać definicję oraz dynamikę perceptronu zaimplementować perceptron, dla mniejszych danych również przeprowadzić obliczenia na kartce sformułować problem uczenia perceptronu, zaimplementować algorytmy PLA lub RLA zastosować perceptron w praktycznych problemach obliczeniowych znać ograniczenia perceptronu, sformułować przykładowy problem przekraczający jego możliwości

84 Pytania kontrolne Co to jest perceptron, jakie są jego wewnętrzne i zewnętrzne parametry? Jaką odpowiedź da perceptron znakowy o wagach (w 0 = 1.5, w 1 = +1, w 2 = 1) na wejściu (x 1 = 1, x 2 = +1)? Dane są dwa przykłady uczące ( 1, 1) 1, (+1, +1) +1. Startowe wagi perceptronu wynoszą (w 0 = θ = +4, w 1 = 3, w 2 = 1). Przeprowadź kilka kroków algorytmu uczącego (może być SPLA). Podaj zestaw trzech danych na R 2, który nie jest liniowo separowalny.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-04 In memoriam prof. dr hab. Tomasz Schreiber

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 2 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 213-1-15 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron. Wprowadzenie do Sieci Neuronowych Laboratorium Organizacja zajęć. Perceptron. Jarosław Piersa --3 Organizacja zajęć. Co będzie Dużo programowania (pisanie programów), Trochę matematyki, Małe zadania do

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron. Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.. Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych lista zadań 1

Wprowadzenie do Sieci Neuronowych lista zadań 1 Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa 2010-10-04 1 Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Wstęp do Sieci Neuronowych

Wstęp do Sieci Neuronowych Wstęp do Sieci Neuronowych T. Schreiber, M. Czoków, J. Piersa 9 listopada 1 Streszczenie Dokument poniższy nie jest skryptem do wykładu w roku akademickim 1/11. Co najwyżej podsumowanim najważniejszych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych

Wprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Wstęp do sztucznych sieci neuronowych

Wstęp do sztucznych sieci neuronowych Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy

Bardziej szczegółowo

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna. Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd

Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych. Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie

Bardziej szczegółowo

Wstęp do Sieci Neuronowych

Wstęp do Sieci Neuronowych Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa, Tomasz Schreiber 5 listopada 3 975, Profesor Uniwersytetu Mikołaja Kopernika w Toruniu. Autor oryginalnej formy wykładu na WMiI. Spis treści Modele

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

Inteligentne systemy przeciw atakom sieciowym

Inteligentne systemy przeciw atakom sieciowym Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.

Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład

Bardziej szczegółowo

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0 Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm

Bardziej szczegółowo

Wykład 1: Wprowadzenie do sieci neuronowych

Wykład 1: Wprowadzenie do sieci neuronowych Wykład 1: Wprowadzenie do sieci neuronowych Historia badań nad sieciami neuronowymi. - początki: badanie komórek ośrodkowego układu nerwowego zwierząt i człowieka, czyli neuronów; próby wyjaśnienia i matematycznego

Bardziej szczegółowo

Wprowadzenie do sieci neuronowych i zagadnień deep learning

Wprowadzenie do sieci neuronowych i zagadnień deep learning Wprowadzenie do sieci neuronowych i zagadnień deep learning Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Deep learning Anna Sztyber 1 / 28 Deep learning

Bardziej szczegółowo

OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA:

OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA: METODY HEURYSTYCZNE wykład 4 OCENA DZIAŁANIA AE 1 2 LOSOWOŚĆ W AE Różne zachowanie algorytmuw poszczególnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych.

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 15, Neuron Hodgkina-Huxleya

Wstęp do sieci neuronowych, wykład 15, Neuron Hodgkina-Huxleya Wstęp do sieci neuronowych, wykład 15, Neuron Hodgkina-Huxleya Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2019-01-21 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

SIECI NEURONOWE Wprowadzenie

SIECI NEURONOWE Wprowadzenie SIECI NEURONOWE Wprowadzenie JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA WYKŁADOWCA JOANNA GRABSKA CHRZĄSTOWSKA KATEDRA

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów. Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.

Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne. Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

Obliczenia Naturalne - Sztuczne sieci neuronowe

Obliczenia Naturalne - Sztuczne sieci neuronowe Literatura Wprowadzenie Obliczenia Naturalne - Sztuczne sieci neuronowe Paweł Paduch Politechnika Świętokrzyska 13 marca 2014 Paweł Paduch Obliczenia Naturalne - Sztuczne sieci neuronowe 1 z 43 Plan wykładu

Bardziej szczegółowo

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba Wrocław University of Technology Uczenie głębokie Maciej Zięba UCZENIE GŁĘBOKIE (ang. deep learning) = klasa metod uczenia maszynowego, gdzie model ma strukturę hierarchiczną złożoną z wielu nieliniowych

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium 6 Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa 3--6 Powtórzenie. Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) ()

Bardziej szczegółowo

Wykład wprowadzający

Wykład wprowadzający Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Wykład wprowadzający dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego

Bardziej szczegółowo

Systemy Inteligentnego Przetwarzania wykład 1: sieci elementarne

Systemy Inteligentnego Przetwarzania wykład 1: sieci elementarne Systemy Inteligentnego Przetwarzania wykład 1: sieci elementarne Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Sprawy formalne konsultacje, p. 225 C-3:

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie

Bardziej szczegółowo

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki

Bardziej szczegółowo

Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.

Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi

Bardziej szczegółowo

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Deep Learning na przykładzie Deep Belief Networks

Deep Learning na przykładzie Deep Belief Networks Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku

Bardziej szczegółowo

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści

Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

ESI: Perceptrony proste i liniowe

ESI: Perceptrony proste i liniowe ESI: Perceptrony proste i liniowe [Matlab 1.1] Matlab2015b i nowsze 1 kwietnia 2019 1. Cel ćwiczeń: Celem ćwiczeń jest zapoznanie się studentów z podstawami zagadnieniami z zakresu sztucznych sieci neuronowych.

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii

Bardziej szczegółowo

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I. Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Złe wieści o teście To jest slajd, przy którym wygłaszam złe wieści. Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj

Bardziej szczegółowo

wiedzy Sieci neuronowe (c.d.)

wiedzy Sieci neuronowe (c.d.) Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie

Bardziej szczegółowo

Algorytmy wstecznej propagacji sieci neuronowych

Algorytmy wstecznej propagacji sieci neuronowych Algorytmy wstecznej propagacji sieci neuronowych Mateusz Nowicki, Krzysztof Jabłoński 1 Wydział Inżynierii Mechanicznej i Informatyki Politechnika Częstochowska Kierunek Informatyka, Rok III 1 krzysztof.jablonski@hotmail.com

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda

Bardziej szczegółowo